首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We efficiently expressed, in Escherichia coli, and purified the protein product encoded by the human adenovirus type 12 (Ad12) 13S mRNA. The functional properties of the E1A protein were analyzed by introducing the protein by microinjection or protoplast fusion into living mammalian cells. We showed that the E. coli-expressed E1A protein induces gene expression of the adenovirus type 5 (Ad5) E1A deletion mutant Ad5dl312. The purified E1A protein rapidly and quantitatively localized to the cell nucleus after microinjection into the cytoplasm. In addition, we raised high-titered monospecific antibodies to the purified Ad12 E1A protein. Using deleted forms of an adenovirus type 2 and Ad5 hybrid (Ad2/5) E1A protein, we showed that all of the epitopes conserved between Ad2/5 E1A and Ad12 E1A protein that are recognized by the Ad12 E1A-specific antiserum map to within the first exon-encoded amino-terminal half of the protein.  相似文献   

2.
Plasmid vectors were constructed which expressed three adenovirus tumor antigens fused to a portion of the trpE protein of Escherichia coli. Insertion of adenovirus type 2 DNA from early region 1A (E1A) into such a plasmid led to a fusion protein which contained the C-terminal 266 amino acids of the 289-amino acid protein encoded by the viral 13S mRNA. Similarly, insertion of adenovirus type 5 DNA corresponding to the E1B 55- and 21-kilodalton proteins led to production of fusion proteins containing amino acid sequences from these proteins. After induction with indoleacrylic acid, fusion proteins accumulated stably in the E. coli cells. By using a simple extraction of insoluble protein, 1 to 10 mg of fusion protein per liter of culture was obtained. The fusion proteins were purified on preparative polyacrylamide gels and used to immunize rabbits. Specific antisera for the E1A 289- and closely related 243-amino acid proteins and the E1B 55- and 21-kilodalton proteins were obtained. These sera were used to immunoprecipitate the tumor antigens in cells infected with wild-type and various mutants of adenovirus or to analyze them by an immunoblotting procedure. Mutant E1A proteins in which the C-terminal 70 amino acids are deleted were phosphorylated to much lower extents than the wild-type E1A proteins. This indicates that the deleted region is important for the process of phosphorylation. The E1A proteins were extracted, sedimented in glycerol gradients, analyzed by immunoprecipitation, and found to sediment primarily as monomers.  相似文献   

3.
The adenovirus E1A 243R protein immortalizes primary cells in culture and induces part of the phenotypes required for transformation. It has also been shown to interact with a number of cellular polypeptides, including the product of the retinoblastoma gene. To understand more fully the molecular activities of the E1A 243R protein in association with these proteins as well as its role in the processes of cellular growth, we have developed a method for rapidly purifying this protein from genetically engineered Escherichia coli under nondenaturing conditions. The plasmid-encoded E1A protein, when expressed in a protease-deficient mutant, is found to have the same length and amino acid sequence as that which is produced in a mammalian cell. The procedure for purifying the E1A 243R protein from bacteria relies primarily upon immunoaffinity chromatography and the use of a peptide comprising the epitope recognized by an E1A-specific antibody. Elution of the E1A protein under this condition allows for gentle isolation and a purity that ranges from 90 to 96%. However, without the addition of micromolar amounts of ATP prior to its elution from the antibody column, the E1A protein is found in association with an E. coli protein of 70 kDa. Immunoblot analysis with a specific antibody showed that this bacterial protein was the heat shock protein dnaK, which is known to have extensive homology with the hsp-hsc70 family of proteins in mammalian cells. Recognition of E1A by the dnaK protein may very well reflect a situation that also occurs between the mammalian heat shock proteins and the E1A 243R protein after adenovirus infection.  相似文献   

4.
5.
An early event in Salmonella infection is the invasion of non-phagocytic intestinal epithelial cells. The pathogen is taken up by macropinocytosis, induced by contact-dependent delivery of bacterial proteins that subvert signalling pathways and promote cytoskeletal rearrangement. SipB, a Salmonella protein required for delivery and invasion, was shown to localize to the cell surface of bacteria invading mammalian target cells and to fractionate with outer membrane proteins. To investigate the properties of SipB, we purified the native full-length protein following expression in recombinant Escherichia coli. Purified SipB assembled into hexamers via an N-terminal protease-resistant domain predicted to form a trimeric coiled coil, reminiscent of viral envelope proteins that direct homotypic membrane fusion. The SipB protein integrated into both mammalian cell membranes and phospholipid vesicles without disturbing bilayer integrity, and it induced liposomal fusion that was optimal at neutral pH and influenced by membrane lipid composition. SipB directed heterotypic fusion, allowing delivery of contents from E. coli-derived liposomes into the cytosol of living mammalian cells.  相似文献   

6.
The localization of the adenovirus type 5 34-kDa E4 and 55-kDa E1B proteins was determined in the absence of other adenovirus proteins. When expressed by transfection in human, monkey, hamster, rat, and mouse cell lines, the E1B protein was predominantly cytoplasmic and typically was excluded from the nucleus. When expressed by transfection, the E4 protein accumulated in the nucleus. Strikingly, when coexpressed by transfection in human, monkey, or baby hamster kidney cells, the E1B protein colocalized in the nucleus with the E4 protein. A complex of the E4 and E1B proteins was identified by coimmunoprecipitation in transfected HeLa cells. By contrast to the interaction observed in primate and baby hamster kidney cells, the E4 protein failed to direct the E1B protein to the nucleus in rat and mouse cell lines as well as CHO and V79 hamster cell lines. This failure of the E4 protein to direct the nuclear localization of the E1B protein in REF-52 rat cells was overcome by fusion with HeLa cells. Within 4 h of heterokaryon formation and with protein synthesis inhibited, a portion of the E4 protein present in the REF-52 nuclei migrated to the HeLa nuclei. Simultaneously, the previously cytoplasmic E1B protein colocalized with the E4 protein in both human and rat cell nuclei. These results suggest that a primate cell-specific factor mediates the functional interaction of the E1B and E4 proteins of adenovirus.  相似文献   

7.
Delivery and expression of multiple genes is an important requirement in a range of applications such as the engineering of synthetic signaling pathways and the induction of pluripotent stem cells. However, conventional approaches are often inefficient, nonstoichiometric and may limit the maximum number of genes that can be simultaneously expressed. We here describe a versatile approach for multiple gene delivery using a single expression vector by mimicking the protein expression strategy of RNA viruses. This was accomplished by first expressing the genes together with TEV protease as a single fusion protein, then proteolytically self-cleaving the fusion protein into functional components. To demonstrate this method in E. coli cells, we analyzed the translation products using SDS-PAGE and showed that the fusion protein was efficiently cleaved into its components, which can then be purified individually or as a binding complex. To demonstrate this method in mammalian cells, we designed a differential localization scheme and used live cell imaging to observe the distinctive subcellular targeting of the processed products. We also showed that the stoichiometry of the processed products was consistent and corresponded with the frequency of appearance of their genes on the expression vector. In summary, the efficient expression and separation of up to three genes was achieved in both E. coli and mammalian cells using a single TEV protease self-processing vector.  相似文献   

8.
Hybridomas secreting monoclonal antibodies specific for the adenovirus early region 1A (E1A) proteins were prepared from BALB/c mice immunized with a bacterial trpE-E1A fusion protein. This protein is encoded by a hybrid gene that joins a portion of the Escherichia coli trpE gene and a cDNA copy of the E1A 13S mRNA (Spindler et al., J. Virol. 49:132-141, 1984). Eighty-three hybridomas that secrete antibodies which recognize the immunogen were isolated and single cell cloned. Twenty-nine of these antibodies are specific for the E1A portion of the fusion protein. Only 12 of the monoclonal antibodies can efficiently immunoprecipitate E1A polypeptides from detergent lysates of infected cells. E1A polypeptides were analyzed on one-dimensional, sodium dodecyl sulfate-polyacrylamide gels and two-dimensional, isoelectric focusing polyacrylamide gels. The E1A proteins that are specifically immunoprecipitated by the monoclonal antibodies are heterogeneous in size and charge and can be resolved into approximately 60 polypeptide species. This heterogeneity is due not only to synthesis from multiple E1A mRNAs, but also at least in part to post-translational modification. Several of the monoclonal antibodies divide the E1A polypeptides into immunological subclasses based on the ability of the antibodies to bind to the antigen. In particular, two of the monoclonal antibodies bind to the polypeptides synthesized from the 13S E1A mRNA, but not to other E1A proteins.  相似文献   

9.
A new system has been developed for generating recombinant adenoviruses by Tn7-mediated transposition in E. coli. Low copy number E. coli plasmids containing a full-length adenoviral genome with lacZattTn7 replacing E1 have been constructed. The adenovirus plasmid or admid, as well as high copy number progenitors, were stably maintained in E. coli strain DH10B. Several transfer vectors containing a mammalian expression cassette flanked by Tn7R and Tn7L were used as donors to transpose the mini-Tn7 into the E1 region of the adenoviral genome. Transposed recombinant admids are readily identified by their beta-galactosidase phenotype. Transfection of admid DNA into producer cells resulted in the efficient production of infectious adenovirus. This easy-to-use, efficient system generates pure, clonal stocks of recombinant adenovirus without successive rounds of plaque purification.  相似文献   

10.
DNA fragments coding for the N-terminal 185 amino acids (aa) and for the entire coding region of the adenovirus (Ad)12 E1b 58-kDa protein have been cloned in a prokaryotic expression vector. The N-terminal region of the 58-kDa viral protein (aa 21-205) is expressed as a beta-galactosidase (beta Gal) fusion protein encoded by plasmid pB58Ngal. Escherichia coli strains transformed with this plasmid synthesize a full-length fusion protein of 150-kDa and two truncated proteins: a 140-kDa protein containing aa 64-205 and a 120-kDa polypeptide containing aa 158-205 of the E1b 58-kDa protein. Antibodies raised against purified fusion proteins specifically immunoprecipitate the E1b 58-kDa protein from Ad12-infected and transformed cells. Bacteria transformed with plasmid pB58 carrying the entire E1b 58-kDa coding region (minus the first N-terminal 20 aa which are replaced by 4 aa of beta Gal) showed dramatically reduced growth properties after induction of 58K gene expression. We have not been able to detect substantial amounts of the 58-kDa protein in these cells. However, the viral 58-kDa polypeptide could be synthesized in vitro from plasmid pB58 in a DNA-dependent translation system from E. coli.  相似文献   

11.
Galloway CA  Sowden MP  Smith HC 《BioTechniques》2003,34(3):524-6, 528, 530
Recombinant mammalian proteins expressed in E. coli can be difficult to purify in high yield in a soluble and functional form. Various techniques have been described to prevent proteolysis of expressed proteins and/or their sequestering as insoluble aggregates within inclusion bodies. We report conditions for expressing recombinant proteins from E. coli that significantly enhanced the yield of soluble and functional protein. We demonstrate high-yield recovery of a native, high-molecular-weight RNA binding protein without the aid of fusion protein sequence. The principle factor that increased protein yield was the induction of protein expression in a late log phase culture, although reduced temperature during the induction and a low IPTG concentration also contributed to a higher yield.  相似文献   

12.
13.
Six independent rat hybridoma cell lines producing monoclonal antibodies to human subgroup C adenovirus early region 1A (E1A) proteins were isolated. Competition binding experiments revealed that each of the monoclonal antibodies was directed against the same epitope or overlapping cluster of epitopes on the E1A proteins. Viral E1A deletion mutants and deleted forms of E1A proteins expressed in Escherichia coli were used to localize the antibody recognition sites to sequences between amino acids 23 and 120, encoded within the first exon of the E1A gene. Similarly, polyclonal antisera raised against the trpE-E1A fusion protein, as well as against the native, biologically active E1A protein, were also directed primarily against this immunodominant region.  相似文献   

14.
Thioredoxin reductase and thioredoxin constitute the cellular thioredoxin system, which provides reducing equivalents to numerous intracellular target disulfides. Mammalian thioredoxin reductase contains the rare amino acid selenocysteine. Known as the "21st" amino acid, selenocysteine is inserted into proteins by recoding UGA stop codons. Some model eukaryotic organisms lack the ability to insert selenocysteine, and prokaryotes have a recoding apparatus different from that of eukaryotes, thus making heterologous expression of mammalian selenoproteins difficult. Here, we present a semisynthetic method for preparing mammalian thioredoxin reductase. This method produces the first 487 amino acids of mouse thioredoxin reductase-3 as an intein fusion protein in Escherichia coli cells. The missing C-terminal tripeptide containing selenocysteine is then ligated to the thioester-tagged protein by expressed protein ligation. The semisynthetic version of thioredoxin reductase that we produce in this manner has k(cat) values ranging from 1500 to 2220 min(-)(1) toward thioredoxin and has strong peroxidase activity, indicating a functional form of the enzyme. We produced the semisynthetic thioredoxin reductase with a total yield of 24 mg from 6 L of E. coli culture (4 mg/L). This method allows production of a fully functional, semisynthetic selenoenzyme that is amenable to structure-function studies. A second semisynthetic system is also reported that makes use of peptide complementation to produce a partially active enzyme. The results of our peptide complementation studies reveal that a tetrapeptide that cannot ligate to the enzyme (Ac-Gly-Cys-Sec-Gly) can form a noncovalent complex with the truncated enzyme to form a weak complex. This noncovalent peptide-enzyme complex has 350-500-fold lower activity than the semisynthetic enzyme produced by peptide ligation.  相似文献   

15.
Human cDNAs encoding fragments of DNA ligase I, the major replicative DNA ligase in mammalian cells, have been expressed as lacZ fusion proteins in Escherichia coli. A cDNA encoding the carboxyl-terminal catalytic domain of human DNA ligase I was able to complement a conditional-lethal DNA ligase mutation in E. coli as measured by growth of the mutant strain at the non-permissive temperature. Targeted deletions of the amino and carboxyl termini of the catalytic domain identified a minimum size necessary for catalytic function and a maximum size for optimal complementing activity in E. coli. The human cDNA was subjected to systematic site-directed mutagenesis in vitro and mutant polypeptides assayed for functional expression in the E. coli DNA ligase mutant. Such functional analysis of the active site of DNA ligase I identified specific residues required for the formation of an enzyme-adenylate reaction intermediate.  相似文献   

16.
E White  D Spector    W Welch 《Journal of virology》1988,62(11):4153-4166
Five distinct localization patterns were observed for the adenovirus E1A proteins in the nuclei of infected HeLa cells: diffuse, reticular, nucleolar, punctate, and peripheral. The variable distribution of E1A was correlated with the time postinfection and the cell cycle stage of the host cell at the time of infection. All staining patterns, with the exception of peripheral E1A localization, were associated with the early phase of infection since only the diffuse, reticular, nucleolar, and punctate staining patterns were observed in the presence of hydroxyurea. Because the E1A proteins (12S and 13S) stimulate the expression of the cellular heat shock 70-kilodalton protein (hsp70), we examined the intracellular distribution of hsp70 in the adenovirus-infected cells. Whereas hsp70 was predominantly cytoplasmic in the cells before infection, after adenovirus infection most of the protein was now found within the nucleus. Specifically, hsp70 was found within the nucleoli as well as exhibiting reticular, diffuse, and punctate nuclear staining patterns, analogous to those observed for the E1A proteins. Double-label indirect immunofluorescence of E1A and hsp70 in infected cells demonstrated a colocalization of these proteins in the nucleus. Translocation of hsp70 to the nucleus was dependent upon both adenovirus infection and expression of the E1A proteins. The localization of hsp70 was unaltered by infection with an E1A 9S cDNA virus which does not synthesize a functional E1A gene product. Moreover, the discrete nuclear localization patterns of E1A and the colocalization of E1A with hsp70 were not observed in adenovirus-transformed 293 cells which constitutively express E1A and E1B. E1A displayed exclusively diffuse nuclear staining in 293 cells; however, localization of E1A into the discrete nuclear patterns occurred after adenovirus infection of 293 cells. Immunoprecipitation of labeled infected-cell extracts with a monoclonal antibody directed against the E1A proteins resulted in precipitation of small amounts of hsp70 along with E1A. These data indicate that the adenovirus E1A proteins colocalize with, and possibly form a physical complex with, cellular hsp70 in infected cells. The relevance of this association, with respect to the function of these proteins during infection and the association of other oncoproteins with hsp70, is discussed.  相似文献   

17.
The partition of E1A proteins between soluble and structural framework fractions of human cells infected or transformed by subgroup C adenoviruses was investigated by using gentle cell fractionation conditions. A polyclonal antibody raised against a trpE-E1A fusion protein (K.R. Spindler, D.S.E. Rosser, and A. J. Berk, J. Virol. 132-141, 1984) synthesized in Escherichia coli was used to measure the steady-state levels of E1A proteins recovered in the various fractions by immunoblotting. The relative concentration of E1A proteins recovered in the soluble fraction of adenovirus type 2-infected cells was at least fivefold greater than the relative concentration in the corresponding fraction of transformed 293 cells. The observed distribution of E1A proteins was not altered by the sulfhydryl-blocking reagent N-ethylmaleimide. E1A proteins were recovered in nuclear matrix, chromatin, and cytoskeleton fractions after further fractionation of the structural framework fraction. However, the E1A protein species that could be identified by one-dimensional gel electrophoresis were not uniformly distributed among the subcellular fractions examined. The results obtained when fractionation was performed in the presence of the oxidation catalysts Cu2+ or (ortho-phenanthroline)2 Cu2+ indicate that E1A proteins can be efficiently cross-linked, via disulfide bonds, to the structural framework of both adenovirus-infected and adenovirus-transformed cells.  相似文献   

18.
Antisera were prepared against the amino acid sequences encoded within the N-terminal half of the adenovirus 12 (Ad12) early region 1A (E1A) gene. This was accomplished by construction of a plasmid vector which encoded the N-terminal 131 amino acids of Ad12 E1A joined in frame to the coding sequence of beta-galactosidase. After induced synthesis in Escherichia coli, the Ad12 E1A-beta-galactosidase fusion protein (12-1A-FP) was extracted with urea and used to raise antibodies in rabbits. The 12-1A-FP antisera immunoprecipitated major phosphoproteins of 39,000 and 37,000 apparent molecular weights from Ad12-transformed and infected cells. The 12-1A-FP antisera also immunoprecipitated E1A phosphoproteins from Ad5-transformed and infected cells. Immunospecificity of the 12-1A-FP antisera was demonstrated by the ability of 12-1A-FP antigen to block immunoprecipitation of E1A proteins. Furthermore, E1A proteins immunoprecipitated from in vivo-labeled cells comigrated with those translated in vitro by RNA that had been hybridization selected to E1A DNA.  相似文献   

19.
Joseph R. Nevins 《Cell》1982,29(3):913-919
We have attempted to determine whether any cellular genes are activated as a result of the action of the adenoviral El A gene. The proteins synthesized in uninfected HeLa cells have been compared to those produced in early adenovirus infected cells. At least one protein, absent from uninfected HeLa cells, was synthesized in large amounts following adenovirus infection. This 70 kd protein was not synthesized in cells infected with the E1A mutant d1312, even when the multiplicity of infection with the mutant was such that the only viral gene not expressed was the E1A gene. Thus the induction of the 70 kd protein requires the expression of the viral E1A gene. The 70 kd protein was also induced by heat shock in uninfected cells. The same 70 kd protein is synthesized in 293 cells, a line of human embryonic kidney cells transformed by a fragment of adenovirus DNA. These cells constitutively express the E1A and E1 B genes.  相似文献   

20.
Nakajima H  Shimbara N  Shimonishi Y  Mimori T  Niwa S  Saya H 《Gene》2000,260(1-2):121-131
The protein invasin expressed on the cell surface of the pathogenic bacteria Yersinia pseudotuberculosis mediates the entry of this bacterium into cultured mammalian cells. We have developed a system for expression of random peptides on the cell surface of Escherichia coli (E. coli) by creation of a fusion hybrid between a peptide and the invasin protein. The fusion protein constructs consist of part of the outer membrane domain of the invasin protein, six proline spacers, and a decamer of random peptides flanked by cysteine residues (CX(10)C). Peptides were constitutively expressed on the cell surface in the resulting random decamer peptide library, which we designated as ESPEL (E. coli Surface Peptide Expression Library). The ESPEL was systematically screened for its binding affinity toward human cultured cells. Several bacterial clones were identified whose binding to human cells was mediated by peptides expressed on the bacterial cell surface. Flow cytometric analysis showed that both the identified bacterial clones and these corresponding chemically synthesized peptides bound to human cells specifically. The techniques described provide a new method that uses E. coli random peptide library to select targeting peptides for mammalian cells without any knowledge of the human cellular receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号