首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An alternative and facile delivery system for T7 RNA polymerase has been devised and constructed. T7 gene 1 has been placed under control of the araBAD promoter element regulated by the AraC protein. Cotransformation of the resultant plasmid, pTara, with one containing a target gene under T7 promoter-regulated expression potentially allows repression by glucose and induction by arabinose in the range of 0.5 to 20 mM sugar concentration. To demonstrate the efficacy of this expression system, the p53 gene under T7 promoter control in two different plasmids was expressed in Escherichia coli using pTara as the source of T7 RNA polymerase. Repression and induction of p53 were achieved in both a lower and higher copy number plasmid, although the levels of induction were higher with the lower copy number expression vector. Cotransformation of an expression plasmid with pTara provides a low-cost method of T7 RNA polymerase-regulated expression that can be fine-tuned using glucose and arabinose concentrations to balance protein expression with potential solubility or toxicity problems.  相似文献   

3.
4.
The coding sequence for bacteriophage T7 RNA polymerase has been cloned and expressed under control of a cognate T7 promoter, a configuration referred to as an autogene. Cloning a T7 autogene in a derivative of plasmid pBR322 in Escherichia coli was achieved by a combination of blocking initiation at the T7 promoter with bound lac repressor and inhibiting the polymerase itself by T7 lysozyme. Neither type of inhibition by itself was sufficient to control the autogene. Upon unblocking the T7 promoter with added inducer. T7 RNA polymerase produced its own mRNA, leading to autocatalytic production of polymerase protein. T7 autogenes may be useful for developing high-level gene expression systems in a variety of cell types, with little if any need for the host cell RNA polymerase.  相似文献   

5.
6.
7.
Plasmids containing a ColE1 origin of replication are widely used for cloning purposes in Escherichia coli. Among the host factors that affect the copy number of ColE1 plasmids is the E. coli protein poly(A) polymerase I (PAP I), which regulates the intracellular level of RNA I, a ColE1-encoded negative regulator of plasmid replication. In strains that lack PAP I, RNA I levels are elevated, resulting in reduced levels of ColE1 plasmids in the cell. PAP I is encoded by the gene pcnB. We devised a genetic approach, based on the identification of multicopy suppressor clones, to identify trans-acting factors that can help offset the ColE1 plasmid copy number defect in a pcnB (-) genetic background. Using this strategy, we identified suppressors that mapped to two regions of the E. coli chromosome. The suppressor activity of one of the chromosomal regions was localized to the rssB gene, a response regulator gene known to be involved in the turnover of the stationary-phase sigma factor, RpoS. The second suppressor maps to min 55.4 of the E. coli chromosome, and the factor responsible for the suppressor activity appears to be a novel RNA or protein.  相似文献   

8.
The expression of the proUK gene was improved by the coexpression of the argU gene cloned in a moderate copy number vector. As the proUK gene contains 2% AGG/AGA codons, which is much higher than the normal frequency in E. coli, about 0.14%-0.21%, the argU gene cloned in a multicopy plasmid was coexpressed with the proUK expression vector in our experiments. In E. coli strain BL21(DE3), IPTG is known to induce the expression of T7 RNA polymerase gene and this enzyme can transcribe the proUK gene under the control of the T7 promoter leading to expression of proUK. To replace IPTG by a cheaper alternative on a large scale, we constructed a plasmid in which the vgb promoter--which is known to be activated by the onset of hypoxic conditions--controls the T7RNA polymerase gene expression. Low oxygen conditions were then used to activate the vgb promoter causing T7RNA polymerase gene expression and finally leading to the expression of proUK as inactive inclusion bodies. Our experiments on a large scale in a bioreactor show that the expression of proUK accounts for about 30% of total protein after about 6 h of anaerobic cultivation, so the presented model represents an economical alternative to IPTG induction.  相似文献   

9.
Properties of a transfer RNA lacking modified nucleosides   总被引:11,自引:0,他引:11  
  相似文献   

10.
Cloning and expression of the bacteriophage T3 RNA polymerase gene   总被引:11,自引:0,他引:11  
C E Morris  J F Klement  W T McAllister 《Gene》1986,41(2-3):193-200
  相似文献   

11.
12.
Bacteriophage T7 RNA polymerase is stable in Escherichia coli but very susceptible to cleavage by at least one endoprotease after cell lysis. The major source of this endoprotease activity was found to be localized to the outer membrane of the cell. A rapid whole-cell assay was developed to screen different strains for the presence of this proteolytic activity. Using this assay, we identified some common laboratory strains that totally lack the protease. Genetic and Southern analyses of these null strains allowed us to conclude that the protease that cleaves T7 RNA polymerase is OmpT (formerly termed protein a), a known outer membrane endoprotease, and that the null phenotype results from deletion of the OmpT structural gene. A recombinant plasmid carrying the ompT gene enables these deletion strains to synthesize OmpT and converts them to a protease-positive phenotype. The plasmid led to overproduction of OmpT protein and protease activity in the E. coli K-12 and B strains we used, but only weak expression in the E. coli C strain, C1757. This strain-dependent difference in ompT expression was investigated with respect to the known influence of envZ on OmpT synthesis. A small deletion in the ompT region of the plasmid greatly diminishes the amount of OmpT protein and plasmid-encoded protease present in outer membranes. Use of ompT deletion strains for production of T7 RNA polymerase from the cloned gene has made purification of intact T7 RNA polymerase routine. Such strains may be useful for purification of other proteins expressed in E. coli.  相似文献   

13.
14.
A novel Eschericha coli expression system directed by bacteriophage T7 RNA Polymerase utilized for overexpression of the cloned gene. The recombinant cell contains the plasmid with a bacteriophage promoter, the T7 promoter, to regulate the expression of the target gene. This promoter is recongnized only by T7 RNA polymerase, whose gene has been fused into the host chromosome and is under control of the lacUV5 promoter. Therefore, the target gene on the plasmid can be expressed only in the presence of T7 RNA polymerase, which is induced by isopropyl-beta-D-thiogalactopyranoside (IPTG). The batch cultures were performed to investigate the effect of induction on kinetics of cell growth and foreign protein formation and to determine the optimal induction strategy. It was observed that the specific growth rates of the recombinant cells dramatically decrease after induction, and that there is an optimal induction time for maximizing the accumulated intracellular foreign protein. This optimal induction time varies singificantly with inducer concentration. To better understand the optimal behavior, a lumped mechanistic model was constructed to analyze the induced cell growth and foreign protein formation rates. (c) 1992 John Wiley & Sons, Inc.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号