首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Complete transformation by adenovirus 2 requires both E1A proteins   总被引:45,自引:0,他引:45  
C Montell  G Courtois  C Eng  A Berk 《Cell》1984,36(4):951-961
  相似文献   

3.
Six independent rat hybridoma cell lines producing monoclonal antibodies to human subgroup C adenovirus early region 1A (E1A) proteins were isolated. Competition binding experiments revealed that each of the monoclonal antibodies was directed against the same epitope or overlapping cluster of epitopes on the E1A proteins. Viral E1A deletion mutants and deleted forms of E1A proteins expressed in Escherichia coli were used to localize the antibody recognition sites to sequences between amino acids 23 and 120, encoded within the first exon of the E1A gene. Similarly, polyclonal antisera raised against the trpE-E1A fusion protein, as well as against the native, biologically active E1A protein, were also directed primarily against this immunodominant region.  相似文献   

4.
J W Lillie  M Green  M R Green 《Cell》1986,46(7):1043-1051
  相似文献   

5.
6.
DNA-binding properties of an adenovirus 289R E1A protein.   总被引:19,自引:4,他引:15       下载免费PDF全文
An adenovirus 2 289 amino acid (289R) E1A protein purified from Escherichia coli has been shown to interact with DNA by two independent methods. UV-crosslinking of complexes containing unmodified, uniformly 32P-labelled DNA and purified E1A protein induced efficient labelling of the protein with covalently attached oligonucleotides, indicating that the E1A protein itself contacts DNA. Discrete nucleoprotein species were also observed when E1A protein--DNA complexes were analysed by gel electrophoresis. Although the 289R E1A protein exhibited no significant binding to single-stranded DNA or to RNA, no evidence for its sequence-specific binding to double-stranded DNA was obtained with either assay. Identification of the sites of covalent attachment of 32P-labelled oligonucleotides by partial proteolysis of the crosslinked E1A protein indicated that the interaction of this protein with DNA is mediated via domain(s) in the C-terminal half of the protein. Such previously unrecognized DNA-binding activity is likely to contribute to the regulatory activities of this important adenoviral protein.  相似文献   

7.
The localization in infected and transformed cells of the two major adenovirus type 2 E1a proteins, of 289 and 243 amino acid residues, was studied with antisera raised against synthetic peptides or a TrpE-E1a fusion protein. Both E1a proteins were detected only in the nucleus of infected cells as determined by immunofluorescence analysis of cells infected with wild-type virus or with the mutants pm975 or dl1500, which produce, respectively, only the 289-residue or only the 243-residue E1a protein. However, the 289-residue protein was more tightly associated with the nucleus than was the 243-residue protein, as determined by the stability of nuclear fluorescence to different fixation procedures and by the use of radioimmunoprecipitation and Western blot analysis to analyze fractions extracted from the nucleus by detergent and other treatments. The latter experiments revealed that only the 289-residue protein, and only a fraction of that protein present in the nucleus, is associated with the nuclear matrix, both in infected HeLa cells and in the transformed human cell line 293.  相似文献   

8.
9.
10.
11.
Liu J  He B  Qing H  Kow YW 《Mutation research》2000,461(3):169-177
Deoxyadenosine undergoes spontaneous deamination to deoxyinosine in DNA. Based on amino acids sequence homology, putative homologs of endonuclease V were identified in several organisms including archaebacteria, eubacteria as well as eukaryotes. The translated amino acid sequence of the Archaeoglobus fulgidus nfi gene shows 39% identity and 55% similarity to the E. coli nfi gene. A. fulgidus endonuclease V was cloned and expressed in E. coli as a C-terminal hexa-histidine fusion protein. The C-terminal fusion protein was purified to apparent homogeneity by a combination of Ni(++) affinity and MonoS cation exchange liquid chromatography. The purified C-terminal fusion protein has a molecular weight of about 25kDa and showed endonuclease activity towards DNA containing deoxyinosine. A. fulgidus endonuclease V has an absolute requirement for Mg(2+) and an optimum reaction temperature at 85 degrees C. However, in contrast to E. coli endonuclease V, which has a wide substrate spectrum, endonuclease V from A. fulgidus recognized only deoxyinosine. These data suggest that the deoxyinosine cleavage activity is a primordial activity of endonuclease V and that multiple enzymatic activities of E. coli endonuclease V were acquired later during evolution.  相似文献   

12.
We have shown previously that a chemically synthesized adenovirus E1A region 3 peptide of 49 amino acids, protein domain 3 (PD3; residues 140 to 188 of the 289-amino-acid protein), trans activates viral genes in vitro and in vivo. To study structure-function relationships, we synthesized N-terminal deletion and cysteine substitution mutant peptides and tested their activities in a cell microinjection assay. Peptides lacking 1 to 12 N-terminal residues exhibited 5- to 50-fold-reduced molar specific activities, whereas those lacking 16 or 18 residues were inactive. Substitution of each of five PD3 cysteine residues with alanine resulted in substantial losses of activity: mutants in the PD3 N-terminal portion showed 40 to 55% of wild-type activity but required a 20-fold-higher concentration than PD3, whereas those in the C-terminal half were as much less active. These peptide mutant studies suggest the existence of two PD3 functional regions: one, localized in the C-terminal 70 to 75% of the molecule, is essential for trans activation; the other, localized in the N-terminal 25 to 30%, can be overridden to a significant extent at high peptide concentrations.  相似文献   

13.
We have examined a series of small deletion mutants within exon 2 of the adenovirus 2/5 E1A oncogene product, the 243R protein, for immortalization, ras cooperative transformation, tumorigenesis and metastasis. Compared with wild-type 243R, various deletion mutants located between residues 193 and 243 cooperated more efficiently with ras to induce large transformed foci of less adherent cells that were tumorigenic and metastatic. However, the greatest enhancement of transformation (comparable to that obtained with a deletion of the C-terminal 67 amino acids) was observed with a mutant carrying a deletion of residues 225-238. This mutant was also more defective in immortalization. These results suggest that this 14 amino acid region may contain a function that is important for immortalization and negative modulation of tumorigenesis and metastasis. To identify cellular proteins that may associate with the exon 2-coded region of E1A (C-terminal half) and modulate its transformation potential, we constructed a chimeric gene coding for the C-terminal 68 amino acids of E1a fused to bacterial glutathione-S-transferase (GST). This fusion protein was used to purify cellular proteins that bind to the C-terminal region of E1a. A 48 kDa cellular protein doublet (designated CtBP) was found to bind specifically to the GST-E1a C-terminal fusion protein as well as to bacterially expressed full-length E1a (243R) protein. It also co-immunoprecipitated specifically with E1a. Analysis of a panel of GST-E1a C-terminal mutant proteins indicates that residues 225-238 are required for the association of E1a and CtBP, suggesting a correlation between the association of CtBP and the immortalization and transformation modulating activities of exon 2. CtBP is a phosphoprotein and the level of phosphorylation of CtBP appears to be regulated during the cell cycle, suggesting that it may play an important role during cellular proliferation.  相似文献   

14.
The transforming region of human adenovirus 2 is located in the left 11.2% of the viral genome and is comprised of two distinct genetic units termed E1A and E1B. cDNAs containing the entire nucleotide sequence of the mature E1A 13S and E1B 22S mRNAs that are complementary to these genetic units have been introduced into bacterial plasmids a short distance downstream from the Escherichia coli lac promoter. Upon transformation into appropriate E. coli hosts, one of these plasmids, pKHAO, directed the synthesis of a 45-kilodalton (kd) protein, and the other, pKHBO, synthesized a protein of 54.9 kd. Both of these plasmid-encoded proteins constituted 0.1 to 0.3% of the total cellular protein and were virtually identical to the authentic adenovirus 2 E1A 42- to 50-kd and E1B 53- to 58-kd tumor antigens (T antigen) as determined by gel electrophoresis, immunoprecipitation, and tryptic fingerprint analysis. With the use of our pKHBO expression plasmid we were also able to demonstrate that the second AUG sequence appearing in the E1B 22S mRNA corresponded to the start of the gene encoding the large adenovirus 2 T antigen. This confirms theoretical deductions based on DNA sequencing analysis that translation of the large T antigen initiates translation at an internal ATG rather than at the 5'-proximal AUG.  相似文献   

15.
Human adenovirus 2/5 E1A proteins were used to evaluate protoplast fusion as a method of transferring functional proteins into mammalian cells. Both the E1A 13 and 12 S mRNA products expressed in Escherichia coli are shown to activate in trans adenovirus gene expression following transfer into monkey kidney cells by protoplast fusion. Approximately 20% of the recipient mammalian cells exhibited positive nuclear E1A-specific immunofluorescence following fusion with protoplasts containing E1A protein. E. coli-expressed E1A protein was modified post-translationally in Vero cells following protoplast fusion, as evidenced by its shift in sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility. These results establish protoplast fusion as a simple rapid method for examining the functional activity, intracellular distribution, and post-translational modification of E. coli-expressed proteins in intact mammalian cells.  相似文献   

16.
The tumor (T) antigens encoded by the human adenovirus early transforming region 1A (E1A) are gene regulatory proteins whose functions can immortalize cells. We have recently described the synthesis in Escherichia coli and the purification of the complete T antigens encoded by the adenovirus type 12 (Ad12) E1A 12S mRNA (235-residue [235R] T antigen) and 13S mRNA (266R T antigen). In this study, we show that the Ad12 E1A T antigens are extensively phosphorylated in Ad12-infected mammalian cells but are not phosphorylated in E. coli. Inasmuch as posttranslational phosphorylation at specific amino acid sites may be important for biological activity, we have studied the phosphorylation of the E. coli-produced T antigens in vitro by using a kinase activity isolated from cultured human KB cells. The kinase was purified about 300-fold and appears to be a cyclic AMP-independent, Ca2+-independent protein kinase requiring only ATP and Mg2+ for activity. To determine which amino acids are phosphorylated and whether phosphorylation in vitro occurs at the same amino acid sites that are phosphorylated in vivo, the Ad12 E1A T-antigen species synthesized by infected cells were metabolically labeled with 32Pi and compared with the E. coli-produced E1A T antigens labeled in vitro with [gamma-32P]ATP by using the partially purified kinase. Partial V8 proteolysis analysis gave similar patterns for in vivo- and in vitro-phosphorylated T antigen. Two-dimensional maps of tryptic phosphopeptides and of chymotryptic phosphopeptides suggested that mainly the same amino acid sites are phosphorylated in vitro and in vivo and that phosphorylation occurred at multiple sites distributed throughout the T-antigen molecule. Serine was the only amino acid that was phosphorylated both in vivo and in vitro, and, surprisingly, most serines appeared to be phosphorylated. The feasibility of faithfully phosphorylating T antigens in vitro suggests that the E. coli-produced Ad12 E1A 235R and 266R T antigens may prove useful for molecular studies on T-antigen function.  相似文献   

17.
The isolation and characterization of an adenovirus mutant, Ad5dl802r1, containing two independent deletions in the 72-kilodalton (kDa) DNA-binding protein (DBP) gene is described. The two deletions remove amino acids 23 through 105 of DBP, resulting in the production of a 50-kDa product. Expression of this truncated DBP was delayed 12 to 24 h compared with that of the 72-kDa protein produced by wild-type adenovirus type 5. The DBP was located primarily in the cytoplasm of infected cells, whereas the wild-type product was predominantly nuclear. Therefore, DBP appears to contain a nuclear localization signal within the deleted region. Ad5dl802r1 DNA synthesis, viral late gene expression, and virus production were all delayed 12 to 24 h and were approximately 10-fold lower than with wild-type adenovirus type 5. These phenotypic properties can be accounted for by the delay in synthesis and the inefficient accumulation of the 50-kDa DBP within the nucleus of infected cells. The truncated DBP also lacks the majority of amino acids which are phosphorylated in the normal protein. The loss of these phosphorylation sites does not appear to seriously impair the ability of the protein to carry out its functions.  相似文献   

18.
A 16-amino acid peptide, H2N-Arg-Glu-Gln-Thr-Val-Pro-Val-Asp-Leu-Ser-Val-Lys-Arg-Pro-Arg-Cys-COOH (peptide 204), targeted to the common C-terminus of human adenovirus 12 (Ad12) tumor antigens encoded by the E1A 13S mRNA and 12S mRNA, has been synthesized. Antibody prepared in rabbits against peptide 204 immunoprecipitated two proteins of apparent Mr 47,000 and 45,000 from extracts of [35S]methionine-labeled Ad12-early infected KB cells and a 47,000 protein from extracts of the Ad12-transformed hamster cell line, HE C19. Immunoprecipitation analysis of infected and transformed cells labeled with 32Pi showed that both major Ad12 E1A T antigens are phosphoproteins. Immunofluorescence microscopy of Ad12-early infected KB cells with antipeptide antibody showed the site of E1A protein concentration to be predominantly nuclear. E1A proteins were detected by immunofluorescence at 4 to 6 h postinfection and continued to increase until at least 18 h postinfection. Antipeptide 204 antibody was used to analyze the proteins synthesized in Escherichia coli cells transformed by plasmids containing cDNA copies of the Ad12 E1A 13S mRNA or 12S mRNA under the control of the tac promoter (D. Kimelman, L. A. Lucher, M. Green, K. H. Brackmann, J. S. Symington, and M. Ptashne, Proc. Natl. Acad. Sci. U.S.A., in press). A major protein of ca. 47,000 was immunoprecipitated from extracts of each transformed E. coli cell clone. Two-dimensional gel electrophoretic analysis of immunoprecipitates revealed that the T antigens synthesized in infected KB cells, transformed hamster cells, and transformed E. coli cells possess very similar molecular weights and acidic isoelectric points of 5.2 to 5.4.  相似文献   

19.
20.
The intracellular location of the adenovirus type 5 E1B 55-kilodalton (kDa) protein, particularly the question of whether it is associated with nuclear pore complexes, was examined. Fractionation of adenovirus type 5-infected HeLa cell nuclei by an established procedure (N. Dwyer and G. Blobel, J. Cell. Biol. 70:581-591, 1976) yielded one population of E1B 55-kDa protein molecules released by digestion of nuclei with RNase A and a second population recovered in the pore complex-lamina fraction. Free and E1B 55-kDa protein-bound forms of the E4 34-kDa protein (P. Sarnow, C. A. Sullivan, and A. J. Levine, Virology 120:387-394, 1982) were largely recovered in the pore complex-lamina fraction. Nevertheless, the association of E1B 55-kDa protein molecules with this nuclear envelope fraction did not depend on interaction of the E1B 55-kDa protein with the E4 34-kDa protein. Comparison of the immunofluorescence patterns observed with antibodies recognizing the E1B 55-kDa protein or cellular pore complex proteins and of the behavior of these viral and cellular proteins during in situ fractionation suggests that the E1B 55-kDa protein does not become intimately or stably associated with pore complexes in adenovirus-infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号