首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Analysis of Drosophila 26 S proteasome using RNA interference.   总被引:9,自引:0,他引:9  
We have utilized double-stranded RNA interference (RNAi) to examine the effects of reduced expression of individual subunits of the 26 S proteasome in Drosophila S2 cells. RNAi significantly decreased mRNA and protein levels of targeted subunits of both the core 20 S proteasome and the PA700 regulatory complex. Cells deficient in any of several 26 S proteasome subunits (e.g. d beta 5, dRpt1, dRpt2, dRpt5, dRpn2, and dRpn12) displayed decreased proteasome activity (as judged by hydrolysis of succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin), increased apoptosis, decreased cell proliferation without a specific block of the cell cycle, and accumulation of ubiquitinated cellular proteins. RNAi of many individual 26 S proteasome subunits promoted increased expression of many non-targeted subunits. This effect was not mimicked by chemical proteasome inhibitors such as lactacystin. Reduced expression of most targeted subunits disrupted the assembly of the 26 S proteasome. RNAi of six of eight targeted PA700 subunits disrupted that structure and caused accumulation of increased levels of uncapped 20 S proteasome. Notable exceptions included RNAi of dRpn10, a polyubiquitin binding subunit, and dUCH37, a ubiquitin isopeptidase. dRpn10-deficient cells showed a significant increase in succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin hydrolyzing activity of the 26 S proteasomes but accumulated polyubiquitinated proteins. d beta 5-Deficient cells had a phenotype similar to that of most PA700-deficient cells but also accumulated low molecular mass complexes containing subunits of the 20 S proteasome, probably representing unassembled precursors of the 20 S proteasomes. Cells deficient in several of the 26 S proteasome subunits were more resistant to otherwise toxic concentrations of various proteasome inhibitors. Our data suggest that those cells adapted to grow in conditions of impaired ubiquitin and proteasome-dependent protein degradation.  相似文献   

2.
M Tokumoto  R Horiguchi  Y Nagahama  T Tokumoto 《Gene》1999,239(2):301-308
The proteasomes are large, multi-subunit particles that act as the proteolytic machinery for most of the regulated intracellular protein degradation in eukaryotic cells. To investigate the regulatory mechanism for the 26S proteasome in cell-cycle events, we purified this proteasome from immature and mature oocytes, and compared its subunits. Immunoblot analysis of 26S proteasomes showed a difference in the subunit of the 20S proteasome. A monoclonal antibody, GC3beta, cross-reacted with two bands in the 26S proteasome from immature oocytes (in G2-phase); however, the upper band was absent in the 26S proteasome from mature oocytes (in M-phase). These results suggest that changes in the subunits of 26S proteasomes are involved in the regulation of the meiotic cell cycle. Here we describe the molecular cloning of one of the alpha subunits of the 20S proteasome from a Xenopus ovarian cDNA library using an anti-GC3beta monoclonal antibody. From the screening, two types of cDNA are obtained, one 856bp, the other 984bp long. The deduced amino-acid sequences comprise 247 and 248 residues, respectively. These deduced amino-acid sequences are highly homologous to those of alpha4 subunits of other vertebrates. Phosphatase treatment of 26S proteasome revealed the upper band to be a phosphorylated form of the lower band. These results suggest that a part of the alpha4 subunit of the Xenopus 20S proteasome, alpha4_xl, is phosphorylated in G2-phase and dephosphorylated in M-phase.  相似文献   

3.
It is well established that nitric oxide (NO) inhibits vascular smooth muscle cell (VSMC) proliferation by modulating cell cycle proteins. The 26S proteasome is integral to protein degradation and tightly regulates cell cycle proteins. Therefore, we hypothesized that NO directly inhibits the activity of the 26S proteasome. The three enzymatic activities (chymotrypsin-like, trypsin-like and caspase-like) of the 26S proteasome were examined in VSMC. At baseline, caspase-like activity was approximately 3.5-fold greater than chymotrypsin- and trypsin-like activities. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) significantly inhibited all three catalytically active sites in a time- and concentration-dependent manner (P < 0.05). Caspase-like activity was inhibited to a greater degree (77.2% P < 0.05). cGMP and cAMP analogs and inhibitors had no statistically significant effect on basal or NO-mediated inhibition of proteasome activity. Dithiothreitol, a reducing agent, prevented and reversed the NO-mediated inhibition of the 26S proteasome. Nitroso-cysteine analysis following S-nitrosoglutathione exposure revealed that the 20S catalytic core of the 26S proteasome contains 10 cysteines which were S-nitrosylated by NO. Evaluation of 26S proteasome subunit protein expression revealed differential regulation of the α and β subunits in VSMC following exposure to NO. Finally, immunohistochemical analysis of subunit expression revealed distinct intracellular localization of the 26S proteasomal subunits at baseline and confirmed upregulation of distinct subunits following NO exposure. In conclusion, NO reversibly inhibits the catalytic activity of the 26S proteasome through S-nitrosylation and differentially regulates proteasomal subunit expression. This may be one mechanism by which NO exerts its effects on the cell cycle and inhibits cellular proliferation in the vasculature.  相似文献   

4.
5.
The 26S proteasome is a multi‐catalytic ATP‐dependent protease complex that recognizes and cleaves damaged or misfolded proteins to maintain cellular homeostasis. The 26S subunit consists of 20S core and 19S regulatory particles. 20S core particle consists of a stack of heptameric alpha and beta subunits. To elucidate the structure‐function relationship, we have dissected protein‐protein interfaces of 20S core particle and analyzed structural and physiochemical properties of intra‐alpha, intra‐beta, inter‐beta, and alpha‐beta interfaces. Furthermore, we have studied the evolutionary conservation of 20S core particle. We find the size of intra‐alpha interfaces is significantly larger and is more hydrophobic compared with other interfaces. Inter‐beta interfaces are well packed, more polar, and have higher salt‐bridge density than other interfaces. In proteasome assembly, residues in beta subunits are better conserved than alpha subunits, while multi‐interface residues are the most conserved. Among all the residues at the interfaces of both alpha and beta subunits, Gly is highly conserved. The largest size of intra‐alpha interfaces complies with the hypothesis that large interfaces form first during the 20S assembly. The tight packing of inter‐beta interfaces makes the core particle impenetrable from outer wall of the cylinder. Comparing the three domains, eukaryotes have large and well‐packed interfaces followed by archaea and bacteria. Our findings provide a structural basis of assembly of 20S core particle in all the three domains of life.  相似文献   

6.
The proteasome plays a central role in maintaining cellular homeostasis, in controlling the cell cycle, in removing misfolded proteins that can be toxic, and in regulating the immune system. It is also an important target for novel anticancer drugs, such as bortezomib, a potent inhibitor that has been used successfully in the treatment of multiple myeloma. Here, we show that the antimalaria drug chloroquine inhibits proteasome function in eukaryotic cell extracts and in preparations of purified 20S archaeal proteasome from Thermoplasma acidophilium. Methyl-TROSY-based NMR spectroscopy experiments conducted with the 670 kDa 20S proteasome localize chloroquine binding to regions between the alpha and beta subunits of the alpha-beta-beta-alpha barrel-like structure, approximately 20 A from the proteolytic active sites in this 7-fold symmetric molecule. Complementary amide TROSY experiments that provide further probes of proteasome-inhibitor interactions were performed on a novel 180 kDa single-ring construct containing only alpha subunits, the proper assembly of which was confirmed by electron microscopy. In contrast to the chloroquine-proteasome interaction described here, all previously reported inhibitors of the proteasome, including MG132, bind the catalytic region directly. Consistent with the NMR chemical shift perturbation data reported here that place chloroquine binding distal from sites of proteolysis, we show that MG132 and chloroquine can bind the proteasome simultaneously, further establishing that they exploit two completely separate binding pockets. Our data thus establish a novel class of proteasome inhibitor that functions via a mechanism distinct from binding to active sites.  相似文献   

7.
The 26 S proteasome is implicated in the control of many major biological functions but a reliable method for the identification of its major substrates, i.e. polyubiquitin (Ub) conjugates, is still lacking. Based on the steps present in cells, i.e. recognition and deubiquitination, we developed an affinity matrix-based purification of polyUb conjugates suitable for any biological sample. Ub-conjugates were first purified from proteasome inhibitor-treated C2C12 cells using the Ub binding domains of the S5a proteasome subunit bound to an affinity matrix and then deubiquitinated by the catalytic domain of the USP2 enzyme. This two step purification of proteasome substrates involving both protein-protein interactions and enzyme-mediated release allowed highly specific isolation of polyUb 26 S proteasome substrates, which were then resolved on two-dimensional gels post-deubiquitination. To establish our method, we focused on a gel area where spots were best resolved. Surprisingly, spot analysis by mass spectrometry identified alpha2, alpha6, alpha7, beta2, beta3, beta4, and beta5 20 S proteasome subunits as potential substrates. Western blots using an anti-beta3 proteasome subunit antibody confirmed that high molecular weight forms of beta3 were present, particularly in proteasome inhibitor-treated cells. Sucrose gradients of cell lysates suggested that the proteasome was first disassembled before subunits were polyubiquitinated. Altogether, we provide a technique that enables large scale identification of 26 S proteasome substrates that should contribute to a better understanding of this proteolytic machinery in any living cell and/or organ/tissue. Furthermore, the data suggest that proteasome homeostasis involves an autoregulatory mechanism.  相似文献   

8.
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity.  相似文献   

9.
Proteins targeted for degradation by the ubiquitin-proteasome system are degraded by the 26S proteasome. The core of this large protease is the 20S proteasome, a barrel-shaped structure made of a stack of four heptameric rings. Of the 14 different subunits that make up the yeast 20S proteasome, three have proteolytic active sites: Doa3/beta5, Pup1/beta2 and Pre3/beta1. Each of these subunits is synthesized with an N-terminal propeptide that is autocatalytically cleaved during particle assembly. We show here that the propeptides have both common and distinct functions in proteasome biogenesis. Unlike the Doa3 propeptide, which is crucial for proteasome assembly, the Pre3 and Pup1 propeptides are dispensable for cell viability and proteasome formation. However, mutants lacking these propeptide-encoding elements are defective for specific peptidase activities, are more sensitive to environmental stresses and have subtle defects in proteasome assembly. Unexpectedly, a critical function of the propeptide is the protection of the N-terminal catalytic threonine residue against Nalpha-acetylation. For all three propeptide-deleted subunits, activity of the affected catalytic center is fully restored when the Nat1-Ard1 Nalpha-acetyltransferase is mutated. In addition to delineating a novel function for proteasome propeptides, these data provide the first biochemical evidence for the postulated participation of the alpha-amino group in the proteasome catalytic mechanism.  相似文献   

10.
Efficient elimination of misfolded proteins by the proteasome system is critical for proteostasis. Inadequate proteasome capacity can lead to aberrant aggregation of misfolded proteins and inclusion body formation, a hallmark of neurodegenerative disease. The proteasome system cannot degrade aggregated proteins; however, it stimulates autophagy-dependent aggregate clearance by producing unanchored lysine (K)63-linked ubiquitin chains via the proteasomal deubiquitinating enzyme Poh1. The canonical function of Poh1, which removes ubiquitin chains en bloc from proteasomal substrates prior to their degradation, requires intact 26S proteasomes. Here we present evidence that during aggresome clearance, 20S proteasomes dissociate from protein aggregates, while Poh1 and selective subunits of 19S proteasomes are retained. The dissociation of 20S proteasome components requires the molecular chaperone Hsp90. Hsp90 inhibition suppresses 26S proteasome remodeling, unanchored ubiquitin chain production, and aggresome clearance. Our results suggest that 26S proteasomes undergo active remodeling to generate a Poh1-dependent K63-deubiquitinating enzyme to facilitate protein aggregate clearance.  相似文献   

11.
Methotrexate was first introduced as a cytotoxic agent that inhibits nucleotide biosynthesis in various cancer disorders; its molecular mechanism remains elusive. To understand the molecular mechanism by which methotrexate induces apoptosis, we analyzed the resulting intracellular protein changes in methotrexate-treated acute promyelocytic leukaemia (HL-60) cells by cysteine-labeled differential in-gel electrophoresis (CL-DIGE) combined with mass spectrometry. Initial CL-DIGE analysis revealed that 24 proteins were differentially expressed (p < 0.05) in the HL-60 cell proteome after treatment with 2.5 µM methotrexate for 72 h. We found that three structural α4, α5, α7 proteasome subunits, a non-catalytic β3 and two 26S regulatory proteasome subunits were down-regulated in methotrexate-treated HL-60 cells. Western blot analyses further showed that the inhibition of proteasome subunits is accompanied by suppression of NF-κB subunits and promotes the accumulation of ubiquitinated proteins. Furthermore, methotrexate activated unfolded protein response by inducing the expression of endoplasmic reticulum-resident proteins such as calreticulin, protein disulphide isomerase A3 and A4, and 78 kDa glucose regulated protein in a time-dependent manner. Altogether, our findings demonstrated that targeting NF-κB, structural and regulatory proteasome subunits with methotrexate may provide new insight into understanding methotrexate-induced apoptotic activities in HL-60 cells.  相似文献   

12.
In experimental alcoholic liver disease, protein degradation by the ATP-ubiquitin-proteasome pathway is inhibited. Failure of the proteasome to eliminate cytoplasmic proteins leads to the accumulation of oxidized and otherwise modified proteins. One possible explanation for the inhibition of the proteasome is hyperphosphorylation of proteasome subunits. To examine this possibility, the 26S proteasomes from the liver of rats fed ethanol and a pair-fed control were studied by isolating the proteasomes in a purified fraction. The effect of ethanol on the phosphorylation of proteasomal subunits was compared with the hyperphosphorylation of the proteasomes caused by okadaic acid given to rats in vivo. Ethanol ingestion caused an inhibition of the chymotrypsin-like activity of the purified proteasome. The 2D electrophoresis and Western blot analysis of the purified 20S and 26S proteasomes from the ethanol-fed rats indicated that hyperphosphorylation of proteasomal subunits had occured. The proteasomal alpha type subunits C9/alpha3 and C8/alpha7 were hyperphosphorylated compared to the controls. Chymotrypsin-like activity was also inhibited by okadaic acid treatment similar to ethanol feeding. The 26S proteasome fraction examined by isoelectric focusing gel revealed many hyperphosphorylated bands in the proteasomes from the okadaic acid treated and the ethanol fed rat livers compared with the controls. In conclusion hyperphosphorylation of the proteasome subunits occurs in the ethanol treated proteasomal subunits which could be one mechanism of the inhibition of the 26S proteasome caused by ethanol feeding.  相似文献   

13.
The 26S proteasome is the key eukaryotic protease responsible for the degradation of intracellular proteins. Protein degradation by the 26S proteasome plays important roles in numerous cellular processes, including the cell cycle, differentiation, apoptosis, and the removal of damaged or misfolded proteins. How this 2.5-MDa complex, composed of at least 32 different polypeptides, is assembled in the first place is not well understood. However, it has become evident that this complicated task is facilitated by a framework of protein factors that chaperone the nascent proteasome through its various stages of assembly. We review here the known proteasome-specific assembly factors, most only recently discovered, and describe their potential roles in proteasome assembly, with an emphasis on the many remaining unanswered questions about this intricate process of assisted self-assembly.  相似文献   

14.
We determined composition and relative roles of deubiquitylating proteins associated with the 26S proteasome in mammalian cells. Three deubiquitylating activities were associated with the 26S proteasome: two from constituent subunits, Rpn11/S13 and Uch37, and one from a reversibly associated protein, Usp14. RNA interference (RNAi) of Rpn11/S13 inhibited cell growth, decreased cellular proteasome activity via disrupted 26S proteasome assembly, and inhibited cellular protein degradation. In contrast, RNAi of Uch37 or Usp14 had no detectable effect on cell growth, proteasome structure or proteolytic capacity, but accelerated cellular protein degradation. RNAi of both Uch37 and Usp14 also had no effect on proteasome structure or proteolytic capacity, but inhibited cellular protein degradation. Thus, proper proteasomal processing of ubiquitylated substrates requires Rpn11 plus either Uch37 or Usp14. Although the latter proteins feature redundant deubiquitylation functions, they also appear to exert noncatalyic effects on proteasome activity that are similar to but independent of one another. These results reveal unexpected functional relationships among multiple deubiquitylating proteins and suggest a model for mammalian 26S proteasome function whereby their concerted action governs proteasome function by linking deubiquitylation to substrate hydrolysis.  相似文献   

15.
16.
The eukaryotic 20S proteasome is the multifunctional catalytic core of the 26S proteasome, which plays a central role in intracellular protein degradation. Association of the 20S core with a regulatory subcomplex, termed PA700 (also known as the 19S cap), forms the 26S proteasome, which degrades ubiquitinated and nonubiquitinated proteins through an ATP-dependent process. Although proteolytic assistance by this regulatory particle is a general feature of proteasome-dependent turnover, the 20S proteasome itself can degrade some proteins directly, bypassing ubiquitination and PA700, as an alternative mechanism in vitro. The mechanism underlying this pathway is based on the ability of the 20S proteasome to recognize partially unfolded proteins. Here we show that the 20S proteasome recognizes the heat-denatured forms of model proteins such as citrate synthase, malate dehydrogenase. and glyceraldehydes-3-phosphate dehydrogenase, and prevents their aggregation in vitro. This process was not followed by the refolding of these denatured substrates into their native states, whereas PA700 or the 26S proteasome generally promotes their reactivation. These results indicate that the 20S proteasome might play a role in maintaining denatured and misfolded substrates in a soluble state, thereby facilitating their refolding or degradation.  相似文献   

17.
Clearance of misfolded proteins from the ER is central for maintenance of cellular homeostasis. This process requires coordinated recognition, ER-cytosol translocation, and finally ubiquitination-dependent proteasomal degradation. Here, we identify an ER resident seven-transmembrane protein (JAMP) that links ER chaperones, channel proteins, ubiquitin ligases, and 26S proteasome subunits, thereby optimizing degradation of misfolded proteins. Elevated JAMP expression promotes localization of proteasomes at the ER, with a concomitant effect on degradation of specific ER-resident misfolded proteins, whereas inhibiting JAMP promotes the opposite response. Correspondingly, a jamp-1 deleted Caenorhabditis elegans strain exhibits hypersensitivity to ER stress and increased UPR. Using biochemical and genetic approaches, we identify JAMP as important component for coordinated clearance of misfolded proteins from the ER.  相似文献   

18.
The structure of the mammalian 20S proteasome at 2.75 A resolution   总被引:12,自引:0,他引:12  
The 20S proteasome is the catalytic portion of the 26S proteasome. Constitutively expressed mammalian 20S proteasomes have three active subunits, beta 1, beta 2, and beta 5, which are replaced in the immunoproteasome by interferon-gamma-inducible subunits beta 1i, beta 2i, and beta 5i, respectively. Here we determined the crystal structure of the bovine 20S proteasome at 2.75 A resolution. The structures of alpha 2, beta 1, beta 5, beta 6, and beta 7 subunits of the bovine enzyme were different from the yeast enzyme but enabled the bovine proteasome to accommodate either the constitutive or the inducible subunits. A novel N-terminal nucleophile hydrolase activity was proposed for the beta 7 subunit. We also determined the site of the nuclear localization signals in the molecule. A model of the immunoproteasome was predicted from this constitutive structure.  相似文献   

19.
Proteasomes are large, multisubunit particles that act as the proteolytic machinery for most of the regulated intracellular protein breakdown in eukaryotic cells. Proteasomes are present in both the nucleus and cytoplasm. When we analyzed the molecular composition of protein constituents of the nuclear matrix preparation of goldfish oocytes by two-dimensional polyacrylamide gel electrophoresis followed by sequence analysis, we found a 26 kDa spot identical in amino acid sequence to the beta6 subunits of the 20S proteasome. No spot of other subunits of 20S proteasome was detected. Here we describe the cloning, sequencing and expression analysis of Carassius auratus, beta6_ca, which encodes one of the proteasome beta subunits from goldfish ovary. From the screening of an ovarian cDNA library, two types of cDNA were obtained, one 941 bp and the other 884 bp long. The deduced amino acid sequences comprise 239 and 238 residues, respectively. These deduced amino acid sequences are highly homologous to those of beta6 subunits of other vertebrates. Immunoblot analysis of nuclear matrix using anti-proteasome antibodies showed only a spot of beta6_ca. These results suggest that the beta6 subunit of the goldfish 20S proteasome, beta6_ca, is responsible for anchoring proteasomes in the nucleus.  相似文献   

20.
The dysfunction of cellular degradation pathways of aberrant and misfolded proteins is a critical event in the onset of neurodegenerative disorders. Among these pathologies, prion diseases are a unique class of transmissible fatal disorders affecting mammals, characterized by the presence of an abnormal isoform of a membrane-bound protein, namely the prion protein. The proteasome is the main proteolytic machinery in charge of removing damaged, oxidized and misfolded proteins and numerous authors have approached the involvement of this complex in the prion protein cellular processing. Herein, we described the general features of prion disorders focusing our attention on the available data on the interplay between the infectious agent and the proteasome system, exploring its implications in prion-mediated toxicity. Finally, considering the proteasome as a potential drug target, we reviewed possible therapeutic opportunities in the treatment of such pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号