首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three new 18F labeled fluoroalkyl tyrosine derivatives, O-(2-[18F]fluoroethyl)-α-methyltyrosine (FEMT, [18F]2), O-(2-[18F]fluoroethyl)-2-l-azatyrosine (FEAT, [18F]3), O-(2-[18F]fluoroethyl)-l-tyrosineamide (FETA, [18F]4) have been synthesized and radiofluorinated with 5–34% decay-corrected yield. In vitro studies were carried out in U-138 MG human glioblastoma. Cellular uptake of new tracers was compared to clinically utilized imaging agent O-(2-[18F]fluoroethyl)-l-tyrosine (FET, [18F]1). The uptake of tracers followed the order of FET ([18F]1) > FEAT([18F]3) > FEMT ([18F]2)  FETA ([18F]4).  相似文献   

2.
The [18F]fluorocyclobutyl group has the potential to be a metabolically stable prosthetic group for PET tracers. The synthesis of the radiolabeling precursor cis-cyclobutane-1,3-diyl bis(toluene-4-sulfonate) 8 was obtained from epibromohydrin in 7 steps (2% overall yield). The radiolabeling of this precursor 8 and its conjugation to l-tyrosine as a model system was successfully achieved to give the new non-natural amino acid 3-[18F]fluorocyclobutyl-l-tyrosine (L-3-[18F]FCBT) [18F]17 in 8% decay-corrected yield from the non-carrier-added [18F]fluoride. L-3-[18F]FCBT was investigated in vitro in different cancer cell lines to determine the uptake and stability. The tracer [18F]17 showed a time dependent uptake into different tumor cell lines (A549, NCI-H460, DU145) with the best uptake of 5.8% injected dose per 5 × 105 cells after 30 min in human lung carcinoma cells A549. The stability of L-3-[18F]FCBT in human and rat plasma and the stability of the non-radioactive L-3-FCBT in rat hepatocytes were both found to be excellent. These results show that the non-natural amino acid L-3-[18F]FCBT is a promising metabolically stable radiotracer for positron emission tomography.  相似文献   

3.
Two F-18 labeled fluoroarylvaline derivatives, methyl 2-(2-[18F]fluoro-4-nitrobenzamido)-3-methylbutanoate ([18F]1, [18F]MFNBMB) and its corresponding acid 2-(2-[18F]fluoro-4-nitrobenzamido)-3-methylbutanoic acid ([18F]2, [18F]FNBMBA), have been designed and synthesized, respectively, by our team. Meanwhile, we research on their biodistributions in mice model bearing S 180 tumor. Furthermore, we also carried out the biological evaluations of 2-[18F]fluorodeoxyglucose ([18F]FDG) and O-2-[18F]fluoroethyl-l-tyrosine (l-[18F]FET) in the same model for comparison with our targeting molecules [18F]1 and [18F]2. Excitingly, the tumor/blood (T/Bl) and tumor/brain (T/Br) ratios were 2.91, 7.06 at 30 min, 3.44, 5.61 at 60 min post injection for [18F]1, 2.32, 13.30 for [18F]2 at 30 min post injection, which were obviously superior to [18F]FDG and l-[18F]FET in the same model and demonstrated that [18F]1 and [18F]2, especially [18F]2, were potential PET imaging agents for tumor detection.  相似文献   

4.
Positron emission tomography (PET) using fluorine-18 (18F)-labeled 2-nitroimidazole radiotracers has proven useful for assessment of tumor oxygenation. However, the passive diffusion-driven cellular uptake of currently available radiotracers results in slow kinetics and low tumor-to-background ratios. With the aim to develop a compound that is actively transported into cells, 1-(6′-deoxy-6′-[18F]fluoro-β-d-allofuranosyl)-2-nitroimidazole (β-[18F]1), a putative nucleoside transporter substrate, was synthetized by nucleophilic [18F]fluoride substitution of an acetyl protected labeling precursor with a tosylate leaving group (β-6) in a final radiochemical yield of 12 ± 8% (n = 10, based on [18F]fluoride starting activity) in a total synthesis time of 60 min with a specific activity at end of synthesis of 218 ± 58 GBq/μmol (n = 10). Both radiolabeling precursor β-6 and unlabeled reference compound β-1 were prepared in multistep syntheses starting from 1,2:5,6-di-O-isopropylidene-α-d-allofuranose. In vitro experiments demonstrated an interaction of β-1 with SLC29A1 and SLC28A1/2/3 nucleoside transporter as well as hypoxia specific retention of β-[18F]1 in tumor cell lines. In biodistribution studies in healthy mice β-[18F]1 showed homogenous tissue distribution and excellent metabolic stability, which was unaffected by tissue oxygenation. PET studies in tumor bearing mice showed tumor-to-muscle ratios of 2.13 ± 0.22 (n = 4) at 2 h after administration of β-[18F]1. In ex vivo autoradiography experiments β-[18F]1 distribution closely matched staining with the hypoxia marker pimonidazole. In conclusion, β-[18F]1 shows potential as PET hypoxia radiotracer which merits further investigation.  相似文献   

5.
Two novel pyrazolo[1,5-a]pyrimidine derivatives, 7-(2-[18F]fluoroethylamino)-5-methylpyrazolo[1,5-a]pyrimidine-3-carbonitrile ([18F]FEMPPC, [18F]1) and N-(2-(3-cyano-5-methylpyrazolo[1,5-a]pyrimidin-7-ylamino)ethyl)-2-[18F]fluoro-4-nitrobenzamide ([18F]FCMPPN, [18F]2), have been designed and successively labeled with 18F by the nucleophilic substitution employing tosylate and nitryl as leaving groups, respectively. The radiochemical synthesis of both compounds was completed within 60 min with final high-performance liquid chromatography purification included. The corresponding radiochemical yields (without decay correction) were approximately 35% and 30%, respectively. Meanwhile, we compared the uptake characteristics of [18F]1 and [18F]2 with those of [18F]FDG and L-[18F]FET in S180 tumor cells. Furthermore, the tumor uptake of [18F]1 and [18F]2 was assessed in mice bearing S180 tumor and compared with [18F]FDG and L-[18F]FET in the same animal model. In vitro cell uptake studies showed [18F]1 had higher uptake than [18F]FDG, [18F]2 and L-[18F]FET over the 2 h period. In ex vivo biodistribution showed tumor/brain uptake ratios of [18F]2 were 12.35, 10.44, 8.69 and 5.13 at 15 min, 30 min, 60 min and 120 min post-injection, much higher than those of L-[18F]FET (2.43, 2.54, 2.93 and 2.95) and [18F]FDG (0.59, 0.61, 1.02 and 1.33) at the same time point. What’s more, the uptake of [18F]1 in tumor was 1.88, 4.37, 5.51, 2.95 and 2.88 at 5 min, 15 min, 30 min, 60 min and 120 min post-injection, respectively. There was a remarkable increasing trend before 30 min. The same trend was present for L-[18F]FET before 30 min and [18F]FDG before 60 min. Additionally, the tumor/brain uptake ratios of [18F]1 were superior to those of [18F]FDG at all the selected time points, the tumor/muscle and tumor/blood uptake ratios of [18F]1 at 30 min were higher than those of L-[18F]FET at the same time point. MicroPET image of [18F]1 administered into S180 tumor-bearing mouse acquired at 30 min post-injection illustrated that the uptake in S180 tumor was obvious. These results suggest that compound [18F]1 could be a new probe for PET tumor imaging.  相似文献   

6.
Myocardial extractions of pyridaben, a mitochondrial complex I (MC-I) inhibitor, is well correlated with blood flow. Based on the synthesis and characterization of pyridaben analogue 2-tert-butyl-5-[2-(2-[18F]fluroethoxy)ethoxy]benzyloxy]-4-chloro-2H-pyridazin-3-one ([18F]FP2OP), this study assessed its potential to be developed as myocardial perfusion imaging (MPI) agent.Methods: The tosylate labeling precursor 2-(2-(4-(tert-butyl-5-chloro-6-oxo-1,6-dihydro-pyridazin-4-yloxymethyl)benzyloxy)ethoxy)ethyl ester (OTs-P2OP) and the nonradioactive 2-tert-butyl-5-[2-(2-[19F]fluroethoxy)ethoxy]benzyloxy]-4-chloro-2H-pyridazin-3-one ([19F]FP2OP) were synthesized and characterized by IR, 1H NMR, 13C NMR and MS analysis. By substituting tosyl of precursor OTs-P2OP with 18F, the radiolabeled complex [18F]FP2OP was prepared and further evaluated for its in vitro physicochemical properties, in vivo biodistribution, the metabolic stability in mice, ex vivo autoradiography and cardiac PET/CT imaging.Results: Starting with [18F]F? Kryptofix 2.2.2./K2CO3 solution, the total reaction time for [18F]FP2OP was about 100 min, with final high-performance liquid chromatography purification included. Typical decay-corrected radiochemical yield stayed at 41 ± 5.3%, the radiochemical purity, 98% or more. Biodistribution in mice showed that the heart uptake of [18F]FP2OP was 41.90 ± 4.52%ID/g at 2 min post-injection time, when the ratio of heart/liver, heart/lung and heart/blood reached 6.83, 9.49 and 35.74, respectively. Lipophilic molecule was further produced by metabolized [18F]FP2OP in blood and urine at 30 min. Ex vivo autoradiography demonstrates that [18F]FP2OP may have high affinity with MC-I and that can be blocked by [19F]FP2OP or rotenone (a known MC-I inhibitor). Cardiac PET images were obtained in a Chinese mini-swine at 5, 15, 30 and 60 min post-injection time with high quality.Conclusion: [18F]FP2OP was synthesized with high radiochemical yield. The promising biological properties of [18F]FP2OP suggest high potential as MPI agent for positron emission tomography in the future.  相似文献   

7.
A new synthesis of O-(2-[18F]fluoroethyl)-l-tyrosine [18F]FET was developed using a NanoTek® microfluidic synthesis system (Advion BioSciences, Inc.). Optimal reaction conditions were studied through screening different reaction parameters like temperature, flow rate, reaction time, concentration of the labeling precursor, and the applied volume ratio between the labeling precursor and [18F]fluoride. [18F]FET was obtained after HPLC purification with 50% decay-corrected radiochemical yield starting from as little as 40 μg of labeling precursor. Small animal PET studies in EMT-6 tumor bearing mice showed radioactivity accumulation in the tumor (SUV60min 1.21 ± 0.2) resulting in an slightly increasing tumor-to-muscle ratio over time.  相似文献   

8.
Amino acid syn-1-amino-3-fluoro-cyclobutyl-1-carboxylic acid (syn-FACBC) 12, the isomer of anti-FACBC, has been selectively synthesized and [18F] radiofluorinated in 52% decay-corrected yield using no-carrier-added [18F]fluoride. The key step in the synthesis of the desired isomer involved stereoselective reduction using lithium alkylborohydride/zinc chloride, which improved the ratio of anti-alcohol to syn-alcohol from 17:83 to 97:3. syn-FACBC 12 entered rat 9L gliosarcoma cells primarily via L-type amino acid transport in vitro with high uptake of 16% injected dose per 5 × 105 cells. Biodistribution studies in rats with 9L gliosarcoma brain tumors demonstrated high tumor to brain ratio of 12:1 at 30 min post injection. In this model, amino acid syn-[18F]FACBC 12 is a promising metabolically based radiotracer for positron emission tomography brain tumor imaging.  相似文献   

9.
PR04.MZ 8-(4-fluoro-but-2-ynyl)-3-p-tolyl-8-aza-bicyclo[3.2.1]octane-2-carboxylic acid methyl ester (1) and LBT999 8-((E)-4-fluoro-but-2-enyl)-3b-p-tolyl-8-aza-bicyclo[3.2.1]octane-2β-carboxylic acid methyl ester (2) are selective dopamine reuptake inhibitors, derived from cocaine. Compounds 1 and 2 were labelled with fluorine-18 at their terminally fluorinated N-substituents employing microwave enhanced direct nucleophilic fluorination. K[18F]F? Kryptofix®222 cryptate, tetrabutyl ammonium [18F]fluoride and caesium [18F]fluoride were compared as fluoride sources under conventional and microwave enhanced conditions. Fluorination yields were remarkably increased under microwave irradiation for all three fluoride salts. Radiochemically pure (>98%) [18F]PR04.MZ (0.95–1.09 GBq, 42–135 GBq/μmol) was obtained within 34–40 min starting from 3.0 GBq [18F]fluoride ion in 32–36% non-decay-corrected overall yield using K[18F]F?Kryptofix®222 cryptate in MeCN.  相似文献   

10.
A new cardiac sympathetic nerve imaging agent, [18F]4-fluoro-m-hydroxyphenethylguanidine ([18F]4F-MHPG), was synthesized and evaluated. The radiosynthetic intermediate [18F]4-fluoro-m-tyramine ([18F]4F-MTA) was prepared and then sequentially reacted with cyanogen bromide and NH4Br/NH4OH to afford [18F]4F-MHPG. Initial bioevaluations of [18F]4F-MHPG (biodistribution studies in rats and kinetic studies in the isolated rat heart) were similar to results previously reported for the carbon-11 labeled analog [11C]4F-MHPG. The neuronal uptake rate of [18F]4F-MHPG into the isolated rat heart was 0.68 ml/min/g wet and its retention time in sympathetic neurons was very long (T1/2 >13 h). A PET imaging study in a nonhuman primate with [18F]4F-MHPG provided high quality images of the heart, with heart-to-blood ratios at 80–90 min after injection of 5-to-1. These initial kinetic and imaging studies of [18F]4F-MHPG suggest that this radiotracer may allow for more accurate quantification of regional cardiac sympathetic nerve density than is currently possible with existing neuronal imaging agents.  相似文献   

11.
Retinoic acid receptor alpha (RAR-α) plays a significant role in a number of diseases, including neuroblastoma. Children diagnosed with high-risk neuroblastoma are treated 13-cis-retinoic acid, which reduces risk of cancer recurrence. Neuroblastoma cell death is mediated via RAR-α, and expression of RAR-α is upregulated after treatment. A molecular imaging probe that binds RAR-α will help clinicians to diagnose and stratify risk for patients with neuroblastoma, who could benefit from retinoid-based therapy. In this study, we report the radiolabeling, and initial in vivo evaluation of [18F]KBM-1, a novel RAR-α agonist. The radiochemical synthesis of [18F]KBM-1 was carried out through KHF2 assisted substitution of [18F]? from aryl-substituted pinacolatoesters-based retinoid precursor. In vitro cell uptake assay in human neuroblastoma cell line showed that the uptake of [18F]KBM-1 was significantly inhibited by all three blocking agents (KBM-1, ATRA, BD4) at all the selected incubation times. Standard biodistribution in mice bearing neuroblastoma tumors demonstrated increased tumor uptake from 5 min to 60 min post radiotracer injection and the uptake ratios for target to non-target (tumor: muscle) increased 2.2-fold to 3.7-fold from 30 min to 60 min post injection. Tumor uptake in subset of 30 min blocking group was 1.7-fold lower than unblocked. These results demonstrate the potential utility of [18F]KBM-1 as a RAR-α imaging agent.  相似文献   

12.
Radiosynthesis and in vitro evaluation of [18F](S)-1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoropyridin-3-yl)-2-methylpyrrolidine-2-carboxamide ([18F]BMS-754807 or [18F]1) a specific IGF-1R inhibitor was performed. [18F]1 demonstrated specific binding in vitro to human cancer tissues. Synthesis of reference standard 1 and corresponding bromo derivative (1a), the precursor for radiolabeling were achieved from 2,4-dichloropyrrolo[2,1-f][1,2,4]triazine (4) in three steps with 50% overall yield. The radioproduct was obtained in 8% yield by reacting 1a with [18F]TBAF in DMSO at 170 °C at high radiochemical purity and specific activity (1–2 Ci/μmol, N = 10). The proof of concept of IGF-IR imaging with [18F]1 was demonstrated by in vitro autoradiography studies using pathologically identified surgically removed grade IV glioblastoma, breast cancer and pancreatic tumor tissues. These studies indicate that [18F]1 can be a potential PET tracer for monitoring IGF-1R.  相似文献   

13.
Four novel thiazole containing ABP688 derivatives were synthesized and evaluated for their binding affinity towards the metabotropic glutamate receptor subtype 5 (mGluR5). (E)-3-((2-(Fluoromethyl)thiazol-4-yl)ethynyl)cyclohex-2-enone O-methyl oxime (FTECMO), the ligand with the highest binding affinity (Ki = 5.5 ± 1.1 nM), was labeled with fluorine-18. [18F]-FTECMO displayed optimal lipophilicity (log DpH7.4 = 1.6 ± 0.2) and high stability in rat and human plasma as well as sufficient stability in rat liver microsomes. In vitro autoradiography with [18F]-FTECMO revealed a heterogeneous and displaceable binding in mGluR5-rich brain regions. PET imaging with [18F]-FTECMO in Wistar rats, however, showed low brain uptake. Uptake of radioactivity into the skull was observed suggesting in vivo defluorination. Thus, although [18F]-FTECMO is an excellent ligand for the detection of mGluR5 in vitro, its in vivo characteristics are not optimal for the imaging of mGluR5 in rats in vivo.  相似文献   

14.
Galactosylated chitosan (GC) was prepared by reacting lactobionic acid with water-soluble chitosan. GC was labeled with fluorine-18 by conjugation with N-succinimidyl-4-18F-fluorobenzoate ([18F]SFB) under a slightly basic condition. After rapid purification with HiTrap desalting column, [18F]FB-GC was obtained with high radiochemical purity (>97%) determined by radio-HPLC. The total reaction time for [18F]FB-GC was about 150 min. Typical decay-corrected radiochemical yield was about 4–8%. Ex vivo biodistribution in normal mice showed that [18F]FB-GC had moderate activity accumulation in liver with very good retention (11.13 ± 1.63, 10.97 ± 1.90 and 10.77 ± 0.95% ID/g at 10, 60, 120 min after injection, respectively). The other tissues except kidney showed relative low radioactivity accumulation. The high liver/background ratio affords promising biological properties to get clear images. The specific binding of this radiotracer to the ASGP receptor was confirmed by blocking experiment in mice. Compared with the non-blocking group the hepatic uptake of [18F]FB-GC significantly declined in all selected time points. The better liver retention properties of [18F]FB-GC than that of albumin based imaging agents may improve imaging quality and simplify pharmacokinetic model of liver function in the future application with PET imaging.  相似文献   

15.
Measuring changes in β-cell mass in vivo during progression of diabetes mellitus is important for understanding the pathogenesis, facilitating early diagnosis, and developing novel therapeutics for this disease. However, a non-invasive method has not been developed. A novel series of mitiglinide derivatives (o-FMIT, m-FMIT and p-FMIT; FMITs) were synthesized and their binding affinity for the sulfonylurea receptor 1 (SUR1) of pancreatic islets were evaluated by inhibition studies. (+)-(S)-o-FMIT had the highest affinity of our synthesized FMITs (IC50 = 1.8 μM). (+)-(S)-o-[18F]FMIT was obtained with radiochemical yield of 18% by radiofluorination of racemic precursor 7, hydrolysis, and optical resolution with chiral HPLC; its radiochemical purity was >99%. In biodistribution experiments using normal mice, (+)-(S)-o-[18F]FMIT showed 1.94 ± 0.42% ID/g of pancreatic uptake at 5 min p.i., and decreases in radioactivity in the liver (located close to the pancreas) was relatively rapid. Ex vivo autoradiography experiments using pancreatic sections confirmed accumulation of (+)-(S)-o-[18F]FMIT in pancreatic β-cells. These results suggest that (+)-(S)-o-[18F]FMIT meets the basic requirements for an radiotracer, and could be a candidate positron emission tomography tracer for in vivo imaging of pancreatic β-cells.  相似文献   

16.
2-(4′-[18F]fluorophenyl)-1,3-benzothiazole was synthesized as a fluorine-18 labelled derivative of the Pittsburg Compound-B (PIB), which has known affinity for amyloid β and promising characteristics as tracer for in vivo visualisation of amyloid deposits in patients suffering from Alzheimer’s disease (AD). Both the nitro-precursor 2-(4′-nitrophenyl)-1,3-benzothiazole and the non-radioactive reference compound were synthesized using a 1-step synthesis pathway. Labelling was achieved by direct aromatic nucleophilic substitution of the nitro-precursor using [18F]fluoride by heating for 20 min at 150 °C and with a radiochemical yield of 38%. The reference compound showed high affinity for amyloid in an in vitro competition binding study using human AD brain homogenates (Ki = 9.0 nM) and fluorescence imaging of incubated transgenic APP mouse brain slices confirmed binding to amyloid plaques. A biodistribution study in normal mice showed a high brain uptake at 2 min pi (3.20% ID/g) followed by a fast washout (60 min pi: 0.21% ID/g). A dynamic μPET study was performed in a transgenic APP and normal WT mouse, but, similar to [11C]PIB, no difference was seen in tracer retention between both kind of mice. The new 18F-labelled 2-phenylbenzothiazole showed excellent preclinical characteristics comparable with those of the 11C-labelled PIB.  相似文献   

17.
A potential probe for PET targeting β-amyloid plaques in Alzheimer’s disease (AD) brain, FPYBF-1 (5-(5-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)benzofuran-2-yl)-N,N-dimethylpyridin-2-amine), was synthesized and evaluated. In experiments in vitro, FPYBF-1 displayed high affinity for Aβ(1–42) aggregates (Ki = 0.9 nM), and substantial labeling of β-amyloid plaques in sections of postmortem AD brains but not control brains. In experiments in vivo, [18F]FPYBF-1 displayed good initial uptake (5.16%ID/g at 2 min postinjection) and rapid washout from the brain (2.44%ID/g at 60 min postinjection) in normal mice, and excellent binding to β-amyloid plaques in a murine model of AD. Furthermore, the specific labeling of plaques labeling was observed in autoradiographs of autopsied AD brain sections. [18F]FPYBF-1 may be a useful probe for imaging β-amyloid plaques in living brain tissue.  相似文献   

18.
We report the synthesis and evaluation of a series of fluoro-oligo-ethoxylated 4-benzylpiperazine derivatives as potential σ1 receptor ligands. In vitro competition binding assays showed that 1-(1,3-benzodioxol-5-ylmethyl)-4-(4-(2-fluoroethoxy)benzyl)piperazine (6) exhibits low nanomolar affinity for σ1 receptors (Ki = 1.85 ± 1.59 nM) and high subtype selectivity (σ2 receptor: Ki = 291 ± 111 nM; Kiσ2/Kiσ1 = 157). [18F]6 was prepared in 30–50% isolated radiochemical yield, with radiochemical purity of >99% by HPLC analysis after purification, via nucleophilic 18F? substitution of the corresponding tosylate precursor. The log DpH 7.4 value of [18F]6 was found to be 2.57 ± 0.10, which is within the range expected to give high brain uptake. Biodistribution studies in mice demonstrated relatively high concentration of radiotracers in organs known to contain σ1 receptors, including the brain, lungs, kidneys, heart, and spleen. Administration of haloperidol 5 min prior to injection of [18F]6 significantly reduced the concentration of radiotracers in the above-mentioned organs. The accumulation of radiotracers in the bone was quite low suggesting that [18F]6 is relatively stable to in vivo defluorination. The ex vivo autoradiography in rat brain showed high accumulation of radiotracers in the brain areas known to possess high expression of σ1 receptors. These findings suggest that [18F]6 is a suitable radiotracer for imaging σ1 receptors with PET in vivo.  相似文献   

19.
A new [18F] labeled amino acid anti-1-amino-2-[18F]fluoro-cyclobutyl-1-carboxylic acid 9 (anti-2-[18F]FACBC) was synthesized in 30% decay-corrected yield with high radiochemical purity over 99%. The cyclic sulfamidate precursor was very stable and highly reactive towards nucleophilic radiofluorination. Cell uptake assays with rat 9L gliosarcoma cells showed that [18F]9 was transported into tumor cells via multiple amino acid transport systems, including L and A systems. Biodistribution study in rats with intracranial 9L gliosarcoma tumors demonstrated that [18F]9 had a rapid and prolonged accumulation in tumors with 26:1 tumor to brain ratio at 120 min post-injection. In this model, [18F]9 is a potential PET tracer for brain tumor imaging.  相似文献   

20.
A novel series of fluorinated 2-phenylindole derivatives were synthesized and evaluated as β-amyloid imaging probes for PET. The in vitro inhibition assay demonstrated that their binding affinities for Aβ1–42 aggregates ranged from 28.4 to 1097.8 nM. One ligand was labeled with 18F ([18F]1a) for its high affinity (Ki = 28.4 nM), which was also confirmed by in vitro autoradiography experiments on brain sections of transgenic mouse (C57BL6, APPswe/PSEN1, 11 months old, male). In vivo biodistribution experiments in normal mice showed that this radiotracer displayed high initial uptake (5.82 ± 0.51% ID/g at 2 min) into and moderate washout (2.77 ± 0.31% ID/g at 60 min) from the brain. [18F]1a could be developed as a promising new PET imaging probe for Aβ plaques although necessary modifications are still needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号