首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 913 毫秒
1.
信号失活是嗅觉动态过程的一个重要步骤, 这一过程涉及多样的气味降解酶类。本研究利用RT-PCR方法从家蚕Bombyx mori雄蛾的触角中克隆了一个细胞色素P450基因CYP6AE21。该基因含有一个1 572 bp的开放阅读框(open reading frame, ORF), 编码523个氨基酸, 预测分子量为60.5 kD, 等电点为8.4, 含有细胞色素P450的特征序列血红素结合位点区域。CYP6AE21和CYP6AE2基因一样在相同位置含有1个内含子序列, 且相应的2个外显子大小相同。两者的核苷酸序列相似性达到94.5%, 且在基因组上以头尾相连的方式成簇排列, 中间由约7.6 kb核苷酸序列隔开。CYP6AE21在幼虫的头部和脂肪体, 以及雄蛾和雌蛾的触角中表达量较高; 在幼虫的其他组织和蛾的多个组织中也有一定的表达。P450酶系的重要组分之一--NADPH细胞色素P450还原酶(cytochrome P450 reductase, CPR)基因也在雌蛾和雄蛾触角中高水平表达, 而在其他组织中表达量相对较低。亚细胞定位分析表明CYP6AE21表达产物定位于细胞质中。推测CYP6AE21和CYP6AE2是由其中一个基因加倍复制形成的; 此P450的功能之一可能是参与内化进细胞的气味分子的降解清除。  相似文献   

2.
3.
4.
5.
6.
Gene duplication provides essential material for functional divergence of proteins and hence allows organisms to adapt to changing environments. Following duplication events, redundant paralogs may undergo different evolutionary paths via processes known as nonfunctionalization, neofunctionalization, or subfunctionalization. Studies of adaptive evolution at the molecular level have progressed rapidly by computationally analyzing nucleotide substitution patterns but such studies are limited by the absence of information relating to alterations of function of the encoded enzymes. In this respect, evolution of the Papilio polyxenes cytochrome P450 monooxygenases (P450s) responsible for the adaptation of this insect to furanocoumarin-containing host plants provides an excellent model for elucidating the evolutionary fate of duplicated genes. Evidence from sequence and functional analysis in combination with molecular modeling indicates that the paralogous CYP6B1 and CYP6B3 genes in P. polyxenes have probably evolved via subfunctionalization after the duplication event by which they arose. Both enzymes have been under independent purifying selection as evidenced by the low dN/dS ratio in both the coding region and substrate recognition sites. Both enzymes have maintained their ability to metabolize linear and angular furanocoumarins albeit at different efficiencies. Comparisons of molecular models developed for the CYP6B3 and CYP6B1 proteins highlight differences in their binding modes that account for their different activities toward linear and angular furanocoumarins. That P. polyxenes maintains these 2 furanocoumarin-metabolizing loci with somewhat different activities and expression patterns provides this species with the potential to acquire P450s with novel functions while maintaining those most critical to its exclusive feeding on its current range of host plants.  相似文献   

7.
Two cytochrome P450 alleles, CYP6A5 and CYP6A5v2, were isolated from a pyrethroid-resistant house fly stain, ALHF. The two alleles shared 98% similarity in amino acid sequence. To understand the importance of these two alleles in resistance and examine the expression profile of the two alleles between resistant and susceptible strains, quantitative real-time PCR (qRT-PCR) was performed and compared with the Northern blot analysis. We found that qRT-PCR was an efficient method to characterize the expression profiles between these two sequence-closely-related P450 genes between resistant and susceptible houses flies. One of them, CYP6A5v2, was constitutively overexpressed in ALHF house flies compared with susceptible house fly strains. Moreover, this gene was predominantly expressed in the abdominal tissues of ALHF, in which the primary detoxification organs of insects are located. However, there was no significant difference in the expression of CYP6A5 between ALHF and susceptible house flies. The genetic linkage analysis was conducted to determine the possible link between the constitutively overexpressed CYP6A5v2 and insecticide resistance. CYP6A5v2 was mapped on autosome 5, which is correlated with the linkage of resistance in ALHF. Taken together, the study suggests the importance of CYP6A5v2 in increasing metabolic detoxification of insecticides in ALHF. The distinct expression of CYP6A5 and CYP6A5v2 in resistant and susceptible house flies implies the functional difference of theses two genes in house flies and suggests that they are two recently diverged P450 genes presented in a single organism.  相似文献   

8.
Two full‐length P450 cDNAs, CYP6AX1 and CYP6AY1, were cloned from the brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae). Both CYP6AX1 and CYP6AY1 are typical microsomal P450s and their deduced amino acid sequences share common characteristics with other members of the insect P450 CYP6 family. CYP6AX1 and CYP6AY1 show the highest percent identity (36%) of amino acid to each other; both of them have 31–33% amino acid identity with CYP6B1 from Papilio polyxenes (Lepidoptera: Papilionidae), CYP6B4 from Papilio glaucus (Lepidoptera: Papilionidae), and CYP6B8 from Helicoverpa zea (Lepidoptera: Noctuidae). Phylogenetic analysis showed the clustering of CYP6AX1 and CYP6AY1 was in the clade including CYP6AE1 from Depressaria pastinacella (Lepidoptera: Oecophoridae) and the CYP6B family members from Helicoverpa and Papilio species. Northern blot analysis revealed that both of the P450s were induced by the resistant rice variety B5 (Oryza sativa L), and CYP6AY1 was expressed at a higher level than CYP6AX1. The results suggest that more than one P450s are likely involved in metabolism of rice allelochemicals and that they are possibly important components in adaptation of Nilaparvata lugens to host rice. Arch. Insect Biochem. Physiol. 64:88–99, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

9.
It was predicted that the genome of silkworm, Bombyx mori, has at least 79 P450 genes; however, P450 genes that are related to the catabolism of exogenous compounds were not reported. In this study we cloned two CYP4 (named CPY4M5 and CYP4M9) and four CYP6 (named CYP6AB5, CYP6AE9, CYP6AE22 and CYP6AU1) genes by using both bioinformatics and RT-PCR approaches. Sequence analysis showed that these genes contained conserved P450 gene sequence regions and one conserved intron. CYP4M5 and CYP4M9 genes were clustered together in a mode of “head-to-tail” possibly due to gene duplication. Blast analysis showed that these P450 genes shared significant similarity with CYP4 and CYP6 genes that are involved in the catabolism and detoxification of exogenous compounds in other insect species. RT-PCR results showed that these P450 genes were highly expressed in the midgut and fat body of B. mori. As the instar age increased, these P450 genes exhibit different expression patterns. When B. mori was exposed to 1.75 × 10?5 % of cypermethrin, 3.5 × 10?6 % of cypermethrin and 0.1 % of rutin, expression of CYP6AB5 was increased by 2.3-fold, 2.2-fold and 1.9-fold, respectively. Exposure of B. mori to 0.1 % quercetin does not change the expression of CYP6AB5. In contrast, expression of the other five P450 genes was inhibited after exposed to these compounds.  相似文献   

10.
Only a handful of P450 genes have been functionally characterized from the approximately 90 recently identified in the genome of Drosophila melanogaster. Cyp6a8 encodes a 506-amino acid protein with 53.6% amino acid identity with CYP6A2. CYP6A2 has been shown to catalyze the metabolism of several insecticides including aldrin and heptachlor. CYP6A8 is expressed at many developmental stages as well as in adult life. CYP6A8 was produced in Saccharomyces cerevisiae and enzymatically characterized after catalytic activity was reconstituted with D. melanogaster P450 reductase and NADPH. Although several saturated or non-saturated fatty acids were not metabolized by CYP6A8, lauric acid (C12:0), a short-chain unsaturated fatty acid, was oxidized by CYP6A8 to produce 11-hydroxylauric acid with an apparent V(max) of 25 nmol/min/nmol P450. This is the first report showing that a member of the CYP6 family catalyzes the hydroxylation of lauric acid. Our data open new prospects for the CYP6 P450 enzymes, which could be involved in important physiological functions through fatty acid metabolism.  相似文献   

11.
The cyp102A2 and cyp102A3 genes encoding the two Bacillus subtilis homologues (CYP102A2 and CYP102A3) of flavocytochrome P450 BM3 (CYP102A1) from Bacillus megaterium have been cloned, expressed in Escherichia coli, purified, and characterized spectroscopically and enzymologically. Both enzymes contain heme, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) cofactors and bind a variety of fatty acid molecules, as demonstrated by conversion of the low-spin resting form of the heme iron to the high-spin form induced by substrate-binding. CYP102A2 and CYP102A3 catalyze the fatty acid-dependent oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduction of artificial electron acceptors at high rates. Binding of carbon monoxide to the reduced forms of both enzymes results in the shift of the heme Soret band to 450 nm, confirming the P450 nature of the enzymes. Reverse-phase high-performance liquid chromatography (HPLC) of products from the reaction of the enzymes with myristic acid demonstrates that both catalyze the subterminal hydroxylation of this substrate, though with different regioselectivity and catalytic rate. Both P450s 102A2 and 102A3 show kinetic and binding preferences for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids, indicating that the former two molecule types may be the true substrates. P450s 102A2 and 102A3 exhibit differing substrate selectivity profiles from each other and from P450 BM3, indicating that they may fulfill subtly different cellular roles. Titration curves for binding and turnover kinetics of several fatty acid substrates with P450s 102A2 and 102A3 are better described by sigmoidal (rather than hyperbolic) functions, suggesting binding of more than one molecule of substrate to the P450s, or possibly cooperativity in substrate binding. Comparison of the amino acid sequences of the three flavocytochromes shows that several important amino acids in P450 BM3 are not conserved in the B. subtilis homologues, pointing to differences in the binding modes for the substrates that may explain the unusual sigmoidal kinetic and titration properties.  相似文献   

12.
Two P450 genes encoding CYP6A41 and CYP6EK1 were cloned from the oriental fruit fly using polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) techniques. CYP6A41 and CYP6EK1 contained open reading frames of 1,530 and 1,524 nucleotides that encode 510 and 508 amino acid residues, respectively. The putative proteins shared 44% identity with each other. Phylogenetic analysis showed that CYP6A41 and CYP6EK1 were most closely related to Ceratitis capitata CYP6A10 and CYP6A subfamily. Expression patterns of the two genes in different geographical populations (Yunnan, Hainan, Dongguang, and Guangzhou), developmental stages (eggs, larvae, pupae, and adults), and tissues (midguts, fat bodies, and Malpighian tubules) were analyzed by real‐time quantitative PCR (RT‐qPCR) methods. The results showed that the expression levels of CYP6EK1 were significantly different among the four populations, but were not different for CYP6A41. Both the expressions of CYP6A41 and CYP6EK1 were development specific and had significantly higher levels in the larval stage. The expression of CYP6A41 did not vary among the midgut, fat body, or Malpighian tubules; however, CYP6EK1 expression was higher in the Malpighian tubules. The results suggest that CYP6A41 and CYP6EK1 might be involved in detoxification of xenobiotic compounds that were harmful to larval flies or development. Moreover, high expression of CYP6EK1 in the Malpighian tubules also implied participation in detoxification.  相似文献   

13.
Abstract The three new full‐length cDNA sequences including the complete 5′‐and 3′‐ untranslated regions (UTR) coding for cytochrome P450s from Aedes albopictus have been obtained. The P450 proteins deduced from the nucleotide sequences shared 58.6% ‐ 62.4% amino acid identity with CYP6N1 and CYP6N2 from Anopheles gambiae, and 99% with each other. The three new complete sequences have been submitted and named as CYP6N3v1, CYP6N3v2 and CYP6N3v3 by the P450 Nomenclature Committee. The original cDNAs were obtained by rapid amplification of cDNA ends (RACE) approach with several pairs of gene specific primers based on the cDNA fragment previously obtained from deltamethrin‐resistant strain of Ae. albopictus. Further analysis showed that the three new sequences are present in both resistant strain and susceptible strain and might be effectively translated. In addition, the 5′‐ and 3′‐UTRs were compared between the CYP6N3vl‐v3 and other known insect P450s. The multiplicity of trans‐lational control of insect P450 genes was discussed.  相似文献   

14.
Wen Z  Horak CE  Scott JG 《Gene》2001,272(1-2):257-266
The cDNAs of two novel P450s (CYP9E2 and CYP4C21) were isolated from German cockroaches, Blattella germanica. Both CYP9E2 and CYP4C21 are typical microsomal P450s and their deduced amino acid sequences share a number of common characteristics with other members of the P450 superfamily. Northern blot analyses using a CYP9E2 or CYP4C21 probe showed that 'CYP9E2' and 'CYP4C21' were expressed at all life stages. Two pseudogenes related to CYP9E2 and three pseudogenes related to CYP4C21 were also isolated. These represent the first P450 pseudogenes from an insect other than Drosophila melanogaster. The relative number of P450 pseudogenes in B. germanica is apparently higher than in D. melanogaster. The implications of these results for the molecular evolution, expression studies and nomenclature of P450s are discussed.  相似文献   

15.
Human cytochrome P450 (CYP) 2A6 and 2A13 play an important role in catalyzing the metabolism of many environmental chemicals including coumarin, nicotine, and several tobacco-specific carcinogens. Both CYP2A6 and CYP2A13 proteins are composed of 494 amino acid residues. Although CYP2A13 shares a 93.5% identity with CYP2A6 in the amino acid sequence, it is only about one-tenth as active as CYP2A6 in catalyzing coumarin 7-hydroxylation. To identify the key amino acid residues that account for such a remarkable difference, we generated a series of CYP2A6 and CYP2A13 mutants by site-directed mutagenesis/heterologous expression and compared their coumarin 7-hydroxylation activities. In CYP2A6, the amino acid residues at position 117 and 372 are valine (Val) and arginine (Arg), respectively; whereas in CYP2A13, they are alanine (Ala) and histidine (His). Kinetic analysis revealed that the catalytic efficiency (Vmax/Km) of the CYP2A6 Val(117)--> Ala and Arg(372)--> His mutants was drastically reduced (0.41 and 0.64 versus 3.23 for the wild-type CYP2A6 protein). In contrast, the catalytic efficiency of the CYP2A13 Ala(117) --> Val and His(372) --> Arg mutants was greatly increased (2.65 and 2.60 versus 0.31 for wild-type CYP2A13 protein). These results clearly demonstrate that the Val at position 117 and Arg at position 372 are critical amino acid residues for coumarin 7-hydroxylation. Based on the crystal structure of CYP2C5, we have generated the homology models of CYP2A6 and CYP2A13 and docked the substrate coumarin to the active site. Together with the kinetic characterization, our structural modeling provides explanations for the amino acid substitution results and the insights of detailed enzyme-substrate interactions.  相似文献   

16.
The cytochrome P450 s play a significant role in the detoxification of plant allelochemicals and synthetic insecticides in Lepidoptera. In the cotton bollworm Helicoverpa armigera, 2-tridecanone and quercetin can induce P450-dependent monooxygenase activity increased, to further the characterization of P450, the CYP6B6 of cotton bollworm (H. armigera) was cloned, sequenced and expressed in pMAL-p2x vector and expressed in Escherichia coli. The deduced amino acid sequences of cytochrome P450 in the midgut and fat body of H. armigera showed 98.23 and 97.84 % similarity with CYP6B6, respectively. According to nomenclature of P450 s, the P450 genes we got belong to CYP6B. Purification of recombinant protein based on the affinity of MBP for maltose was achieved by Mal-Tag magnetic beads. The purified protein was used to raise polyclonal antibody according to classical procedure. SDS–PAGE and Western blot results indicated that MBP-CYP6B6 had been successfully expressed. The ethoxycoumarin-O-deethylase activity of the purified recombinant protein was 36.5 ± 8.12 pmol of 7-hydroxycoumarin/min/mg protein, which showed the fusion MBP-CYP6B6 had the ability to o-deethylase of 7-ethoxycoumarin.  相似文献   

17.
18.
Xanthotoxin, a plant allelochemical, induces alpha-cypermethrin insecticide tolerance in Helicoverpa zea (corn earworm); inhibition of tolerance by piperonyl butoxide implicates cytochrome P450 monooxygenases (P450s) in the detoxification of this insecticide. To characterize the xanthotoxin-inducible P450 that might mediate alpha-cypermethrin tolerance in this species, a cDNA library prepared from xanthotoxin-induced H. zea fifth instar larvae was screened with cDNAs encoding furanocoumarin-metabolizing P450s from Papilio polyxenes (CYP6B1v2) and P. glaucus (CYP6B4v2) as well as a sequence-related P450 from Helicoverpa armigera (CYP6B2). One full-length cDNA isolated in this screening shares 51-99% amino acid identity with the CYP6B subfamily of P450s isolated from Papilio and Helicoverpa species and, thus, has been designated CYP6B8. All of these CYP6B subfamily members share a number of highly conserved domains, including substrate recognition site 1 (SRS 1) that is critical for xanthotoxin metabolism by CYP6B1v2 from Papilio polyxenes and coumarin metabolism by CYP2a5 from Mus musculus. Northern and RT-PCR analyses indicate that CYP6B8 expression is strongly induced by xanthotoxin and phenobarbital and negligibly induced by alpha-cypermethrin.  相似文献   

19.
Phylogenic analysis of the teleost genomic lineages has demonstrated the precedent for multiple genome duplications. Among many of the genes duplicated, cytochrome P450 genes have undergone independent diversification, which can be traced to a single ancestral gene. In teleosts, cytochrome P450s, from all major families, have been identified. Among these, the CYP3A family has been cloned in several teleost species and demonstrated to contain multiple paralogs differing in gene expression patterns and tissue distribution. Herein we characterized the catalytic and kinetic activities of two medaka CYP3A paralogs (CYP3A38 and CYP3A40) with benzyloxyresorufin (BFC), a fluorescent 3A-selective substrate, and testosterone, a known metabolic substrate for CYP3A enzymes. Recombinant CYP3A was produced using the baculovirus expression vector system in Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn5) insect cells and accounted for up to 24% of total cellular protein. Following addition of a heme-albumin conjugate to log phase cells, spectral P450 content reached a maximum of 560 and 2350 pmol/mg microsomal protein for CYP3A38 and CYP3A40, respectively. Incubations containing recombinant CYP3A, human NADPH-cytochrome P-450 oxidoreductase reductase, human cytochrome b5, and a NADPH generation system catalyzed the dealkylation of BFC and hydroxylation of testosterone with a high degree of stereoselectivity. However, efficiencies and specificities were significantly different between the two isoforms. Km and Vmax activities based on BFC-catalysis were 0.116 and 0.363 muM, and 7.95 and 7.77 nmol/min/nmol P450 for CYP3A38 and CYP3A40, respectively. CYP3A38 preferentially catalyzed testosterone hydroxylation at the 6beta-, 2beta- and 16beta-positions with minor hydroxylation at other positions within the steroid nucleus. Testosterone catalysis with CYP3A40 was limited predominantly to the 6beta- and 2beta-positions. Putative identification of CYP3A substrate recognition sites (SRS) 1-6 indicates that 12 of the 49 amino acid differences between CYP3A38 and CYP3A40 OFRs occur in SRS regions previously known to be associated with steroid hydroxylation. We suggest that differences in kinetics and catalytic activities are a result of amino acid substitutions in SRS regions 1, 3 and 5 within the CYP3A38 and CYP3A40 protein sequence.  相似文献   

20.
W Seghezzi  D Sanglard  A Fiechter 《Gene》1991,106(1):51-60
A second alkane-inducible cytochrome P450-encoding gene (CYP52A2) from the yeast Candida tropicalis was sequenced and characterized. CYP52A2 is located 1 kb upstream from CYP52A1, the previously characterized P450 gene [Sanglard and Loper, Gene 76 (1989) 121-136] and shows the same orientation. Like CYP52A1, CYP52A2 is induced by growth on alkane. Both promoter regions share repeats of the sequence CATGTGAA that could be of importance for the induction of the two genes. At the amino acid level, alk2 shows an overall identity of 68.2% and an overall similarity of 81.6% to alk1. Regions of high homology between the two proteins are found in the distal and proximal heme binding sites which contain the highly conserved cysteine residue as the fifth ligand to the heme iron. However, marked differences between the two proteins exist at their N-terminal end, which includes the transmembrane domain, and at the putative substrate-binding domain. Upon expression of CYP52A2 in Saccharomyces cerevisiae, alk2 was shown to hydroxylate hexadecane, but had no hydroxylation activity towards lauric acid, whereas alk1 showed both activities. Comparative immunoblots demonstrate that neither alk1 nor alk2 expressed in S. cerevisiae corresponds to the main cytochrome P450 present in C. tropicalis when grown on alkane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号