首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Pituitary lactotrophs in vitro fire extracellular Ca2+-dependent action potentials spontaneously through still unidentified pacemaking channels, and the associated voltage-gated Ca2+influx (VGCI) is sufficient to maintain basal prolactin (PRL) secretion high and steady. Numerous plasma membrane channels have been characterized in these cells, but the mechanism underlying their pacemaking activity is still not known. Here we studied the relevance of cyclic nucleotide signaling pathways in control of pacemaking, VGCI, and PRL release. In mixed anterior pituitary cells, both VGCI-inhibitable and -insensitive adenylyl cyclase (AC) subtypes contributed to the basal cAMP production, and soluble guanylyl cyclase was exclusively responsible for basal cGMP production. Inhibition of basal AC activity, but not soluble guanylyl cyclase activity, reduced PRL release. In contrast, forskolin stimulated cAMP and cGMP production as well as pacemaking, VGCI, and PRL secretion. Elevation in cAMP and cGMP levels by inhibition of phosphodiesterase activity was also accompanied with increased PRL release. The AC inhibitors attenuated forskolin-stimulated cyclic nucleotide production, VGCI, and PRL release. The cell-permeable 8-bromo-cAMP stimulated firing of action potentials and PRL release and rescued hormone secretion in cells with inhibited ACs in an extracellular Ca2+-dependent manner, whereas 8-bromo-cGMP and 8-(4-chlorophenylthio)-2'-O-methyl-cAMP were ineffective. Protein kinase A inhibitors did not stop spontaneous and forskolin-stimulated pacemaking, VGCI, and PRL release. These results indicate that cAMP facilitates pacemaking, VGCI, and PRL release in lactotrophs predominantly in a protein kinase A- and Epac cAMP receptor-independent manner.  相似文献   

2.
3.
The G protein-coupled receptors in excitable cells have prominent roles in controlling Ca2+-triggered secretion by modulating voltage-gated Ca2+ influx. In pituitary lactotrophs, spontaneous voltage-gated Ca2+ influx is sufficient to maintain prolactin release high. Here we show that endothelin in picomolar concentrations can interrupt such release for several hours downstream of spontaneous and high K+-stimulated voltage-gated Ca2+ influx. This action occurred through the Gz signaling pathway; the adenylyl cyclase-signaling cascade could mediate sustained inhibition of secretion, whereas rapid inhibition also occurred at elevated cAMP levels regardless of the status of phospholipase C, tyrosine kinases, and protein kinase C. In a nanomolar concentration range, endothelin also inhibited voltage-gated Ca2+ influx through the G i/o signaling pathway. Thus, the coupling of seven-transmembrane domain endothelin receptors to Gz proteins provided a pathway that effectively blocked hormone secretion distal to Ca2+ entry, whereas the cross-coupling to G i/o proteins reinforced such inhibition by simultaneously reducing the pacemaking activity.  相似文献   

4.
5.
Anxiety is thought to be influenced by neuronal excitability in basolateral nucleus of the amygdala (BLA). However, molecules that are critical for regulating excitability of BLA neurons are yet to be determined. In the present study, we have examined whether hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels, which mediate the depolarizing cation current, can control the neuronal excitability. HCN channel-like activity appeared to be detected in BLA principal neurons. ZD7288, a specific blocker for HCN channels, increased the input resistance of membrane, hyperpolarized resting membrane potential, and enhanced action potential firing in BLA principal neurons. The blockade of HCN channels facilitated temporal summation of repetitively evoked excitatory postsynaptic potentials, suggesting that suppression of HCN channel activity in principal neurons can accelerate the propagation of synaptic responses onto the axon hillock. Thus, our findings have laid foundation for studies to reveal how HCN channel activity in BLA principal neurons regulates anxiety in vivo.  相似文献   

6.
In this study, ZD7288, a blocker of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, has been found to inhibit the mouse sperm acrosome reaction (AR). HCN channels have not yet been either recorded or implicated in mouse sperm AR, but low-threshold (T-type) Ca(2+) channels have. Interestingly, ZD7288 blocked native T-type Ca(2+) currents in mouse spermatogenic cells with an IC(50) of about 100 microM. This blockade was more effective at voltages producing low levels of inactivation, suggesting a differential affinity of ZD7288 for different channel conformations. Furthermore, ZD7288 inhibited all cloned T-type but not high-threshold N-type channels heterologously expressed in HEK-293 cells. Our results further support the role of T-type Ca(2+) channels in the mouse sperm AR.  相似文献   

7.
ZD7288 has been widely used as a tool in the study of hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), and to test the relationships between HCN channels and heart and brain function. ZD7288 is widely considered a selective blocker of HCN currents. Here we show that ZD7288 inhibits not only HCN channel currents, but also Na+ currents in DRG neurons and ZD7288 was confirmed to inhibit Na+ current in HEK293 cells transfected with Nav1.4 plasmids. Thus our findings challenge the view that ZD7288 is a selective blocker of HCN channels. Conclusions about the role of NCN channels in neuronal function should be re-evaluated if based exclusively on the effect of ZD7288.  相似文献   

8.
ZD7288 has been widely used as a tool in the study of hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), and to test the relationships between HCN channels and heart and brain function. ZD7288 is widely considered a selective blocker of HCN currents. Here we show that ZD7288 inhibits not only HCN channel currents, but also Na+ currents in DRG neurons and ZD7288 was confirmed to inhibit Na+ current in HEK293 cells transfected with Nav1.4 plasmids. Thus our findings challenge the view that ZD7288 is a selective blocker of HCN channels. Conclusions about the role of NCN channels in neuronal function should be re-evaluated if based exclusively on the effect of ZD7288.  相似文献   

9.
In excitable cells, voltage-gated calcium influx provides an effective mechanism for the activation of exocytosis. In this study, we demonstrate that although rat anterior pituitary lactotrophs, somatotrophs, and gonadotrophs exhibited spontaneous and extracellular calcium-dependent electrical activity, voltage-gated calcium influx triggered secretion only in lactotrophs and somatotrophs. The lack of action potential-driven secretion in gonadotrophs was not due to the proportion of spontaneously firing cells or spike frequency. Gonadotrophs exhibited calcium signals during prolonged depolarization comparable with signals observed in somatotrophs and lactotrophs. The secretory vesicles in all three cell types also had a similar sensitivity to voltage-gated calcium influx. However, the pattern of action potential calcium influx differed among three cell types. Spontaneous activity in gonadotrophs was characterized by high amplitude, sharp spikes that had a limited capacity to promote calcium influx, whereas lactotrophs and somatotrophs fired plateau-bursting action potentials that generated high amplitude calcium signals. Furthermore, a shift in the pattern of firing from sharp spikes to plateau-like spikes in gonadotrophs triggered luteinizing hormone secretion. These results indicate that the cell type-specific action potential secretion coupling in pituitary cells is determined by the capacity of their plasma membrane oscillator to generate threshold calcium signals.  相似文献   

10.
11.
We examined the role of hyperpolarization-activated currents (Ih) in heart rate regulation in mongrel white rats. The ZD 7288 blocking agent decreased the heart rate. Vagus stimulation in bradycardia also decreased the heart rate and was dose-depended. Vagotomy following the ZD 7288 administration induced different dose-dependent changes in heart activity. The index figures of the heart activity following beta-AR isoproterenol administration depended on the level of hyperpolarization-activated currents. The data suggest existence of a possible modulating effect of the ANS on the hyperpolarization-activated activity of the channels.  相似文献   

12.
Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Our previous work using the specific HCN channel blocker ZD7288 provided evidence for an intracellular activation gate for these channels because it appears that ZD7288, applied from the intracellular side, can enter and leave HCN channels only at voltages where the activation gate is opened (Shin, K.S., B.S. Rothberg, and G. Yellen. 2001. J. Gen. Physiol. 117:91-101). However, the ZD7288 molecule is larger than the Na(+) or K(+) ions that flow through the open channel. In the present study, we sought to resolve whether the voltage gate at the intracellular entrance to the pore for ZD7288 also can be a gate for permeant ions in HCN channels. Single residues in the putative pore-lining S6 region of an HCN channel (cloned from sea urchin; spHCN) were substituted with cysteines, and the mutants were probed with Cd(2+) applied to the intracellular side of the channel. One mutant, T464C, displayed rapid irreversible block when Cd(2+) was applied to opened channels, with an apparent blocking rate of approximately 3 x 10(5) M(-1)s(-1). The blocking rate was decreased for channels held at more depolarized voltages that close the channels, which is consistent with the Cd(2+) access to this residue being gated from the intracellular side of the channel. 464C channels could be recovered from Cd(2+) inhibition in the presence of a dithiol applied to the intracellular side. The rate of this recovery also was reduced when channels were held at depolarized voltages. Finally, Cd(2+) could be trapped inside channels that were composed of WT/464C tandem-linked subunits, which could otherwise recover spontaneously from Cd(2+) inhibition. Thus, Cd(2+) escape is also gated at the intracellular side of the channel. Together, these results are consistent with a voltage-controlled structure at the intracellular side of the spHCN channel that can gate the flow of cations through the pore.  相似文献   

13.
The mechanisms underlying spontaneous burst activity (SBA), appearing in networks of embryonic cortical neurons at the end of the first week in vitro, remain elusive. Here we investigated the contribution of the hyperpolarization-activated cation current (I(h)) to SBA in cortical cultures of GAD67-GFP mice. I(h) current could be detected in GFP-positive large GABAergic interneurons (L-INs) and glutamatergic principal neurons (PNs) as early as DIV 5. Under current-clamp conditions, blockers of I(h) current, ZD7288 and Cs?, abolished the voltage sag and rebound depolarization. ZD7288 induced a hyperpolarization concomitant with an increase in the membrane input resistance in L-INs and PNs. Voltage-clamp recordings revealed I(h) as slowly activating inward current with a reversal potential close to -50 mV and a mid-activation point around -90 mV. Both, ZD7288 (1-10 μM) and Cs? (1-2 mM) reduced SBA, spontaneous activity-driven Ca2? transients, and frequency as well as amplitude of miniature GABAergic postsynaptic currents. Immunocytochemistry and Western blot demonstrated that HCN1 and HCN2 were the prevalent isoforms of HCN channels expressed in L-INs and PNs. These results suggest an important contribution of HCN channels to the maintenance of SBA in embryonic cortical cultures.  相似文献   

14.
Van Hook MJ  Berson DM 《PloS one》2010,5(12):e15344
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and serve as the primary retinal drivers of non-image-forming visual functions such as circadian photoentrainment, the pupillary light reflex, and suppression of melatonin production in the pineal. Past electrophysiological studies of these cells have focused on their intrinsic photosensitivity and synaptic inputs. Much less is known about their voltage-gated channels and how these might shape their output to non-image-forming visual centers. Here, we show that rat ipRGCs retrolabeled from the suprachiasmatic nucleus (SCN) express a hyperpolarization-activated inwardly-rectifying current (I(h)). This current is blocked by the known I(h) blockers ZD7288 and extracellular cesium. As in other systems, including other retinal ganglion cells, I(h) in ipRGCs is characterized by slow kinetics and a slightly greater permeability for K(+) than for Na(+). Unlike in other systems, however, I(h) in ipRGCs apparently does not actively contribute to resting membrane potential. We also explore non-specific effects of the common I(h) blocker ZD7288 on rebound depolarization and evoked spiking and discuss possible functional roles of I(h) in non-image-forming vision. This study is the first to characterize I(h) in a well-defined population of retinal ganglion cells, namely SCN-projecting ipRGCs.  相似文献   

15.
Dopamine (DA) released from the hypothalamus tonically inhibits pituitary lactotrophs. DA (at micromolar concentration) opens potassium channels, hyperpolarizing the lactotrophs and thus preventing the calcium influx that triggers prolactin hormone release. Surprisingly, at concentrations ∼1000 lower, DA can stimulate prolactin secretion. Here, we investigated whether an increase in a K+ current could mediate this stimulatory effect. We considered the fast K+ currents flowing through large-conductance BK channels and through A-type channels. We developed a minimal lactotroph model to investigate the effects of these two currents. Both I BK and I A could transform the electrical pattern of activity from spiking to bursting, but through distinct mechanisms. I BK always increased the intracellular Ca2+ concentration, while I A could either increase or decrease it. Thus, the stimulatory effects of DA could be mediated by a fast K+ conductance which converts tonically spiking cells to bursters. In addition, the study illustrates that a heterogeneous distribution of fast K+ conductances could cause heterogeneous lactotroph firing patterns. Action Editor: Christiane Linster  相似文献   

16.
Hyperpolarization-activated cation currents (I(h)) are key determinants of repetitive electrical activity in heart and nerve cells. The bradycardic agent ZD7288 is a selective blocker of these currents. We studied the mechanism for ZD7288 blockade of cloned I(h) channels in excised inside-out patches. ZD7288 blockade of the mammalian mHCN1 channel appeared to require opening of the channel, but strong hyperpolarization disfavored blockade. The steepness of this voltage-dependent effect (an apparent valence of approximately 4) makes it unlikely to arise solely from a direct effect of voltage on blocker binding. Instead, it probably indicates a differential affinity of the blocker for different channel conformations. Similar properties were seen for ZD7288 blockade of the sea urchin homologue of I(h) channels (SPIH), but some of the blockade was irreversible. To explore the molecular basis for the difference in reversibility, we constructed chimeric channels from mHCN1 and SPIH and localized the structural determinant for the reversibility to three residues in the S6 region likely to line the pore. Using a triple point mutant in S6, we also revealed the trapping of ZD7288 by the closing of the channel. Overall, the observations led us to hypothesize that the residues responsible for ZD7288 block of I(h) channels are located in the pore lining, and are guarded by an intracellular activation gate of the channel.  相似文献   

17.
All secretory anterior pituitary cells exhibit spontaneous and extracellular calcium-dependent electrical activity, but differ with respect to the patterns of firing and associated calcium signaling and hormone secretion. Thus, somatotrophs and lactotrophs fire plateau-bursting action potentials spontaneously and without coupling to calcium release from intracellular stores, which generate calcium signals of sufficient amplitude to keep steady hormone release. In these cells, both spontaneous electrical activity and basal hormone secretion can be further amplified by activation of Gq/11 and Gs-coupled receptors and inhibited by Gi/o/z-coupled receptors. In contrast, gonadotrophs fire single, high-amplitude spikes with limited ability to promote calcium influx and exocytosis, whereas activated Gq/11-coupled receptors in these cells transform single-action potential spiking into the plateau-bursting type of electrical activity and trigger periodic high-amplitude calcium signals and exocytosis of prestored secretory vesicles. Here, we review biochemical and biophysical aspects of spontaneous and receptor-controlled electrical activity, calcium signaling, and hormone secretion in pituitary cells.  相似文献   

18.
Cells of the 7315a prolactin-secreting tumour express biochemically normal cell-surface receptors for dopamine. However, dopamine inhibits prolactin release from these cells only when the basal rate of prolactin release is augmented by increasing the intracellular and/or extracellular calcium concentration of the tumour cells. This suggests that dopaminergic modulation of calcium ion flux could have a central physiological role in these neoplastic cells. In 7315a cells we examined the ability of dopamine to regulate 45Ca2+ influx and fractional 45Ca2+ efflux under conditions of enhanced calcium flux using the calcium channel activator, maitotoxin. It was observed that unidirectional calcium influx stimulated by maitotoxin was significantly inhibited by dopamine. Maitotoxin stimulated fractional efflux and prolactin release from the tumour cells and dopamine simultaneously inhibited both processes by a haloperidol-reversible mechanism. Therefore, in 7315a cells dopamine receptor activation is coupled to inhibition of calcium flux as at least one component in the regulation of prolactin release. These cells may provide further opportunity to study intracellular signalling mechanisms that are modulated by dopamine receptor activity.  相似文献   

19.
Wan Y 《生理学报》2008,60(5):579-580
Dorsal root ganglion(DRG)neurons have peripheral terminals in skin,muscle,and other peripheral tissues,andcentral terminals  相似文献   

20.
The hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, or cardiac (If)/neuronal (Ih) time- and voltage-dependent inward cation current channels, are conventionally considered as monovalent-selective channels. Recently we discovered that calcium ions can permeate through HCN4 and Ih channels in neurons. This raises the possibility of Ca2+ permeation in If, the Ih counterpart in cardiac myocytes, because of their structural homology. We performed simultaneous measurement of fura-2 Ca2+ signals and whole cell currents produced by HCN2 and HCN4 channels (the 2 cardiac isoforms present in ventricles) expressed in HEK293 cells and by If in rat ventricular myocytes. We observed Ca2+ influx when HCN/If channels were activated. Ca2+ influx was increased with stronger hyperpolarization or longer pulse duration. Cesium, an If channel blocker, inhibited If and Ca2+ influx at the same time. Quantitative analysis revealed that Ca2+ flux contributed to 0.5% of current produced by the HCN2 channel or If. The associated increase in Ca2+ influx was also observed in spontaneously hypertensive rat (SHR) myocytes in which If current density is higher than that of normotensive rat ventricle. In the absence of EGTA (a Ca2+ chelator), preactivation of If channels significantly reduced the action potential duration, and the effect was blocked by another selective If channel blocker, ZD-7288. In the presence of EGTA, however, preactivation of If channels had no effects on action potential duration. Our data extend our previous discovery of Ca2+ influx in Ih channels in neurons to If channels in cardiac myocytes. calcium ion flux; hyperpolarization-activated, cyclic nucleotide-gated/cardiac time- and volume-dependent cation current channels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号