首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution palaeoenvironmental changes, corresponding to a mean time interval of 450 years covering the last 48,000 years, were examined in a core from the Cretan Basin in the southern Aegean Sea. The intensity and duration of the climatic and oceanographic events were determined by examining the compositional changes in the planktonic foraminifera and pollen assemblages, along with the δ18O signal of Globigerinoides ruber. A reconstruction of sea-surface temperatures was attempted using the Modern Analogue Technique (MAT). In total, 10 stadials and 6 interstadials occurred over the last 48,000 years. These fluctuations in climatic conditions coincide with fluctuations documented in the western and central Mediterranean and seem to be associated with Dansgaard–Oeschger events. Some of these climatic fluctuations are correlated with changes in the vegetation in the surrounding land.

Between 48 and 10 cal kyr BP the most pronounced stadials occurred at 41 cal kyr BP (C69-ST10) and at 13 cal kyr BP (C69-ST4). These events are characterized by: (i) high positive δ18O values of Globigerinoides ruber, (ii) drops in SST and (iii) increases in aridity. These events may be correlated with the Heinrich H4 event and the Younger Dryas event, respectively. Two other stadials at 23 cal kyr BP (C69-ST6) and at 16 cal kyr BP (C69-ST5) which are characterized by increases in the abundance of the cold plaktonic foraminifera species and increases in aridity may be correlated with the H2 and H1 events, respectively. The dominant planktonic foraminiferal species during the stadials witch are correlated with the Heinrich events were Turborotalita quinqueloba and Globorotalia scitula. The most pronounced interstadials occurred between 39.5 and 38.5 cal kyr BP (C69-IST6) and between 25 and 24 cal kyr BP (C69-IST3) and are characterized by depletion in δ18O values, increases in SST and increases in humidity. The former event coincides with the formation of the sapropelitic layer S2.

In the Holocene the most pronounced stadial occurred between 8 and 6.5 cal kyr BP (C69-ST2), during the interruption of S1 and is characterized by a reduction in SST and an increase in aridity. The most pronounced interstadials of Holocene occurred during the formation of S1a and S1b between 9 and 8 cal kyr BP (C69-IST1) and between 6.5 and 5.5 cal kyr BP (C69-IST2), respectively. These events are characterized by depletion in δ18O values, increased SST and an increase in humidity as is indicated by the expansion of temperate evergreen and Mediterranean taxa in the pollen record.  相似文献   


2.
Late Quaternary biomes of Canada and the eastern United States   总被引:7,自引:1,他引:6  
Pollen data have been used to construct biome maps for today, 6000 14C yr bp and 18,000 14C yr bp for Canada and the eastern United States. The inferred modern biome distributions agree well with independent reconstructions of North American vegetation prior to European settlement. Some discrepancies between the pollen data and the modern potential vegetation are caused by post‐settlement clearing of the landscape and the consequent increase of herbaceous types in the recent pollen record. Biome distributions at 6000 14C yr bp reflected the warmer and drier conditions then prevalent in the continental interior, but the overall position of biomes was similar to that of today. The boreal treeline in North America was not significantly north of its present position, in contrast to the 100–200 km shift reported for Siberia. At the last glacial maximum (18,000 14C yr bp ), steppe and tundra were prevalent in the Midwest and north‐western Canada, and coniferous forests and woodlands grew in eastern North America. The open vegetation at 18,000 14C yr bp was probably due to drier conditions and/or lower concentrations of atmospheric CO2. The composition and physical structure of biomes is not constant over time. Mid‐Holocene biomes were similar in structure to those of today, but shifts in the relative importance of individual plant functional types are large enough that the physical properties of biomes, such as albedo, canopy conductance and surface roughness, are likely to have varied even during the Holocene. Last glacial maximum biomes were structurally different from their modern counterparts. The biome maps therefore may obscure significant vegetational changes in space and time during the late Quaternary. The difference between the highest and next highest affinity scores for each sample measures how strongly affinity scores discriminate among biomes. For many biomes, the difference is not large, and affinity score ties are not uncommon, highlighting the importance of tie‐break procedures when using the biomization method.  相似文献   

3.
A new compilation of pollen and packrat midden data from western North America provides a refined reconstruction of the composition and distribution of biomes in western North America for today and for 6000 and 18,000 radiocarbon years before present (14C yr bp ). Modern biomes in western North America are adequately portrayed by pollen assemblages from lakes and bogs. Forest biomes in western North America share many taxa in their pollen spectra and it can be difficult to discriminate among these biomes. Plant macrofossils from packrat middens provide reliable identification of modern biomes from arid and semiarid regions, and this may also be true in similar environments in other parts of the world. However, a weighting factor for trees and shrubs must be used to reliably reconstruct modern biomes from plant macrofossils. A new biome, open conifer woodland, which includes eurythermic conifers and steppe plants, was defined to categorize much of the current and past vegetation of the semiarid interior of western North America. At 6000 14C yr bp , the forest biomes of the coastal Pacific North‐west and the desert biomes of the South‐west were in near‐modern positions. Biomes in the interior Pacific North‐west differed from those of today in that taiga prevailed in modern cool/cold mixed forests. Steppe was present in areas occupied today by open conifer woodland in the northern Great Basin, while in the central and southern Rocky Mountains forests grew where steppe grows today. During the mid‐Holocene, cool conifer forests were expanded in the Rocky Mountains (relative to today) but contracted in the Sierra Nevada. These differences from the forests of today imply different climatic histories in these two regions between 6000 14C yr bp and today. At 18,000 14C yr bp , deserts were absent from the South‐west and the coverage of open conifer woodland was greatly expanded relative to today. Steppe and tundra were present in much of the region now covered by forests in the Pacific North‐west.  相似文献   

4.
A modern analogue technique is applied to two high-resolution pollen sequences from NW Romania to provide the first quantitative evidence for winter, summer and annual temperatures and for precipitation across the Holocene in this region.

The pollen-based climate reconstructions allow the identification of four main intervals: i) an early, less stable period between 11,700 and 11,200 cal. yr BP; (ii) generally stable conditions between 11,200 and 8300 cal. yr BP with winter and annual temperatures and precipitation higher than at present, and summer temperatures about the same; (iii) lower winter and annual temperatures, and higher summer temperatures and precipitation between 8000 and 2400 cal. yr BP; (iv) warmer winter and annual temperatures and lower precipitation for the last 2400 years, whereas summer temperatures became cooler at Steregoiu and remained stable at Preluca Tiganului.

The pollen-based climate reconstructions at the two sites show similar patterns in annual and winter temperatures and precipitation changes during the Holocene, but the trends appear to be less consistent for summer temperatures.

Our pollen-based reconstructions revealed several short-term climatic oscillations during the Holocene, the strongest of which occur between 10,300–10,100, 8300–8000, 6800–6400, 5100–4900, 4000–3600 and 3200–3000 cal. yr BP.  相似文献   


5.
A biomization method, which objectively assigns individual pollen assemblages to biomes ( Prentice et al., 1996 ), was tested using modern pollen data from Japan and applied to fossil pollen data to reconstruct palaeovegetation patterns 6000 and 18,000 14C yr bp Biomization started with the assignment of 135 pollen taxa to plant functional types (PFTs), and nine possible biomes were defined by specific combinations of PFTs. Biomes were correctly assigned to 54% of the 94 modern sites. Incorrect assignments occur near the altitudinal limits of individual biomes, where pollen transport from lower altitudes blurs the local pollen signals or continuous changes in species composition characterizes the range limits of biomes. As a result, the reconstructed changes in the altitudinal limits of biomes at 6000 and 18,000 14C yr bp are likely to be conservative estimates of the actual changes. The biome distribution at 6000 14C yr bp was rather similar to today, suggesting that changes in the bioclimate of Japan have been small since the mid‐Holocene. At 18,000 14C yr bp the Japanese lowlands were covered by taiga and cool mixed forests. The southward expansion of these forests and the absence of broadleaved evergreen/warm mixed forests reflect a pronounced year‐round cooling.  相似文献   

6.
In some continental and island sites in the western Mediterranean basin, the Holocene vegetation and climate dynamics seem to show the same patterns in time and space. Nevertheless, different synchronous scenarios have been proposed from other south European, North African and Near Eastern pollen records from around the Mediterranean basin. Striking similarities and synchronisms have been found between Sicily and the Balearic Islands. These islands, although under different bioclimatic influences, show similarities in the main trends of vegetation and climate dynamics during the Post-glacial. Lago di Pergusa is the only natural inland lake in Sicily and because of its geographical location, has a good potential sensitivity to the climatic changes of the Mediterranean basin. Likewise, coastal sediments from Minorca and Majorca, the Balearic Islands, have similar peculiarities. The present-day environmental situation, now that most of the natural vegetation in these islands has disappeared, has been brought about either by a climatic trend towards increasing aridity or an increase in human activities. It seems clear that prehistoric human people alone could not have caused all the environmental changes recorded in the last millennia in both places.  相似文献   

7.
A radiocarbon-dated pollen-analysed peat sequence from the Horton Plains (> 2000 m a.s.l.), in central Sri Lanka, together with physical and chemical parameters (organic carbon, mineral magnetics, carbon isotopes and phytoliths), indicates major environmental changes during the last 24,000 years. The results suggest that a mobile life form, i.e. a hunter–forage culture, predominated in an open landscape, associated with xerophytic vegetation, e.g. Chenopodium spp. at  17.5 ka BP. Incipient management of cereal plants and slash-and-burn techniques seem to have prevailed between 17.5 and 13 ka BP, which was indigenous and associated with grazing. Evidence of systematic cereal cultivation in the form of oat and barley pollen grains is found from the late Pleistocene ( 13 ka BP). This is the earliest evidence of farming activities noted in Sri Lanka as well as in south Asia. After 13 ka BP, cereal cultivation was associated with an increase in humidity. With a later abrupt increase in aridity, agricultural land-use decreased from  8 to  3.6 ka BP, when the area appears to have been almost deserted. After a severe middle Holocene arid phase (i.e. 5.4–3.6 ka BP), the agricultural activity with a limited extension was again initiated by  2.9 ka BP. During the next  900 years, cultivation ceased allowing the upper montane rain forest to dominate. Between 0.2 and 0.15 ka BP, new phases of agricultural activities were undertaken and potato cultivation took place lately, between 1950 and 1969 AD.  相似文献   

8.
《Plains anthropologist》2013,58(82):273-288
Abstract

Patterns of human occupation and vegetation are delineated on maps of North America for one thousand year intervals through the Holocene. The raw data for this review include radiocarbon-dated pollen cores and archaeological information and treering records. Dynamic changes in the Laurentide Ice limits and major ecotones are observed through the middle Holocene, when both features reach essentially post-glacial stability. Significant changes in the vegetation boundaries continue to the present, but the scale of change is much diminished.

Early Holocene occupation apparently expanded from Alaska south to California, then east, parallel to the southern boundary of the grasslands, to the Mississippi River and northeastward to the east coast. The absence of occpuation in late-Atlantic time is noted through much of the Great Plains and continued until about 4,000 BP. Within the next millennium, evidence of human occupation virtually covered the United States (except for the northwest) and much of coastal Canada.

Environmental conditions and occupation over North America are reviewed within the framework of Holocene climatic episodes.  相似文献   

9.
The identification of Middle-Late Holocene palaeoenvironmental conditions of the Marathon coastal plain gained great interest in the last decades due to its high environmental and archaeological importance. Palynological analysis of samples from two boreholes and two trenches along a transect in the marshy area of the Marathon coastal plain, enabled the tracing of the vegetation and the main environmental changes for the last ∼6000 cal BP. Pollen data suggest a human disturbed environment with Pinus, Quercus, Juniperus and Ericaceae, while a general trend towards Mediterranean vegetation patterns is observed during the last ∼3000 cal BP. Pollen grains from aquatic and hydrophilous plants, dinoflagellate cysts, algal remains and other palynomorphs were used in order to determine the local depositional environment and its evolution through time.  相似文献   

10.
Aim Evaluate the hypothesis that nine disjunct vascular plant species along the eastern slopes of the Rocky Mountains and in the Peace River District of west‐central Alberta represent remnants of more southerly vegetation that occupied these areas during the Holocene Hypsithermal (9000–6000 yr bp ). Alternatively, these plants represent populations that became established because of independent chance dispersal events. Location This study focuses on the area east of the Rocky Mountain Continental Divide in the Province of Alberta and the State of Montana in western Canada and USA, respectively. Methods Disjunct species were identified and their distributions mapped based on a review of occurrence maps and records, botanical floras and checklists, herbaria specimens, ecological and botanical studies, and field surveys of selected species. A disjunct species was defined as a plant population separated from its next nearest occurrence by a distance of > 300 km. Evaluation of the hypothesis was based on a review of published and unpublished pollen stratigraphy and palaeoecological studies. The potential geographical distribution of Hypsithermal vegetation was based on modern regional‐based ecosystem mapping and associated monthly temperature summaries as well as future climatic warming models. Results The hypothesis was compatible with Holocene pollen stratigraphy, Hypsithermal permafrost and fen occurrence, and palaeosol phytolith analyses; and future global climatic warming models. Modelled regional Hypsithermal vegetation based on a 1 °C increase in July temperatures relative to current conditions, indicated that much of the boreal forest zone in Alberta could have been grassland, which would explain the occurrence of Prairie species in the Peace River District. This amount of latitudinal vegetation shift (6.5°) was similar to an earlier Hypsithermal permafrost zone location study. An equivalent shift in vegetation along the eastern Cordillera would have placed south‐western Montana‐like vegetation and species such as Boykinia heucheriformis (Rydb.) Rosend. and Saxifraga odontoloma Piper within the northern half of the Rocky Mountains and foothills in Alberta, which represents the location of modern‐day disjunct populations of these species. Main conclusions Warmer and drier climatic conditions during the Holocene Hypsithermal resulted in the northward displacement of vegetation zones relative to their current distribution patterns. Most of Alberta was probably dominated by grasslands during this period, except the Rocky Mountains and northern highlands. Modern‐day species disjunctions within the Rocky Mountains and Peace River District as well as more northerly areas such as the Yukon Territory occurred when the vegetation receded southward in response to climatic cooling after the Hypsithermal. Wind dispersal was considered an unlikely possibility to explain the occurrence of the disjunct species, as most of the plants lack morphological adaptations for long distance transport and the prevailing winds were from west to east rather than south to north. However, consumption and transport of seeds by northward migrating birds could not be excluded as a possibility.  相似文献   

11.
Pollen records of Holocene sediment cores from the Costa Rican Cordillera de Talamanca (La Chonta bog, 2310 m and La Trinidad bog, 2700 m) show the postglacial development of the montane oak forest zone from ca. 9500 to 1500 yr BP. During the early Holocene (ca. 9500–700 yr BP), alder vegetation covered the La Chonta and La Trinidad bogs and their adjacent hills. The upper forest line is inferred to be at 2800–3000 m elevation. A Podocarpus-Quercus forest characterised the middle Holocene (ca. 7000–4500 yr BP). The upper forest line is located at >3000 m reaching the present-day altitudinal distribution. A Quercus forest characterised the late Holocene (ca. 4500–1500 yr BP). Compared to modern conditions, the early Holocene has similar average temperatures, but the moisture level was probably higher. Pollen evidence for the late Holocene indicates drier environmental conditions than today. In order to improve the paleoecological interpretation, we described the local vegetation and used moss samples as pollen traps at both montane bogs along strong soil moisture gradients.The Netherlands Centre for Geo-ecological Research, ICG  相似文献   

12.
Quantification of vegetation cover from pollen analysis has been a goal of palynologists since the advent of the method in 1916 by the great Lennart von Post. Pollen-based research projects are becoming increasingly ambitious in scale, and the emergence of spatially extensive open-access datasets, advanced methods and computer power has facilitated sub-continental analysis of Holocene pollen data. This paper presents results of one such study, focussing on the Mediterranean basin. Pollen data from 105 fossil sequences have been extracted from the European Pollen database, harmonised by both taxonomy and chronologies, and subjected to a hierarchical agglomerative clustering method to synthesise the dataset into 16 main groupings. A particular focus of analysis was to describe the common transitions from one group to another to understand pathways of Holocene vegetation change in the Mediterranean. Two pollen-based indices of human impact (OJC: Oleaceae, Juglans, Castanea; API: anthropogenic pollen indicators) have been used to infer the degree of human modification of vegetation within each pollen grouping. Pollen-inferred cluster groups that are interpreted as representing more natural vegetation states show a restricted number of pathways of change. A set of cluster groups were identified that closely resemble anthropogenically-disturbed vegetation, and might be considered anthromes (anthopogenic biomes). These clusters show a very wide set of potential pathways, implying that all potential vegetation communities identified through this analysis have been altered in response to land exploitation and transformation by human societies in combination with other factors, such as climatic change. Future work to explain these ecosystem pathways will require developing complementary datasets from the social sciences and humanities (archaeology and historical sources), along with synthesis of the climatic records from the region.  相似文献   

13.
Islebe  Gerald  Sánchez  Odilon 《Plant Ecology》2002,160(2):187-192
A pollen record of a Late Holocene sediment core from the Mexican Caribbean coast (Quintana Roo) shows the development and changes of a mangrove system. Humid conditions seem to have persisted for the period approximately 2500–1500 14C yr BP (pollen zone I), and mangrove Rhizophora mangle dominated with a good representation of elements from the nearby semi-evergreen tropical forest. During the period approximately 1500–1200 14C yr BP (pollen zone II) the mangrove Conocarpus erecta dominated. R. mangle almost disappeared and other taxa appeared, suggesting drier climatic conditions and generally more open vegetation. This dry period coincided with the period of the Maya cultural decline. The following period (pollen zone III, approximately 1200–1000 14C yr BP) was characterized by the recovery of R. mangle, indicating more humid conditions than in the preceding pollen zone. Pollen zone IV (approximately 1000 14C yr BP till present) suggests a drier period reoccuring with C. erecta; this marks the transition to present day conditions.  相似文献   

14.
Pollen data from China for 6000 and 18,000 14C yr bp were compiled and used to reconstruct palaeovegetation patterns, using complete taxon lists where possible and a biomization procedure that entailed the assignment of 645 pollen taxa to plant functional types. A set of 658 modern pollen samples spanning all biomes and regions provided a comprehensive test for this procedure and showed convincing agreement between reconstructed biomes and present natural vegetation types, both geographically and in terms of the elevation gradients in mountain regions of north‐eastern and south‐western China. The 6000 14C yr bp map confirms earlier studies in showing that the forest biomes in eastern China were systematically shifted northwards and extended westwards during the mid‐Holocene. Tropical rain forest occurred on mainland China at sites characterized today by either tropical seasonal or broadleaved evergreen/warm mixed forest. Broadleaved evergreen/warm mixed forest occurred further north than today, and at higher elevation sites within the modern latitudinal range of this biome. The northern limit of temperate deciduous forest was shifted c. 800 km north relative to today. The 18,000 14C yr bp map shows that steppe and even desert vegetation extended to the modern coast of eastern China at the last glacial maximum, replacing today’s temperate deciduous forest. Tropical forests were excluded from China and broadleaved evergreen/warm mixed forest had retreated to tropical latitudes, while taiga extended southwards to c. 43°N.  相似文献   

15.
The Holocene sedimentary record of core ZX-1, recovered west of mid-Holocene Chenier ridges on the monsoon-controlled Southern Yangtze delta, eastern China, consists of lagoon, salt marsh, upper tidal flat, and limnic facies, reflecting low-energy depositional environments. Holocene deposits mainly originated from the surrounding Tai Lake drainage basin. The temporal variation of most geochemical element percentages corresponds with the climatic phases inferred from the pollen record, i.e., the relatively low values of SiO2, Na2O, CaO and high values of Al2O3, K2O, MgO, Fe2O3, FeO, FeO + Fe2O3 and TiO2 generally concur with the warm and humid climate, and vice versa. Three geochemical indices − Al2O3/Na2O, K2O/Na2O, and CaO/K2O − are found to be sensitive to past precipitation in the monsoon-controlled southern Yangtze River delta. Based on fine sediment analysis of core ZX-1, the samples deposited under a dry climate with a mean annual precipitation (MAP) < 500–900 mm tend to have Al2O3/Na2O values less than 12.2, and the samples deposited under a moist climate with an MAP 1000–1800 mm mostly have Al2O3/Na2O values higher than 12.2. Similarly, the K2O/Na2O boundary value is 2.0. However, for CaO/K2O, the dry climate sediments likely show values higher than 0.9, and those wet climate ones generally have values less than 0.9. This geochemical response suggests the potential application of these indices in the interpretation of palaeoclimate variation of monsoon-controlled eastern China.

Holocene climatic variation history is reconstructed for the southern Yangtze delta. From 8000 to 7000 yr BP, regional climate demonstrated frequent fluctuations, with warm and wet periods (8000–7700; 7500–7200 yr BP) alternating with cool and less humid periods (7700–7500; 7200–7000 yr BP). From 7000 to 6000 yr BP, the climate was relatively warm and humid. Since then, it had turned cool and dry, climaxing in an intense cold event around 4000 yr BP. After the cold event, it became warm and humid until around 2500 yr BP.  相似文献   


16.
Pollen assemblages recovered from a 5?m sediment core from the Vravron coastal marsh suggest a close correlation between vegetation development and human presence in Attica, and provide the first complete record of middle to late Holocene vegetation history. Correlation of pollen with archaeological data attempts to decode the man–environment relations of the past, within the context of the known climatic variability of the mid-late Holocene, in the vicinity of ancient Athens, an area of high historical significance. The pollen record of Vravron denotes a rather variable landscape where open Mediterranean evergreen pine woods alternated with maquis shrublands and grasslands, where human activities and climate have left their imprints on vegetation. During the last 5,000?years agricultural practices displayed several variations: cereal cultivation appears more intense during the Bronze Age, especially in the Mycenaean, while a spread of Olea is observed during Geometric to Classical times. The gradual abandonment of Olea cultivation evidenced in our pollen diagram came as a result of the displacement of human activities in the interior of Mesogaia in Hellenistic and Roman times. Olea and cereal cultivation intensification is observed again during the Mesobyzantine period. In the upper part of the core evidence of intense soil erosion and expansion of Vravron wetland was recorded, coinciding with the Little Ice Age climatic event and the introduction of Arvanites populations in the area.  相似文献   

17.
Aim To contribute to the intense debate surrounding the relative influence of climate and humans on Mediterranean‐region land cover over the past 6000 years, we assess the Holocene biogeography and vegetation history of southern Europe by means of an extensive pollen record dataset. Location The Mediterranean biogeographical zone and neighbouring parts of Iberia, the Alps and Anatolia, between 30° N, 48° N, 10° W and 45° E. Methods We compiled a southern European pollen record dataset using available pollen databases (124 sites) and other sources (74 sites), with improved spatial coverage and dating control compared with earlier studies. We used only those sites that had pollen data for both 0 ka and 6 ka. We reconstructed mid‐Holocene and present‐day biomes, arboreal pollen percentages and distribution and relative abundance of 11 key woody taxa, with anomaly maps. Results Northern temperate forest biomes extended further south at the mid‐Holocene than at present, but not as far as earlier studies suggested. Sclerophyllous vegetation occurred along the Mediterranean coast throughout the region at 6 ka. Arboreal pollen percentages were up to 50% higher than at present. At 6 ka, Olea, Fagus and Juniperus had smaller distributions and/or abundances; Abies, Cedrus and both deciduous and evergreen Quercus had larger distributions and/or abundances; Phillyrea, Pistacia and Cistus showed minimal difference; and Pinus showed a cosmopolitan distribution with variable abundance. Main conclusions Temporal difference analysis is more meaningful when only sites containing samples for all time slices are analysed. During the mid‐Holocene, southern Europe was more heavily forested with temperate vegetation than it is at present, but drought‐tolerant xeric vegetation was still widespread along the southern margins of the region. Although human land use may have caused the degradation of land between the mid‐Holocene and the present, the mere presence of xeric vegetation in the Mediterranean region does not require human impact. This challenges the commonly held belief that modern Mediterranean vegetation represents a ‘degraded’ state.  相似文献   

18.
Holocene vegetation changes in response to climate fluctuations and human impacts are reviewed on the basis of pollen analyses from borehole cores taken from the Changjiang (Yangtze River) delta, China, and other previously reported data. During the earliest Holocene (10,930−9000 cal yr BP), the climate was warm and wet, allowing thermophilous hardwoods to occupy mid- and low-elevations surrounding a palaeo-Changjiang estuary. The climate became gradually cooler, and cool-tolerant conifers, grasses and ferns became dominant until 7600 cal yr BP, when the estuary became a delta. A mid-Holocene climatic optimum occurred between 7600 and 4800 cal yr BP, when evergreen and broadleaved deciduous trees flourished at mid- and low-elevations surrounding the delta front-prodelta. After this time, climate became cooler again until 1340 cal yr BP. During this period, evergreen and broadleaved deciduous trees were replaced by conifers and grasses inhabiting the inter/subtidal flat-delta front. This development of conifer-grassland vegetation was shortly interrupted between 3860 and 3200 cal yr BP when thermophilous tree cover increased and open vegetation with scattered conifers was reduced. Since 1340 cal yr BP, the vegetation has been similar to that at present under warm, wet conditions. Human impacts are recognized by the first appearance of Fagopyrum and a sudden increase in herb pollen at 4500 and 1340 cal yr BP, respectively.  相似文献   

19.
Aim To test whether fire contributed to the expansion and compositional change of evergreen forests in the Mediterranean region during the Holocene. Location The peri‐Adriatic region, encompassing the Italian peninsula, Sicily and the western and southern Balkans between latitudes 46° and 37° N. Methods New high‐resolution pollen and microscopic charcoal data from Lago dell’Accesa (Tuscany, Italy) were used to estimate the response of the evergreen oak, Quercus ilex L., to fire during its expansion phase at 8500 cal. yr bp . The data were compared with the pollen and charcoal series from other Mediterranean sites (Lago di Massaciuccoli in Tuscany, Malo Jezero in Croatia, Biviere di Gela in Sicily) and analysed using numerical techniques (redundancy analysis, detrended canonical correspondence analysis) to identify long‐term fire–vegetation linkages and the degree of compositional change. Results Microscopic charcoal and pollen of evergreen oaks were negatively correlated during the period of quasi‐natural fire regime (Mesolithic, 10,000–8000 cal. yr bp ). In addition, there was no such positive correlation during periods when the fire regime was potentially more influenced by people (Neolithic–Bronze Age, 8000–3000 cal. yr bp ). Compared with inland sites, coastal sites that are currently located at a distinct ecotone showed more compositional change. Main conclusions The analyses suggest that climatic change, without an additional effect of fire regimes, favoured the expansion and compositional change of evergreen forests across the peri‐Adriatic region. Strikingly different patterns occurred along a north–south gradient. In the north (Tuscany and Croatia, meso‐Mediterranean belt), Q. ilex replaced deciduous forests when conditions became drier; in the south (Sicily, thermo‐Mediterranean belt) the species replaced maquis or steppe vegetation when climatic conditions became moister. We conclude that the projected increase in fire activity may lead to the loss of most of the remaining relict forests of Q. ilex in southern Europe.  相似文献   

20.
通过黄海中部陆架浅海区QC_2孔岩芯的孢粉分析,证明晚更新世以来此区存在暖—冷—暖三个大的气候期,各期中还间有数个气候亚期。这种气候变化模式可与北欧和加勒比海地区进行对比。其中,距今约120 000—70 000年的第一气候期,该地区地处亚热带,气候温暖湿润,沿岸适合阔叶林生长,此时为全球性海侵时期。距今70 000—10 000年,气候变冷,该地区只海退后被草原植被所覆盖,阔叶林植被基本消失。全新世气温回升,该地区又被海水淹没,阔叶林又回到沿岸地区,但在全新世的晚期,可能受人类活动的影响,阔叶林大面积减少,松和芒萁等次生植被大面积生长,而使其孢粉含量在沉积物中迅速增长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号