首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Linkage analysis in familial breast and ovarian cancer and studies of allelic deletion in sporadic ovarian tumors have identified a region on chromosome 17q containing a candidate tumor-suppressor gene (referred to as BRCA1) of likely importance in ovarian carcinogenesis. We have examined normal and tumor DNA samples from 32 patients with sporadic and 8 patients with familial forms of the disease, for loss of heterozygosity (LOH) at 21 loci on chromosome 17 (7 on 17p and 14 on 17q). LOH on 17p was 55% (22/40) for informative 17pl3.1 and 17pl3.3 markers. When six polymorphic markers flanking the familial breast/ovarian cancer susceptibility locus on 17ql2-q21 were used, LOH was 58% (23/40), with one tumor showing telomeric retention. Evaluation of a set of markers positioned telomeric to BRCA1 resulted in the highest degree of LOH, 73% (29/40), indicating that a candidate locus involved in ovarian cancer may reside distal to BRCA1. Five of the tumors demonstrating allelic loss for 17q markers were from individuals with a strong family history of breast and ovarian cancer. More important, two of these tumors (unique patient number [UPN] 57 and UPN 79) retained heterozygosity for all informative markers spanning the BRCA1 locus but showed LOH at loci distal to but not including the anonymous markers CMM86 (D17S74) and 42D6 (D17S588), respectively. Deletion mapping of seven cases (two familial and five sporadic) showing limited LOH on 17q revealed a common region of deletion, distal to GH and proximal to D17S4, that spans −25 cM. These results suggest that a potential tumor-suppressor gene involved in both sporadic and familial ovarian cancer may reside on the distal portion of chromosome 17q and is distinct from the BRCA1 gene.  相似文献   

2.
OBJECTIVE: To evaluate the presence of allelic loss in 16q22.1, including the locus of E-cadherin, in pleural effusions in breast cancer patients. STUDY DESIGN: Molecular analysis of DNA was performed using a DNA extraction kit (NucleoSpin, Macherey-Nagel, Germany). Loss of heterozygosity (LOH) in primary tumors and pleural effusions was analyzed using a microsatellite marker of the CDH1 gene, D16S265, described in previous studies. LOH was evaluated by radioactive polymerase chain reaction assay in 17 samples of pleural effusions and breast tissues (primary tumors and nonneoplastic adjacent tissue) from breast cancer patients: 7 positive for neoplastic cells, 6 suspected and 4 cases without evidence of neoplastic cells in the effusions. RESULTS: Thirteen cases (76%) were informative. LOH was detected in 5 cases (38.5%). In 3 of them LOH was detected only in the cytologic sample, and in 2 of them LOH was detected in the primary tumor and cytologic sample. CONCLUSION: Results show that LOH in the CDH1 gene can identify tumor cells in pleural effusions when morphologic analysis is difficult.  相似文献   

3.
Both germline and somatic mutations are known to affect phenotypes of human cells in vivo. In previous studies, we cloned mutant peripheral blood T cells from germline heterozygous humans for adenine phosphoribosyltransferase (APRT) (EC 2.4.2.7) deficiency and found that approximately 1.3 × 10–4 peripheral T cells had undergone in vivo somatic mutations. Loss of heterozygosity (LOH) was the major cause of the mutations at the APRT locus since approximately 80% of the mutant T cell clones exhibited loss of normal alleles. In the present study, we identified three heterozygous individuals for APRT deficiency (representing two separate families), in whom none of the somatic mutant cells exhibited LOH at the APRT locus. The germline mutant APRT alleles of these heterozygotes from two unrelated families had the same gross DNA abnormalities detectable by Southern blotting. None of the germline mutant APRT alleles so far reported had such gross DNA abnormalities. The data suggest that the germline mutation unique to these heterozygous individuals is associated with the abrogation of LOH in somatic cells. The absence of LOH at a different locus has already been reported in vitro in an established cell line but the present study describes the first such event in vivo in human individuals. Received: 10 May 1996  相似文献   

4.
We evaluated the loss of heterozygosity (LOH) at 10q23.3 locus of microsatellite markers; D10S198, D10S192, and D10S541 of PTEN gene in 223 North Indian colorectal cancer (CRC) specimens. DNA was isolated and microsatellite-specific markers polymerase chain reaction was performed. Out of total 223 cases 102 showed LOH for at least one of the locus. In addition, thereto a significant association was found with the clinicopathologic features like grade of differentiation, clinical stage, invasion, lymph node invasion, and the clinical outcome (p?<?0.05). These data argue that the given markers to check the possible LOH of PTEN gene at locus 10q23.3 could be considered as one of the diagnostic markers in CRC.  相似文献   

5.
For the rabphillin-3A-like (RPH3AL) gene, a putative tumor suppressor, the clinical significance of genetic alterations in breast cancers was evaluated. DNA and RNA were extracted from formalin-fixed, paraffin-embedded (FFPE) cancers and matching normal tissues. DNA samples were assessed for loss of heterozygosity (LOH) at the 17p13.3 locus of RPH3AL and the 17p13.1 locus of the tumor suppressor, TP53. RPH3AL was sequenced, and single nucleotide polymorphisms (SNPs) were genotyped. RNA samples were evaluated for expression of RPH3AL, and FFPE tissues were profiled for its phenotypic expression. Alterations in RPH3AL were correlated with clinicopathological features, LOH of TP53, and patient survival. Of 121 cancers, 80 had LOH at one of the RPH3AL locus. LOH of RHP3AL was associated with nodal metastasis, advanced stage, large tumor size, and poor survival. Although ~50% were positive for LOH at the RPH3AL and TP53 loci, 19 of 105 exhibited LOH only at the RPH3AL locus. Of these, 12 were non-Hispanic Caucasians (Whites), 15 had large tumors, and 12 were older (>50 years). Patients exhibiting LOH at both loci had shorter survival than those without LOH at these loci (log-rank, P = 0.014). LOH at the TP53 locus alone was not associated with survival. Analyses of RPH3AL identified missense point mutations in 19 of 125 cases, a SNP (C>A) in the 5’untranslated region at -25 (5’UTR-25) in 26 of 104, and a SNP (G>T) in the intronic region at 43 bp downstream to exon-6 (intron-6-43) in 79 of 118. Genotype C/A or A/A of the SNP at 5’UTR-25 and genotype T/T of a SNP at intron-6-43 were predominantly in Whites. Low levels of RNA and protein expression of RPH3AL were present in cancers relative to normal tissues. Thus, genetic alterations in RPH3AL are associated with aggressive behavior of breast cancers and with short survival of patients.  相似文献   

6.
Neuroblastoma is a childhood neural crest tumour, genetically characterized by frequent deletions of the short arm of chromosome 1 and amplification of N-myc. Here we report the first evidence for a neuroblastoma tumour suppressor locus on 4pter. Cytogenetically we demonstrated rearrangements of 4p in 7 out of 26 evaluable tumours (27%). Subsequent analysis of loss of heterozygosity (LOH) by Southern blotting revealed allelic loss of 4p in 16/82 (19.5%) informative neuroblastomas. Taken together cytogenetic and Southern blot analyses showed loss of 4p in 20/86 neuroblastomas analysed (23%). The common deleted region was bordered by the probe D4S 123 and encompassed the distal 34 cM of 4p. We found no evidence for genomic imprinting of the 4p locus as the 4p alleles lost in the tumours were of random maternal and paternal origin. LOH4p was found at all disease stages and in every age group. Furthermore LOH4p was present both in cases with and without LOHIp and amplification of N-myc.  相似文献   

7.
Major histocompatibility complex (MHC) class I loss or downregulation in cancer cells is a major immune escape route used by a large variety of human tumors to evade anti-tumor immune responses mediated by cytotoxic T lymphocytes. Multiple mechanisms are responsible for such HLA class I alterations. However, the precise frequency of these molecular defects has not been clearly determined in tumors derived from specific tissues. To analyze such defects we aim to define the major HLA class I-altered phenotypes in different tumor types. In this paper we report on HLA class I expression in 70 laryngeal carcinomas. We used immunohistological techniques with a highly selective panel of anti-HLA monoclonal antibodies (mAb), and polymerase chain reaction (PCR) microsatellite amplification of previously selected microsatellite markers (STR) located in chromosome 6 and 15. DNA was obtained from microdissected tumor tissues and surrounding stroma to define the loss of heterozygosity (LOH) associated with chromosome 6p21. Our results showed that LOH in chromosome 6 produced HLA haplotype loss (phenotype II) in 36% of the tumors. In addition, HLA class I total loss (phenotype I) was found in 11%; HLA A or B locus downregulation (phenotype III) was detected in 20%; and HLA class I allelic loss (phenotype IV) in 10% of all cases. We sometimes observed two or more associated mechanisms in the same HLA-altered phenotype, such as LOH and HLA total loss in phenotype I. In only 23% of tumors it was not possible to identify any HLA class I alteration. We conclude that the combination of immunohistological techniques and molecular analysis of tumor DNA obtained from microdissected tumor tissues provides a means for the first time of determining the actual frequency of the major HLA class I-altered phenotypes in laryngeal carcinomas.  相似文献   

8.
Candida albicans is a human fungal pathogen and has been extensively studied because of its clinical importance. Comprehensive gene analyses have, however, made little progress. This is because of the diploid and asexual characteristics of the fungus that hamper gene disruptions. In this study, we found that ultraviolet (UV) irradiation, as well as mutagen treatment, strongly stimulated loss of heterozygosity (LOH) in strains harboring artificially constructed heterozygosity. UV-induced LOH occurred more frequently in cells within the logarithmic phase of growth compared to those within the stationary phase of growth. This was observed at all loci tested on chromosome 7, except for a locus neighboring the centromere. C. albicans RAD52, whose orthologue in Saccharomyces cerevisiae was reported to be involved in DNA repair by homologous recombination, was shown to be required for UV-induced LOH. These results suggest that high efficiency LOH caused by UV irradiation could be a prominent tool for gene analyses in C. albicans.  相似文献   

9.
Katarzyna Siudeja 《Fly》2017,11(2):121-128
Somatic recombination is essential to protect genomes of somatic cells from DNA damage but it also has important clinical implications, as it is a driving force of tumorigenesis leading to inactivation of tumor suppressor genes. Despite this importance, our knowledge about somatic recombination in adult tissues remains very limited. Our recent work, using the Drosophila adult midgut has demonstrated that spontaneous events of mitotic recombination accumulate in aging adult intestinal stem cells and result in frequent loss of heterozygosity (LOH). In this Extra View article, we provide further data supporting long-track chromosome LOH and discuss potential mechanisms involved in the process. In addition, we further discuss relevant questions surrounding somatic recombination and how the mechanisms and factors influencing somatic recombination in adult tissues can be explored using the Drosophila midgut model.  相似文献   

10.
Although the association of germline BRCA2 mutations with pancreatic adenocarcinoma is well established, the role of BRCA1 mutations is less clear. We hypothesized that the loss of heterozygosity at the BRCA1 locus occurs in pancreatic cancers of germline BRCA1 mutation carriers, acting as a “second-hit” event contributing to pancreatic tumorigenesis. Seven germline BRCA1 mutation carriers with pancreatic adenocarcinoma and nine patients with sporadic pancreatic cancer were identified from clinic- and population-based registries. DNA was extracted from paraffin-embedded tumor and nontumor samples. Three polymorphic microsatellite markers for the BRCA1 gene, and an internal control marker on chromosome 16p, were selected to test for the loss of heterozygosity. Tumor DNA demonstrating loss of heterozygosity in BRCA1 mutation carriers was sequenced to identify the retained allele. The loss of heterozygosity rate for the control marker was 20%, an expected baseline frequency. Loss of heterozygosity at the BRCA1 locus was 5/7 (71%) in BRCA1 mutation carriers; tumor DNA was available for sequencing in 4/5 cases, and three demonstrated loss of the wild-type allele. Only 1/9 (11%) sporadic cases demonstrated loss of heterozygosity at the BRCA1 locus. Loss of heterozygosity occurs frequently in pancreatic cancers of germline BRCA1 mutation carriers, with loss of the wild-type allele, and infrequently in sporadic cancer cases. Therefore, BRCA1 germline mutations likely predispose to the development of pancreatic cancer, and individuals with these mutations may be considered for pancreatic cancer-screening programs.  相似文献   

11.
To detect the incidence of loss of heterozygosity (LOH) in DNA mismatch repair genes (MMR) occurring in atherosclerosis, fifty human autopsy cases of atherosclerosis were examined for LOH using 19 microsatellite markers, in three single and four tetraplex microsatellite assays. The markers used are located on or close to MMR genes. Fourteen specimens (28%) showed allelic imbalance in at least one locus. Loci hMSH2 (2p22.3–p16.1), hPMS1 (2q24.1–q32.1), and hMLH1 (3p21.32–p21.1) exhibited LOH (10, 10, and 12% respectively). We found that loss of heterozygosity on hMSH2, hPMS1, and hMLH1, occurs in atherosclerosis. The occurrence of such genomic alterations may represent important events in the development of atherosclerosis.  相似文献   

12.
Breast cancer is the most prevalent cancer type in women. Accumulating evidence indicates that the fidelity of double-strand break repair in response to DNA damage is an important step in mammary neoplasias. The RAD51 and BRCA1 proteins are involved in the repair of double-strand DNA breaks by homologous recombination. In this study, we evaluated loss of heterozygosity (LOH) in the RAD51 and BRCA1 regions, and their association with breast cancer. The polymorphic markers D15S118, D15S214 and D15S1006 were the focus for RAD51, and D17S855 and D17S1323 for BRCA1. Genomic deletion detected by allelic loss varied according to the regions tested, and ranged from 29 to 46% of informative cases for the RAD51 region and from 38 to 42% of informative cases for the BRCA1 region. 25% of breast cancer cases displayed LOH for at least one studied marker in the RAD51 region exclusively. On the other hand, 31% of breast cancer cases manifested LOH for at least one microsatellite marker concomitantly in the RAD51 and BRCA1 regions. LOH in the RAD51 region, similarly as in the BRCA1 region, appeared to correlate with steroid receptor status. The obtained results indicate that alteration in the RAD51 region may contribute to the disturbances of DNA repair involving RAD51 and BRCA1 and thus enhance the risk of breast cancer development.  相似文献   

13.
The loss of genetic material on chromosome 10q is frequent in different tumors and particularly in malignant gliomas. We analyzed 90 of these tumors and found loss of heterozygosity (LOH) in >90% of the informative loci in glioblastoma multiforme (GBM). Initial studies restricted the common LOH region to 10q24-qter. Subsequently, the study of a pediatric GBM suggested D10S221 and D10S209, respectively, as centromeric and telomeric markers of a 4-cM LOH region. It is interesting to note that, in one subset of cells from this tumor, locus D10S209 seems involved in the allelic imbalance of a larger region, with D10S214 as telomeric marker. This 17-cM region contains the D10S587-D10S216 interval of common deletion recently defined on another set of gliomas.  相似文献   

14.
Due to the lack of recombination, asexual organisms are predicted to accumulate mutations and show high levels of within‐individual allelic divergence (heterozygosity); however, empirical evidence for this prediction is largely missing. Instead, evidence of genome homogenization during asexual reproduction is accumulating. Ameiotic crossover recombination is a mechanism that could lead to long genomic stretches of loss of heterozygosity (LOH) and unmasking of mutations that have little or no effect in heterozygous state. Therefore, LOH might be an important force for inducing variation among asexual offspring and may contribute to the limited longevity of asexual lineages. To investigate the genetic consequences of asexuality, here we used high‐throughput sequencing of Daphnia magna for assessing the rate of LOH over a single generation of asexual reproduction. Comparing parthenogenetic daughters with their mothers at several thousand genetic markers generated by restriction site‐associated DNA (RAD) sequencing resulted in high LOH rate estimation that largely overlapped with our estimates for the error rate. To distinguish these two, we Sanger re‐sequenced the top 17 candidate RAD‐loci for LOH, and all of them proved to be false positives. Hence, even though we cannot exclude the possibility that short stretches of LOH occur in genomic regions not covered by our markers, we conclude that LOH does not occur frequently during asexual reproduction in D. magna and ameiotic crossovers are very rare or absent. This finding suggests that clonal lineages of D. magna will remain genetically homogeneous at least over time periods typically relevant for experimental work.  相似文献   

15.
Huang XP  Zhao CX  Li QJ  Cai Y  Liu FX  Hu H  Xu X  Han YL  Wu M  Zhan QM  Wang MR 《Gene》2006,366(1):161-168
  相似文献   

16.

Background  

High-throughput genotyping microarrays assess both total DNA copy number and allelic composition, which makes them a tool of choice for copy number studies in cancer, including total copy number and loss of heterozygosity (LOH) analyses. Even after state of the art preprocessing methods, allelic signal estimates from genotyping arrays still suffer from systematic effects that make them difficult to use effectively for such downstream analyses.  相似文献   

17.

Objectives

The role of heparanase (HPSE) gene in cancers including hepatocellular carcinoma (HCC) is currently controversial. This study was aimed at investigating the impact of genetic alteration and expression change of HPSE on the progression and prognosis of HCC.

Methods

The HPSE gene was studied in three different aspects: (1) loss of heterozygosity (LOH) by a custom SNP microarray and DNA copy number by real-time PCR; (2) mRNA level by qRT-PCR; and (3) protein expression by immunohistochemistry. The clinical significances of allele loss and expression change of HPSE were analyzed.

Results

Microarray analysis showed that the average LOH frequency for 10 SNPs located within HPSE gene was 31.6%, three of which were significantly correlated with tumor grade, serum HBV-DNA level, and AFP concentration. In agreement with SNP LOH data, DNA copy number loss of HPSE was observed in 38.74% (43/111) of HCC cases. HPSE mRNA level was notably reduced in 74.1% (83/112) of tumor tissues compared with non-tumor liver tissues, which was significantly associated with DNA copy number loss, increased tumor size, and post-operative metastasis. HPSE protein level was also remarkably reduced in 66.3% (53/80) of tumor tissues, which was correlated with tumor grade. Patients with lower expression level of HPSE mRNA or protein had a significantly lower survival rate than those with higher expression. Cox regression analysis suggested that HPSE protein was an independent predictor of overall survival in HCC patients.

Conclusions

The results in this study demonstrate that genetic alteration and reduction of HPSE expression are associated with tumor progression and poor prognosis of HCCs, suggesting that HPSE behaves like a tumor suppressor gene and is a potential prognostic marker for HCC patients.  相似文献   

18.
Paragangliomas (PGLs) are rare neuroendocrine tumors that can develop from any paraganglion across the body. The carotid body is the most often location of PGLs in the head and neck region. Carotid PGLs (CPGLs) are characterized by predominantly non-aggressive behavior; however, all tumors have the potential to metastasize. To date, molecular mechanisms of paraganglioma progression remain elusive. We report a case of a 38-year-old woman with metastatic CPGL manifesting as a recurrent tumor with lymph node metastasis. The tumor was fast-growing and had a high Ki-67 proliferation index. Immunohistochemical (IHC) examination and whole-exome sequencing were performed for both recurrent tumor and metastasis. A germline pathogenic splice acceptor variant in the SDHB gene was found in the patient. Immunoreactivity of the SDHB subunit was weak diffuse in both samples, indicating deficiency of the succinate dehydrogenase. Moreover, the recurrent tumor exhibited loss of heterozygosity (LOH) at the SDHB locus, that is according to Knudson’s "two-hit" hypothesis of cancer causation. We also identified a rare somatic promotor mutation in the TERT gene associated with the tumor progression. Obtained results confirmed the indicative role of the germline SDHB mutation for metastatic CPGLs, as well as the potential prognostic value of the TERT promoter mutation.  相似文献   

19.
满晓辉  徐岩  王振宁  吕志  徐米多  姜莉  罗阳  徐惠绵  张学 《遗传》2006,28(6):641-645
目的 研究贲门癌中染色体8p21-p23杂合性丢失的情况。方法 采用激光捕获显微切割技术获得均质的肿瘤细胞及正常的胃粘膜细胞,多重置换扩增技术扩增捕获细胞的基因组DNA。PCR结合硝酸银染色方法分析19例贲门癌染色体8p21-p23的杂合性丢失。结果 在贲门癌中染色体8p21-p23的缺失频率非常高(63.2%),我们确定了一个最小丢失区域. 结论 进一步明确此最小丢失区域内的抑癌基因将有助于贲门癌发生机制的阐明。  相似文献   

20.
Loss of heterozygosity (LOH) of chromosomal regions bearing tumor suppressors is a key event in the evolution of epithelial and mesenchymal tumors. Identification of these regions usually relies on genotyping tumor and counterpart normal DNA and noting regions where heterozygous alleles in the normal DNA become homozygous in the tumor. However, paired normal samples for tumors and cell lines are often not available. With the advent of oligonucleotide arrays that simultaneously assay thousands of single-nucleotide polymorphism (SNP) markers, genotyping can now be done at high enough resolution to allow identification of LOH events by the absence of heterozygous loci, without comparison to normal controls. Here we describe a hidden Markov model-based method to identify LOH from unpaired tumor samples, taking into account SNP intermarker distances, SNP-specific heterozygosity rates, and the haplotype structure of the human genome. When we applied the method to data genotyped on 100 K arrays, we correctly identified 99% of SNP markers as either retention or loss. We also correctly identified 81% of the regions of LOH, including 98% of regions greater than 3 megabases. By integrating copy number analysis into the method, we were able to distinguish LOH from allelic imbalance. Application of this method to data from a set of prostate samples without paired normals identified known regions of prevalent LOH. We have developed a method for analyzing high-density oligonucleotide SNP array data to accurately identify of regions of LOH and retention in tumors without the need for paired normal samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号