首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   14篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   6篇
  2012年   10篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   10篇
  2007年   4篇
  2006年   5篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2000年   1篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1985年   1篇
  1981年   1篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
1.
Both germline and somatic mutations are known to affect phenotypes of human cells in vivo. In previous studies, we cloned mutant peripheral blood T cells from germline heterozygous humans for adenine phosphoribosyltransferase (APRT) (EC 2.4.2.7) deficiency and found that approximately 1.3 × 10–4 peripheral T cells had undergone in vivo somatic mutations. Loss of heterozygosity (LOH) was the major cause of the mutations at the APRT locus since approximately 80% of the mutant T cell clones exhibited loss of normal alleles. In the present study, we identified three heterozygous individuals for APRT deficiency (representing two separate families), in whom none of the somatic mutant cells exhibited LOH at the APRT locus. The germline mutant APRT alleles of these heterozygotes from two unrelated families had the same gross DNA abnormalities detectable by Southern blotting. None of the germline mutant APRT alleles so far reported had such gross DNA abnormalities. The data suggest that the germline mutation unique to these heterozygous individuals is associated with the abrogation of LOH in somatic cells. The absence of LOH at a different locus has already been reported in vitro in an established cell line but the present study describes the first such event in vivo in human individuals. Received: 10 May 1996  相似文献   
2.
3.
A new approach to the study of the molecular arrangements of proteins in membranes is described. Irradiation with visible light of native erythrocytes or washed erythrocyte membranes suspended in buffers containing a) riboflavin, fluorescein or fluorescein coupled to dextran and b) 3H-labelled tryptophan resulted in incorporation of radioactivity into the membrane proteins. Polyacrylamide gel electrophoresis of solubilized membranes followed by radioactivity measurements of the separated membrane proteins revealed that in native erythrocytes the protein components known to be located at the exterior cell surface, Band 3 and the major sialoglycoproteins became specifically labelled, whereas in washed lysed cells all of the major membrane proteins were labelled.  相似文献   
4.
Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS.  相似文献   
5.
Several epidemiological and preclinical studies suggest that non‐steroidal anti‐inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β‐amyloid (Aβ) production and inhibit neuroinflammation. However, follow‐up clinical trials, mostly using selective cyclooxygenase (COX)‐2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive deficits. Recent data indicated that COX‐1, classically viewed as the homeostatic isoform, is localized in microglia and is actively involved in brain injury induced by pro‐inflammatory stimuli including Aβ, lipopolysaccharide, and interleukins. We hypothesized that neuroinflammation is critical for disease progression and selective COX‐1 inhibition, rather than COX‐2 inhibition, can reduce neuroinflammation and AD pathology. Here, we show that treatment of 20‐month‐old triple transgenic AD (3 × Tg‐AD) mice with the COX‐1 selective inhibitor SC‐560 improved spatial learning and memory, and reduced amyloid deposits and tau hyperphosphorylation. SC‐560 also reduced glial activation and brain expression of inflammatory markers in 3 × Tg‐AD mice, and switched the activated microglia phenotype promoting their phagocytic ability. The present findings are the first to demonstrate that selective COX‐1 inhibition reduces neuroinflammation, neuropathology, and improves cognitive function in 3 × Tg‐AD mice. Thus, selective COX‐1 inhibition should be further investigated as a potential therapeutic approach for AD.  相似文献   
6.
7.
The SAM strain of mice is actually a group of related inbred strains consisting of a series of SAMP (accelerated senescence-prone) and SAMR (accelerated senescence-resistant) strains. Compared with the SAMR strains, the SAMP strains show a more accelerated senescence process, a shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to human geriatric disorders. The higher oxidative stress status observed in SAMP mice is partly caused by mitochondrial dysfunction, and may be a cause of this senescence acceleration and age-dependent alterations in cell structure and function. Based on our recent observations, we discuss a possible mechanism for mitochondrial dysfunction resulting in the excessive production of reactive oxygen species, and a role for the hyperoxidative stress status in neurodegeneration in SAMP mice. These SAM strains can serve as a useful tool to understand the cellular mechanisms of age-dependent degeneration, and to develop clinical interventions. Special issue article in honor of Dr. Akitane Mori.  相似文献   
8.
M6a is a four-transmembrane protein that is abundantly expressed in the nervous system. Previous studies have shown that over-expression of this protein induces various cellular protrusions, such as neurites, filopodia, and dendritic spines. In this detailed characterization of M6a-induced structures, we found their varied and peculiar characteristics. Notably, the M6a-induced protrusions were mostly devoid of actin filaments or microtubules and exhibited free random vibrating motion. Moreover, when an antibody bound to M6a, the membrane-wrapped protrusions were suddenly disrupted, leading to perturbation of the surrounding membrane dynamics involving phosphoinositide signaling. During single-molecule analysis, M6a exhibited cytoskeleton-independent movement and became selectively entrapped along the cell perimeter in an actin-independent manner. These observations highlight the unusual characteristics of M6a, which may have a significant yet unappreciated role in biological systems.  相似文献   
9.
The Sendai virus C proteins, C', C, Y1, and Y2, are a nested set of independently initiated carboxy-coterminal proteins translated from a reading frame overlapping the P frame on the P mRNA. The C proteins are extremely versatile and have been shown to counteract the antiviral action of interferons (IFNs), to down-regulate viral RNA synthesis, and to promote virus assembly. Using the stable cell lines expressing the C, Y1, Y2, or truncated C protein, we investigated the region responsible for anti-IFN action and for down-regulating viral RNA synthesis. Truncation from the amino terminus to the middle of the C protein maintained the inhibition of the signal transduction of IFNs, the formation of IFN-stimulated gene factor 3 (ISGF3) complex, the generation of the anti-vesicular stomatitis virus state, and the synthesis of viral RNA, but further truncation resulted in the simultaneous loss of all of these inhibitory activities. A relatively small truncation from the carboxy terminus also abolished all of these inhibitory activities. These data indicated that the activities of the C protein to counteract the antiviral action of IFNs and to down-regulate viral RNA synthesis were not encoded within a region of at least 98 amino acids in its amino-terminal half.  相似文献   
10.
Molybdenum cofactor deficiency is a fatal neurological disorder, which follows an autosomal-recessive trait and is characterized by combined deficiency of the enzyme, sulfite oxidase, xanthine dehydrogenase and aldehyde oxidase. Early detection of molybdenum cofactor-deficient patients is essential for their proper care and genetic counseling of families at risk. We demonstrate the use of S-sulfonated transthyretin (TTR) as a marker for molybdenum cofactor deficiency. Plasma or sera obtained from 4 patients with molybdenum cofactor deficiency and 57 controls were studied by electrospray ionization mass spectrometry (ESIMS) following selective enrichment of TTR by immunoprecipitation using protein G/A agarose. The data obtained from molybdenum cofactor deficiency samples indicated a strong increase in the peak height of S-sulfonated TTR. A more significant difference was revealed if the peak height ratio of S-sulfonated TTR and the sum of the other oxidized TTR were determined. By accurate determination of the ratio, the samples of molybdenum cofactor deficiency patients could clearly be distinguished from controls without molybdenum cofactor deficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号