首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
Pseudomonas abietaniphila BKME-9 is able to degrade dehydroabietic acid (DhA) via ring hydroxylation by a novel dioxygenase. The ditA1, ditA2, and ditA3 genes, which encode the alpha and beta subunits of the oxygenase and the ferredoxin of the diterpenoid dioxygenase, respectively, were isolated and sequenced. The ferredoxin gene is 9. 2 kb upstream of the oxygenase genes and 872 bp upstream of a putative meta ring cleavage dioxygenase gene, ditC. A Tn5 insertion in the alpha subunit gene, ditA1, resulted in the accumulation by the mutant strain BKME-941 of the pathway intermediate, 7-oxoDhA. Disruption of the ferredoxin gene, ditA3, in wild-type BKME-9 by mutant-allele exchange resulted in a strain (BKME-91) with a phenotype identical to that of the mutant strain BKME-941. Sequence analysis of the putative ferredoxin indicated that it is likely to be a [4Fe-4S]- or [3Fe-4S]-type ferredoxin and not a [2Fe-2S]-type ferredoxin, as found in all previously described ring-hydroxylating dioxygenases. Expression in Escherichia coli of ditA1A2A3, encoding the diterpenoid dioxygenase without its putative reductase component, resulted in a functional enzyme. The diterpenoid dioxygenase attacks 7-oxoDhA, and not DhA, at C-11 and C-12, producing 7-oxo-11, 12-dihydroxy-8,13-abietadien acid, which was identified by 1H nuclear magnetic resonance, UV-visible light, and high-resolution mass spectrometry. The organization of the genes encoding the various components of the diterpenoid dioxygenase, the phylogenetic distinctiveness of both the alpha subunit and the ferredoxin component, and the unusual Fe-S cluster of the ferredoxin all suggest that this enzyme belongs to a new class of aromatic ring-hydroxylating dioxygenases.  相似文献   

2.
3.
The structure of a low-potential [4Fe-4S] ferredoxin from Bacillus thermoproteolyticus has been solved using anomalous scattering data from iron atoms in the diffraction data of native crystals and refined partially to a crystallographic R-factor of 0.33, with 2.3 A (1 A = 0.1 nm) resolution data. The least-squares refinement based on the Bijvoet differences has determined that the four iron atoms in the cluster are an equal distance, approximately 2.8 A, apart. The NH ... S hydrogen bonds between polypeptide nitrogen atoms, and both cysteine and inorganic sulfur atoms, are present, as in ferrodoxin from Peptococcus aerogenes. The polypeptide chain of the B. thermoproteolyticus ferredoxin has a fold closely similar to that of 2[4Fe-4S] ferredoxin from P. aerogenes. The structural correspondence indicates strongly that both types of ferredoxin evolved from a common ancestor. The second cluster-binding region in P. aerogenes ferredoxin corresponds to the alpha-helix in B. thermoproteolyticus ferredoxin. The secondary-structure predictions strongly suggest that the alpha-helix is generally present in the monocluster-type ferredoxins. The conformational change to alpha-helix, insertions of a loop and a protrusion, as well as the absence of the second cluster in B. thermoproteolyticus ferredoxin, result in the lack of 2-fold symmetry present in P. aerogenes ferredoxin. So, the track of gene duplication is no longer detectable in the tertiary structure alone. The evolutionary events that may have occurred in the ferredoxins with the [4Fe-4S] cluster are discussed.  相似文献   

4.
The thermophilic, obligately chemolithoautotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, assimilates carbon dioxide via the reductive tricarboxylic acid cycle. A gene cluster, porEDABG, encoding pyruvate:ferredoxin oxidoreductase (POR), which plays a key role in this cycle, was cloned and sequenced. The nucleotide sequence and the gene organization were similar to those of the five subunit-type 2-oxoglutarate:ferredoxin oxidoreductase from this strain, although the anabolic POR had been previously reported to consist of four subunits. A small protein (8 kDa) encoded by porE, which had not been detected in the previous work, was identified in the purified recombinant POR expressed in Escherichia coli, indicating that the enzyme is also a five-subunit type. Incorporation of PorE in the wild-type POR enzyme was confirmed by immunological analysis. PorA, PorB, PorG, and PorE were similar to the alpha, beta, gamma, and delta subunits of the four subunit-type 2-oxoacid oxidoreductases, respectively, and had conserved specific motifs. PorD had no specific motifs but was essential for the expression of the active enzyme.  相似文献   

5.
Engineering of hybrid gene clusters between the toluene metabolic tod operon and the biphenyl metabolic bph operon greatly enhanced the rate of biodegradation of trichloroethylene. Escherichia coli cells carrying a hybrid gene cluster composed of todC1 (the gene encoding the large subunit of toluene terminal dioxygenase in Pseudomonas putida F1), bphA2 (the gene encoding the small subunit of biphenyl terminal dioxygenase in Pseudomonas pseudoalcaligenes KF707), bphA3 (the gene encoding ferredoxin in KF707), and bphA4 (the gene encoding ferredoxin reductase in KF707) degraded trichloroethylene much faster than E. coli cells carrying the original toluene dioxygenase genes (todC1C2BA) or the original biphenyl dioxygenase genes (bphA1A2A3A4).  相似文献   

6.
An extremely thermostable [4Fe-4S] ferredoxin was isolated under anaerobic conditions from a hyperthermophilic archaeon Thermococcus profundus, and the ferredoxin gene was cloned and sequenced. The nucleotide sequence of the ferredoxin gene shows the ferredoxin to comprise 62 amino acid residues with a sequence similar to those of many bacterial and archaeal 4Fe (3Fe) ferredoxins. The unusual Fe-S cluster type, which was identified in the resonance Raman and EPR spectra, has three cysteines and one aspartate as the cluster ligands, as in the Pyrococcus furiosus 4Fe ferredoxin. Under aerobic conditions, a ferredoxin was purified that contains a [3Fe-4S] cluster as the major Fe-S cluster and a small amount of the [4Fe-4S] cluster. Its N-terminal amino acid sequence is the same as that of the anaerobically-purified ferredoxin up to the 26th residue. These results indicate that the 4Fe ferredoxin was degraded to 3Fe ferredoxin during aerobic purification. The aerobically-purified ferredoxin was reversibly converted back to the [4Fe-4S] ferredoxin by the addition of ferrous ions under reducing conditions. The anaerobically-purified [4Fe-4S] ferredoxin is quite stable; little degradtion was observed over 20 h at 100 degrees C, while the half-life of the aerobically-purified ferredoxin is 10 h at 100 degrees C. Both the anaerobically- and aerobically-purified ferredoxins were found to function as electron acceptors for the pyruvate-ferredoxin oxidoreductase purified from the same archaeon.  相似文献   

7.
We have purified and characterized two ferredoxins, designated Fd-1 and Fd-2, from the soluble protein fraction of sulfonylurea herbicide induced Streptomyces griseolus. These cells have previously been shown to contain two inducible cytochromes P-450, P-450SU1 (CYP105A1) and P-450SU2 (CYP105B1), responsible for herbicide metabolism [O'Keefe, D. P., Romesser, J. A., & Leto, K. J. (1988) Arch. Microbiol. 149, 406-412]. Although Fd-2 is more effective, either ferredoxin can restore sulfonylurea monooxygenase activity to an aerobic mixture of NADPH, spinach ferredoxin:NADP oxidoreductase, purified cytochrome P-450SU1, and herbicide substrate. The gene for Fd-1 is located in the genome just downstream of the gene for cytochrome P-450SU1; the gene for Fd-2 follows the gene for P-450SU2. The deduced amino acid sequences of the two ferredoxins show that, if monomeric, each has a molecular mass of approximately 7 kDa, and alignment of the two sequences demonstrates that they are approximately 52% positionally identical. The spectroscopic properties and iron and acid-labile sulfide contents of both ferredoxins suggest that, as isolated, each contains a single [3Fe-4S] cluster. The presence of only three cysteines in Fd-1 and comparisons with three [4Fe-4S] ferredoxins with high sequence similarity suggest that both Fd-1 and Fd-2 have an alanine in the position where these [4Fe-4S] proteins have a fourth cysteine ligand to the cluster. Transformation of Streptomyces lividans, a strain unable to metabolize sulfonylureas, with DNA encoding both P-450SU1 and Fd-1 results in cells capable of herbicide metabolism. S. lividans transformants encoding only cytochrome P-450SU1 do not metabolize herbicide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The nucleotide sequence of the downstream region of the bph operon from Pseudomonas sp. strain KKS102 was determined. Two open reading frames (ORF1 and ORF2) were found in this region, and the deduced amino acid sequence of ORF2 showed homology with the sequences of four ferredoxin reductases of dioxygenase systems. When this region was inserted just upstream of the bph operon, which does not contain a gene encoding ferredoxin reductase, biphenyl dioxygenase activity was detected. The 24- and 44-kDa polypeptides predicted from the two open reading frames were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Crude extract which contained the products of ORF2 and bphA1A2A3 showed cytochrome c reduction activity. These data clearly suggest that ORF2 encodes ferredoxin reductase. The deduced amino acid sequence of ORF1 does not show significant homology with the sequences of any other proteins in the SWISS-PROT data bank, and the function of ORF1 is unknown.  相似文献   

9.
10.
The prototype ferredoxin maquette, FdM, is a 16-amino acid peptide which efficiently incorporates a single [4Fe-4S]2+/+ cluster with spectroscopic and electrochemical properties that are typical of natural bacterial ferredoxins. Using this synthetic protein scaffold, we have investigated the role of the nonliganding amino acids in the assembly of the iron-sulfur cluster. In a stepwise fashion, we truncated FdM to a seven-amino acid peptide, FdM-7, which incorporates a cluster spectroscopically identical to FdM but in lower yield, 29% relative to FdM. FdM-7 consists solely of the. CIACGAC. consensus ferredoxin core motif observed in natural protein sequences. Initially, all of the nonliganding amino acids were substituted for either glycine, FdM-7-PolyGly (.CGGCGGC.), or alanine, FdM-7-PolyAla (.CAACAAC.), on the basis of analysis of natural ferredoxin sequences. Both FdM-7-PolyGly and FdM-7-PolyAla incorporated little [4Fe-4S]2+/+ cluster, 6 and 7%, respectively. A systematic study of the incorporation of a single isoleucine into each of the four nonliganding positions indicated that placement either in the second or in the sixth core motif positions,.CIGCGGC. or.CGGCGIC., restored the iron-sulfur cluster binding capacity of the peptides to the level of FdM-7. Incorporation of an isoleucine into the fifth position,.CGGCIGC., which in natural ferredoxins is predominantly occupied by a glycine, resulted in a loss of [4Fe-4S] affinity. The substitution of leucine, tryptophan, and arginine into the second core motif position illustrated the stabilization of the [4Fe-4S] cluster by bulky hydrophobic amino acids. Furthermore, the incorporation of a single isoleucine into the second core motif position in a 16-amino acid ferredoxin maquette resulted in a 5-fold increase in the level of [4Fe-4S] cluster binding relative to that of the glycine variant. The protein design rules derived from this study are fully consistent with those derived from natural ferredoxin sequence analysis, suggesting they are applicable to both the de novo design and structure-based redesign of natural proteins.  相似文献   

11.
Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA(-) Orfx(+) A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA(-) Orfx(+) A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned.  相似文献   

12.
Boll M  Fuchs G  Tilley G  Armstrong FA  Lowe DJ 《Biochemistry》2000,39(16):4929-4938
A reduced ferredoxin serves as the natural electron donor for key enzymes of the anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica. It contains two [4Fe-4S] clusters and belongs to the Chromatium vinosum type of ferredoxins (CvFd) which differ from the "clostridial" type by a six-amino acid insertion between two successive cysteines and a C-terminal alpha-helical amino acid extension. The electrochemical and electron paramagnetic resonance (EPR) spectroscopic properties of both [4Fe-4S] clusters from T. aromatica ferredoxin have been investigated using cyclic voltammetry and multifrequency EPR. Results obtained from cyclic voltammetry revealed the presence of two redox transitions at -431 and -587 mV versus SHE. X-band EPR spectra recorded at potentials where only one cluster was reduced (greater than -500 mV) indicated the presence of a spin mixture of S = (3)/(2) and (5)/(2) spin states of one reduced [4Fe-4S] cluster. No typical S = (1)/(2) EPR signals were observed. At lower potentials (less than -500 mV), the more negative [4Fe-4S] cluster displayed Q-, X-, and S-band EPR spectra at 20 K which were typical of a single S = (1)/(2) low-spin [4Fe-4S] cluster with a g(av) of 1.94. However, when the temperature was decreased stepwise to 4 K, a magnetic interaction between the two clusters gradually became observable as a temperature-dependent splitting of both the S = (1)/(2) and S = (5)/(2) EPR signals. At potentials where both clusters were reduced, additional low-field EPR signals were observed which can only be assigned to spin states with spins of >(5)/(2). The results that were obtained establish that the common typical amino acid sequence features of CvFd-type ferredoxins determine the unusual electrochemical properties of the [4Fe-4S] clusters. The observation of different spin states in T. aromatica ferredoxin is novel among CvFd-type ferredoxins.  相似文献   

13.
Benzoyl coenzyme A (benzoyl-CoA) reductase is a key enzyme in the anaerobic metabolism of aromatic compounds catalyzing the ATP-driven reductive dearomatization of benzoyl-CoA. The enzyme from Thauera aromatica uses a reduced 2[4Fe-4S] ferredoxin as electron donor. In this work, we identified 2-oxoglutarate:ferredoxin oxidoreductase (KGOR) as the ferredoxin reducing enzyme. KGOR activity was increased 10- to 50-fold in T. aromatica cells grown under denitrifying conditions on an aromatic substrate compared to that of cells grown on nonaromatic substrates. The enzyme was purified from soluble extracts by a 60-fold enrichment with a specific activity of 4.8 micromol min(-1) mg(-1). The native enzyme had a molecular mass of 200 +/- 20 kDa (mean +/- standard deviation) and consisted of two subunits with molecular masses of 66 and 34 kDa, suggesting an (alphabeta)(2) composition. The UV/visible spectrum was characteristic for an iron-sulfur protein; the enzyme contained 8.3 +/- 0.5 mol of Fe, 7.2 +/- 0.5 mol of acid-labile sulfur, and 1.6 +/- 0.2 mol of thiamine diphosphate (TPP) per mol of protein. The high specificity for 2-oxoglutarate and the low K(m) for ferredoxin ( approximately 10 microM) indicated that both are the in vivo substrates of the enzyme. KGOR catalyzed the isotope exchange between (14)CO(2) and C(1) of 2-oxoglutarate, representing a typical reversible partial reaction of 2-oxoacid oxidoreductases. The two genes coding for the two subunits of KGOR were found adjacent to the gene cluster coding for enzymes and ferredoxin of the catabolic benzoyl-CoA pathway. Sequence comparisons with other 2-oxoacid oxidoreductases indicated that KGOR from T. aromatica belongs to the Halobacterium type of 2-oxoacid oxidoreductases, which lack a ferredoxin-like module which contains two additional [4Fe-4S](1+/2+) clusters/monomer. Using purified KGOR, ferredoxin, and benzoyl-CoA reductase, the 2-oxoglutarate-driven reduction of benzoyl-CoA was shown in vitro. This demonstrates that ferredoxin acts as an electron shuttle between the citric acid cycle and benzoyl-CoA reductase by coupling the oxidation of the end product of the benzoyl-CoA pathway, acetyl-CoA, to the reduction of the aromatic ring.  相似文献   

14.
15.
The structure of a low-potential ferredoxin isolated from Bacillus thermoproteolyticus has been refined by a restrained least-squares method. The final crystallographic R factor is 0.204 for 2906 reflections with F greater than 3 sigma F in the 6.0 to 2.3 A resolution range. The model contains 81 amino acid residues, one [4Fe-4S] cluster, and 59 water molecules. The root-mean-square deviation from ideal values for bond lengths is 0.018 A, and the mean coordinate error is estimated to be 0.25 A. The present ferredoxin is similar in the topology of the polypeptide backbone to the dicluster-type ferredoxins from Peptococcus aerogenes and Azotobacter vinelandii, but has considerable insertions and deletions of the peptide segments as well as different secondary structures. Although all but the C-terminal C zeta atoms of P. aerogenes ferredoxin superpose on the C alpha atoms of A. vinelandii ferredoxin, only 60% superpose on the C alpha atoms of B. thermoproteolyticus ferredoxin, with a root-mean-square distance of 0.82 A for each pair. The conformations of the peptide segments surrounding the [4Fe-4S] clusters in these three ferredoxins are all conserved. Moreover, the schemes for the NH...S hydrogen bonds in these ferredoxins are nearly identical. The site of the aromatic ring of Tyr27 in B. thermoproteolyticus ferredoxin is close spatially to that of Tyr28 in P. aerogenes ferredoxin with reference to the cluster, but these residues do not correspond in the spatial alignment of their polypeptide backbones. We infer that in monocluster-type ferredoxins, the side-chain at the 27th residue has a crucial effect on the stability of the cluster. Of the four cysteine residues that bind to the second Fe-S cluster in the dicluster-type ferredoxins, two are conserved in the monocluster-type ferredoxins from Desulfovibrio gigas. D. desulfuricans Norway, and Clostridium thermoaceticum. The tertiary structure of B. thermoproteolyticus ferredoxin suggests that in such monocluster-type ferredoxins these two cysteine residues, which in it correspond to Ala21 and Asp53, form a disulfide bridge.  相似文献   

16.
Azotobacter vinelandii (4Fe-4S)2 ferredoxin I (Fd I) is an electron transfer protein with Mr equals 14,500 and Eo equals -420 mv. It exhibits and EPR signal of g equals 2.01 in its isolated form. This resonance is almost identical with the signal that originates from a "super-oxidized" state of the 4Fe-4S cluster of potassium ferricyanide-treated Clostridium ferredoxin. A cluster that exhibits this EPR signal at g equals 2.01 is in the same formal oxidation state as the cluster in oxidized Chromatium High-Potential-Iron-Protein (HiPIP). On photoreduction of Fd I with spinach chloroplast fragments, the resonance at g equals 2.01 vanishes and no EPR signal is observed. This EPR behavior is analogous to that of reduced HiPIP, which also fails to exhibit an EPR spectrum. These characteristics suggest that a cluster in A. vinelandii Fd I functions between the same pair of states on reduction as does the cluster in HiPIP, but with a midpoint reduction potential of -420 mv in contrast to the value of +350 mv characteristic of HiPIP. Quantitative EPR and stoichoimetry studies showed that only one 4Fe-4S cluster in this (4Fe-4S)2 ferredoxin is reduced. Oxidation of Fd I with potassium ferricyanide results in the uptake of 1 electron/mol as determined by quantitative EPR spectroscopy. This indicates that a cluster in Fd I shows no electron paramagnetic resonance in the isolated form of the protein accepts an electron on oxidation, as indicated by the EPR spectrum, and becomes paramagnetic. The EPR behavior of this oxidizable cluster indicates that it also functions between the same pair of oxidation states as does the Fe-S cluster in HiPIP. The midpoint reduction potential of this cluster is approximately +340 mv. A. vinelandii Fd I is the first example of an iron-sulfur protein which contains both a high potential cluster (approximately +340 mv) and a low potential cluster (-420 mv). Both Fe-S clusters appear to function between the same pair of oxidation states as the single Fe-S cluster in Chromatium HiPIP, although the midpoint reduction potentials of the two clusters are approximately 760 mv different.  相似文献   

17.
A genomic DNA region with four consecutive open reading frames, including an fdxH-type gene, has been sequenced and initially characterized for the nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum PCC 73110. The fdxH gene encodes a [2Fe-2S]-type ferredoxin, 98 amino acids in length, with a deduced molecular mass of 10.9 kDa. Conserved residues include two characteristic lysines at positions 10 and 11, shown recently to be important for interaction with nitrogenase reductase (S. Schmitz, B. Schrautermeier, and H. Böhme, Mol. Gen. Genet. 240:455-460, 1993). The gene is transcribed only under anaerobic nitrogenase-inducing conditions, whereas the Plectonema petF gene, encoding a different (type 1) [2Fe-2S] ferredoxin, is only transcribed in cultures growing with combined nitrogen. The fdxH gene was expressed in Escherichia coli as a holoprotein. The purified protein was able to effectively donate electrons to cyanobacterial nitrogenase, whereas PetF from the same organism was not. The occurrence of FdxH in the nonheterocystous genus Plectonema demonstrates for the first time that FdxH-type ferredoxins are not exclusively expressed within heterocysts, as is true for cyanobacteria differentiating these cells for nitrogen fixation under aerobic growth conditions. Two open reading frames that precede fdxH have high similarity to those found at a corresponding location in Anabaena sp. strain PCC 7120. In the latter organism, they are transcribed only under nitrogen-fixing conditions, but the functions of their gene products remain unclear (D. Borthakur, M. Basche, W. J. Buikema, P. B. Borthakur, and R. Haselkorn, Mol. Gen. Genet. 221:227-234, 1990). An fdxB-type gene encoding a 2[4Fe-4S] ferredoxin not previously identified in cyanobacteria is located immediately downstream of fdxH in P. boryanum.  相似文献   

18.
S P Wang  P J Kang  Y P Chen    B Ely 《Journal of bacteriology》1995,177(10):2901-2907
The fdxA gene was identified upstream of and in the opposite direction from the Caulobacter crescentus cysC gene. Analyses of the nucleotide sequence and the deduced amino acid sequence of the fdxA gene demonstrated that it encodes a ferredoxin with a molecular mass of 12,080 Da. This ferredoxin has common structural features with ferredoxins that contain a [3Fe-4S] and a [4Fe-4S] cluster, including seven conserved cysteines responsible for the binding of the two clusters. A mutation in the fdxA gene was obtained, and the resulting strain did not produce one of the two ferredoxins (FdI) found in C. crescentus. Further experiments demonstrated that the fdxA gene is temporally expressed in C. crescentus and that FdI is required for completion of the cell cycle at 37 degrees C.  相似文献   

19.
Pyrococcus furiosus ferredoxin (Fd) contains a single [Fe(4)S(4)] cluster coordinated by three cysteine (at positions 11, 17, and 56) and one aspartate ligand (at position 14). In this study, the spectroscopic, redox, and functional consequences of D14C, D14C/C11S, D14S, D14C/C17S, and D14C/C56S mutations have been investigated. The four serine variants each contain a potential cluster coordination sphere of one serine and three cysteine residues, with serine ligation at each of the four Fe sites of the [Fe(4)S(4)] cluster. All five variants were expressed in Escherichia coli, and each contained a [Fe(4)S(4)](2+,+) cluster as shown by UV-visible absorption and resonance Raman studies of the oxidized protein and EPR and variable-temperature magnetic circular dichroism (VTMCD) studies of the as-prepared, dithionite-reduced protein. Changes in both the absorption and resonance Raman spectra are consistent with changing from complete cysteinyl cluster ligation in the D14C variant to three cysteines and one oxygenic ligand in each of the four serine variants. EPR and VTMCD studies show distinctive ground and excited state properties for the paramagnetic [Fe(4)S(4)](+) centers in each of these variant proteins, with the D14C and D14C/C11S variants having homogeneous S = (1)/(2) ground states and the D14S, D14C/C17S, and D14C/C56S variants having mixed-spin, S = (1)/(2) and (3)/(2) ground states. The midpoint potentials (pH 7.0, 23 degrees C) of the D14C/C11S and D14C/C17S variants were unchanged compared to that of the D14C variant (E(m) = -427 mV) within experimental error, but the potentials of D14C/C56S and D14S variants were more negative by 49 and 78 mV, respectively. Since the VTMCD spectra indicate the presence of a valence-delocalized Fe(2. 5+)Fe(2.5+) pair in all five variants, the midpoint potentials are interpreted in terms of Cys11 and Cys17 ligating the nonreducible valence-delocalized pair in D14C. Only the D14S variant exhibited a pH-dependent redox potential over the range of 3.5-10, and this is attributed to protonation of the serinate ligand to the reduced cluster (pK(a) = 4.75). All five variants had similar K(m) and V(m) values in a coupled assay in which Fd was reduced by pyruvate ferredoxin oxidoreductase (POR) and oxidized by ferredoxin NADP oxidoreductase (FNOR), both purified from P. furiosus. Hence, the mode of ligation at each Fe atom in the [Fe(4)S(4)] cluster appears to have little effect on the interaction and the electron transfer between Fd and FNOR.  相似文献   

20.
Phthalate is a metabolic intermediate of the pathway of fluorene (FN) degradation via angular dioxygenation. A gene cluster responsible for the conversion of phthalate to protocatechuate was cloned from the dibenzofuran (DF)- and FN-degrading bacterium Terrabacter sp. strain DBF63 and sequenced. The genes encoding seven catabolic enzymes, oxygenase large subunit of phthalate 3,4-dioxygenase (phtA1), oxygenase small subunit of phthalate 3,4-dioxygenase (phtA2), cis-3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase (phtB), [3Fe-4S] or [4Fe-4S] type of ferredoxin (phtA3), ferredoxin reductase (phtA4), 3,4-dihydroxyphthalate decarboxylase (phtC) and putative regulatory protein (phtR), were found in the upstream region of the angular dioxygenase gene (dbfA1A2), encoded in this order. Escherichia coli carrying phtA1A2BA3A4 genes converted phthalate to 3,4-dihydroxyphthalate, and the 3,4-dihydroxyphthalate decarboxylase activity by E. coli cells carrying phtC was finally detected with the introduction of a Shine-Dalgarno sequence in the upstream region of its initiation codon. Homology analysis on the upstream region of the pht gene cluster revealed that there was an insertion sequence (IS) (ISTesp2; ORF14 and its flanking region), part of which was almost 100% identical to the orf1 and its flanking region adjacent to the extradiol dioxygenase gene ( bphC1) involved in the DF degradation of Terrabacter sp. strain DPO360 [Schmid et al. (1997) J Bacteriol 179:53-62]. This suggests that ISTesp2 plays a role in the metabolism of aromatic compounds in Terrabacter sp. strains DBF63 and DPO360.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号