首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-protease inhibitors (PIs) markedly decreased mortality of HIV-infected patients. However, their use has been associated with occurence of metabolic abnormalities the causes of which are not well understood. We report here that lopinavir, one of the most prescribed PI, dose-dependently co-induced insulin resistance and ER stress in human adipocytes obtained from differentiation of precursor cells.Insulin resistance was subsequent to IRS1 phosphorylation defects and resulted in a concentration-dependent decrease of glucose uptake. The major ER stress pathway involved was the phosphorylation of eIF2-α. Salubrinal, a selective eIF2-α dephosphorylation inhibitor, induced insulin resistance by targeting IRS1 phosphorylation at serine 312 and acted synergistically with LPV when both drugs were used in combination.This study points out the key role of eIF2-α phosphorylation in the development of PI-associated insulin resistance and ER stress. Thus, this protein represents a promising therapeutic target for development of new PIs devoid of adverse metabolic effects.  相似文献   

2.
The HIV protease inhibitor ritonavir (RTV) is also a potent inhibitor of the metabolizing enzyme cytochrome P450 3A (CYP3A) and is clinically useful in HIV therapy in its ability to enhance human plasma levels of other HIV protease inhibitors (PIs). A novel series of CYP3A inhibitors was designed around the structural elements of RTV believed to be important to CYP3A inhibition, with general design features being the attachment of groups that mimic the P2–P3 segment of RTV to a soluble core. Several analogs were found to strongly enhance plasma levels of lopinavir (LPV), including 8, which compares favorably with RTV in the same model. Interestingly, an inverse correlation between in vitro inhibition of CYP3A and elevation of LPV was observed. The compounds described in this study may be useful for enhancing the pharmacokinetics of drugs that are metabolized by CYP3A.  相似文献   

3.
BackgroundPristimerin (Pri), a natural quinone methide triterpenoid isolated from Celastraceae and Hippocrateaceae, exhibits potent antitumor activity against various cancers. However, the mechanism of apoptosis induction by Pri in oral squamous cell carcinoma (OSCC) and its anti-OSCC effect in vivo has not been widely studied.PurposeThis study aimed to investigate the anti-OSCC activities of Pri in vitro and in vivo and addressed the potential mechanisms of Pri-induced apoptosis.MethodsThe effects of Pri on OSCC cells were analyzed by cell viability, colony formation and flow cytometry assays. Western blotting and qRT-PCR assays were chosen to detect the expression of proteins and genes. The anti-OSCC efficacy of Pri in vivo was evaluated by CAL-27 xenografts.ResultsWe showed that Pri inhibited the proliferation of human OSCC cell lines. Additionally, Pri induced apoptosis by upregulating Noxa expression. Furthermore, Pri treatment triggered excessive endoplasmic reticulum (ER) stress activation and subsequently induced c-Jun N-terminal kinase (JNK) signaling. ROS scavengers and ER stress inhibitors significantly attenuated Pri-induced OSCC cell apoptosis. Finally, Pri suppressed tumor growth in CAL-27 xenografts, accompanied ER stress activation and cell apoptosis.ConclusionThese results reveal that Pri suppressed tumor growth and triggered cell apoptosis through ER stress activation in OSCC cells and xenografts, suggesting that Pri may serve as a therapeutic agent for OSCC.  相似文献   

4.
Sustained hyperglycaemia and hyperlipidaemia incur endoplasmic reticulum stress (ER stress) and reactive oxygen species (ROS) overproduction in pancreatic β‐cells. ER stress or ROS causes c‐Jun N‐terminal kinase (JNK) activation, and the activated JNK triggers apoptosis in different cells. Nuclear receptor subfamily 4 group A member 1 (NR4A1) is an inducible multi‐stress response factor. The aim of this study was to explore the role of NR4A1 in counteracting JNK activation induced by ER stress or ROS and the related mechanism. qPCR, Western blotting, dual‐luciferase reporter and ChIP assays were applied to detect gene expression or regulation by NR4A1. Immunofluorescence was used to detect a specific protein expression in β‐cells. Our data showed that NR4A1 reduced the phosphorylated JNK (p‐JNK) in MIN6 cells encountering ER stress or ROS and reduced MKK4 protein in a proteasome‐dependent manner. We found that NR4A1 increased the expression of cbl‐b (an E3 ligase); knocking down cbl‐b expression increased MKK4 and p‐JNK levels under ER stress or ROS conditions. We elucidated that NR4A1 enhanced the transactivation of cbl‐b promoter by physical association. We further confirmed that cbl‐b expression in β‐cells was reduced in NR4A1‐knockout mice compared with WT mice. NR4A1 down‐regulates JNK activation by ER stress or ROS in β‐cells via enhancing cbl‐b expression.  相似文献   

5.

Aims

Both advanced glycation end products (AGEs) and endoplasmic reticulum (ER) stress play important roles in the development of various diseases. This study aimed to clarify the consequence of AGE-induced ER stress and its underlying mechanisms in human umbilical venous endothelial cells (HUVECs).

Main methods

AGE-induced ER stress was assessed by the increased expression and activation of the ER stress marker proteins GRP78, IRE1α and JNK, which were detected using Western blot. NF-κB translocation was revealed using Western blot and immunofluorescent staining in IRE1α-knockdown HUVECs. The mechanism of AGE-induced ER stress was also explored by inhibiting the effect of reactive oxygen species (ROS) using NADPH oxidase 4 (Nox4) siRNA and the antioxidant reduced glutathione (GSH). The cellular ROS level was measured using flow cytometry.

Key findings

AGEs time- and dose-dependently enhanced the expression of GRP78 and increased the phosphorylation of IRE1α and its downstream signal JNK in HUVECs. siRNA-induced IRE1α down-regulation suppressed AGE-induced NF-κB p65 nuclear translocation. Inhibiting the ROS production using Nox4 siRNA or antagonizing ROS using GSH reduced cellular ROS level and attenuated AGE-induced GRP78 expression and IRE1α and JNK activation.

Significance

This study confirms that AGE-induced ER stress in HUVECs focuses on the ER stress-enhanced inflammatory response through JNK and NF-κB activation. It further reveals the involvement of ROS in the AGE-induced ER stress mechanism.  相似文献   

6.
Protease inhibitors (PIs) are crucial drugs in highly active antiretroviral therapy for human immunodeficiency virus-1 (HIV-1) infections. However, resistance owing to mutations challenge the long-term efficacy in the medication of HIV-1-infected individuals. Lopinavir (LPV) and darunavir (DRV), two second-generation drugs are the most potent among PIs, hustling the drug resistance when mutations occur in the active and nonactive site of the protease (PR). Herein, we strive for compounds that can stifle the function of wild-type (WT) HIV-1 PR along with four major single mutants (I54M, V82T, I84V, and L90M) instigating resistance to the PIs using in silico approach. Six common compounds are retrieved from six databases using combined pharmacophore-based and structure-based virtual screening methodology. LPV and DRV are docked and the binding free energy is calculated to set the cut-off value for selecting compounds. Further, to gain insight into the stability of the complexes the molecular dynamics simulation (MDS) is carried out, which uncovers two lead molecules namely NCI-524545 and ZINC12866729. Both the lead molecules connect with WT and mutant HIV-1 PRs through strong and stable hydrogen bond interactions when compared with LPV and DRV throughout the trajectory analysis. Interestingly, NCI-524545 and ZINC12866729 exhibit direct interactions with I50/50′ by replacing the conserved water molecule as evidenced by MDS, which indicates the credible potency of these compounds. Hence, we concluded that NCI-524545 and ZINC12866729 have great puissant to restrain the role of drug resistance HIV-1 PR variants, which can also show better activity through in vivo and in vitro conditions.  相似文献   

7.
Dietary conjugated linoleic acids (CLA) are fatty acid isomers with anticancer activities produced naturally in ruminants or from vegetable oil processing. The anticancer effects of CLA differ upon the cancer origin and the CLA isomers. In this study, we carried out to precise the effects of CLA isomers, c9,t11 and t10,c12 CLA, on mechanisms of cell death induction in colon cancer cells. We first showed that only t10,c12 CLA treatment (25 and 50 μM) for 72 h triggered apoptosis in colon cancer cells without affecting viability of normal-derived colon epithelial cells. Exposure of colon cancer cells to t10,c12 CLA activated ER stress characterized by induction of eIF2α phoshorylation, splicing of Xbp1 mRNA and CHOP expression. Furthermore, we evidenced that inhibition of CHOP expression and JNK signaling decreased t10,c12 CLA-mediated cancer cell death. Finally, we showed that CHOP induction by t10,c12 CLA was dependent on ROS production and that the anti-oxidant N-acetyl-cysteine reduced CHOP induction-dependent cell death. These results highlight that t10,c12 CLA exerts its cytotoxic effect through ROS generation and a subsequent ER stress-dependent apoptosis in colon cancer cells.  相似文献   

8.
Xu X  Gupta S  Hu W  McGrath BC  Cavener DR 《PloS one》2011,6(8):e23740

Background

The ER chaperone GRP78/BiP is a homolog of the Hsp70 family of heat shock proteins, yet GRP78/BiP is not induced by heat shock but instead by ER stress. However, previous studies had not considered more physiologically relevant temperature elevation associated with febrile hyperthermia. In this report we examine the response of GRP78/BiP and other components of the ER stress pathway in cells exposed to 40°C.

Methodology

AD293 cells were exposed to 43°C heat shock to confirm inhibition of the ER stress response genes. Five mammalian cell types, including AD293 cells, were then exposed to 40°C hyperthermia for various time periods and induction of the ER stress pathway was assessed.

Principal Findings

The inhibition of the ER stress pathway by heat shock (43°C) was confirmed. In contrast cells subjected to more mild temperature elevation (40°C) showed either a partial or full ER stress pathway induction as determined by downstream targets of the three arms of the ER stress pathway as well as a heat shock response. Cells deficient for Perk or Gcn2 exhibit great sensitivity to ER stress induction by hyperthermia.

Conclusions

The ER stress pathway is induced partially or fully as a consequence of hyperthermia in parallel with induction of Hsp70. These findings suggest that the ER and cytoplasm of cells contain parallel pathways to coordinately regulate adaptation to febrile hyperthermia associated with disease or infection.  相似文献   

9.
10.
The development of cancer drugs is slow and costly. One approach to accelerate the availability of new drugs is to reposition drugs approved for other indications as anti-cancer agents. HIV protease inhibitors (HIV PIs) are useful in treating HIV infection and cause toxicities in humans that are similar to those observed when the kinase Akt, a target for cancer therapy, is inhibited. To test whether HIV PIs inhibited Akt and cancer cell proliferation, we screened 6 HIV PIs and found that three, ritonavir, saquinavir and nelfinavir, inhibit the growth of over 60 cancer cell lines derived from 9 different tumor types; Nelfinavir is the most potent. Nelfinavir causes caspase-dependent apoptosis and non-apoptotic death, as well as endoplasmic reticulum (ER) stress and autophagy. Nelfinavir blocks growth factor receptor activation and decreases growth factor-induced and endogenous Akt signaling. In vivo, nelfinavir inhibits tumor growth and upregulates markers of ER stress, autophagy and apoptosis. Nelfinavir is currently being tested in cancer patients in Phase I clinical trials where biomarkers will be assessed. Current studies are focused on measuring autophagy in clinical specimens and identifying combination strategies that will exploit the induction of autophagy and increase the effectiveness of nelfinavir.  相似文献   

11.
《Autophagy》2013,9(1):107-109
The development of cancer drugs is slow and costly. One approach to accelerate the availability of new drugs is to reposition drugs approved for other indications as anti-cancer agents. HIV protease inhibitors (HIV PIs) are useful in treating HIV infection and cause toxicities in humans that are similar to those observed when the kinase Akt, a target for cancer therapy, is inhibited. To test whether HIV PIs inhibited Akt and cancer cell proliferation, we screened 6 HIV PIs and found that three, ritonavir, saquinavir and nelfinavir, inhibit the growth of over 60 cancer cell lines derived from 9 different tumor types; Nelfinavir is the most potent. Nelfinavir causes caspase-dependent apoptosis and non-apoptotic death, as well as endoplasmic reticulum (ER) stress and autophagy. Nelfinavir blocks growth factor receptor activation and decreases growth factor-induced and endogenous Akt signaling. In vivo, nelfinavir inhibits tumor growth and upregulates markers of ER stress, autophagy and apoptosis. Nelfinavir is currently being tested in cancer patients in Phase I clinical trials where biomarkers will be assessed. Current studies are focused on measuring autophagy in clinical specimens and identifying combination strategies that will exploit the induction of autophagy and increase the effectiveness of nelfinavir.  相似文献   

12.
BackgroundHuman head and neck squamous cell carcinoma (HNSCC) is the sixth most malignant cancer worldwide. Despite significant advances in the delivery of treatment and surgical reconstruction, there is no significant improvement of mortality rates for this disease in the past decades. Radiotherapy is the core component of the clinical combinational therapies for HNSCC. However, the tumor cells have a tendency to develop radiation resistance, which is a major barrier to effective treatment. HIV protease inhibitors (HIV PIs) have been reported with radiosensitizing activities in HNSCC cells, but the underlying cellular/molecular mechanisms remain unclear. Our previous study has shown that HIV PIs induce cell apoptosis via activation of endoplasmic reticulum (ER) stress. The aim of this study was to examine the role of ER stress in HIV PI-induced radiosensitivity in human HNSCC.

Methodology and Principal Findings

HNSCC cell lines, SQ20B and FaDu, and the most commonly used HIV PIs, lopinavir and ritonavir (L/R), were used in this study. Clonogenic assay was used to assess the radiosensitivity. Cell viability, apoptosis and cell cycle were analyzed using Cellometer Vision CBA. The mRNA and protein levels of ER stress-related genes (eIF2α, CHOP, ATF-4, and XBP-1), as well as cell cycle related protein, cyclin D1, were detected by real time RT-PCR and Western blot analysis, respectively. The results demonstrated that L/R dose-dependently sensitized HNSCC cells to irradiation and inhibited cell growth. L/R-induced activation of ER stress was correlated to down-regulation of cyclin D1 expression and cell cycle arrest under G0/G1 phase.

Conclusion and Significance

HIV PIs sensitize HNSCC cells to radiotherapy by activation of ER stress and induction of cell cycle arrest. Our results provided evidence that HIV PIs can be potentially used in combination with radiation in the treatment of HNSCC.  相似文献   

13.
Mycobacterium tuberculosis (Mtb) infection leads to the induction of the apoptotic response, which is associated with bacilli killing. The early secreted mycobacterial antigen ESAT-6 of Mtb has been shown to induce apoptosis in human macrophages and epithelial cells. In the present study, we demonstrate that the stimulation of human epithelial A549 cells by ESAT-6 induces the endoplasmic reticulum (ER) stress response. We observed that ESAT-6 treatment increases intracellular Ca2+ concentration, which results in ROS accumulation, and therefore induces the onset of ER stress-induced apoptosis. Our results uncover a novel apoptotic mechanism of ESAT-6 through ER stress responses in pathologic conditions such as tuberculosis.  相似文献   

14.
Persistent endoplasmic reticulum (ER) stress and impairment of the ubiquitin-proteasome system (UPS) cause neuronal cell death. However, the relationship between these two phenomena remains controversial. In our current study, we have utilized an expanded polyglutamine fusion protein (polyQ81) expression system in PC12 cells to further examine the involvement of ER stress and UPS impairment in cell death. The expression of polyQ81-induced ER stress and cell death. PolyQ81 also induced the activation of c-Jun N-terminal kinase (JNK) and caspase-3 and an increase in polyubiquitin immunoreactivity, suggesting UPS impairment. ER stress was induced prior to the accumulation of polyubiquitinated proteins. Low doses of lactacystin had almost similar effects on cell viability and on the activation of JNK and caspase-3 between normal cells and polyQ81-expressing cells. These results suggest that ER stress mediates polyglutamine toxicity prior to UPS impairment during the initial stages of these toxic effects.  相似文献   

15.
TNFα plays key roles in the regulation of inflammation, cell death, and proliferation and its signaling cascade cross-talks with the insulin signaling cascade. PKCδ, a novel PKC isoform, is known to participate in proximal TNFα signaling events. However, it has remained unclear whether PKCδ plays a role in distal TNFα signaling events. Here we demonstrate that PKCδ is activated by TNFα in a delayed fashion that is temporally associated with JNK activation. To investigate the signaling pathways activating PKCδ and JNK, we used pharmacological and genetic inhibitors of NFκB. We found that inhibition of NFκB attenuated PKCδ and JNK activations. Further analysis revealed that ER stress contributes to TNFα-stimulated PKCδ and JNK activations. To investigate the role of PKCδ in TNFα action, we used 29-mer shRNAs to silence PKCδ expression. A reduction of ~90% in PKCδ protein levels reduced TNFα-stimulated stress kinase activation, including JNK. Further, PKCδ was necessary for thapsigargin-stimulated JNK activation. Because thapsigargin is a potent inducer of ER stress, we determined whether PKCδ was necessary for induction of the UPR. Indeed, a reduction in PKCδ protein levels reduced thapsigargin-stimulated CHOP induction, a hallmark of the UPR, but not BiP/GRP78 induction, suggesting that PKCδ does not globally regulate the UPR. Next, the role of PKCδ in TNFα mediated cross-talk with the insulin signaling pathway was investigated in cells expressing human IRS-1 and a 29-mer shRNA to silence PKCδ expression. We found that a reduction in PKCδ protein levels reversed the TNFα-mediated reduction in insulin-stimulated IRS-1 Tyr phosphorylation, Akt activation, and glycogen synthesis. In addition, TNFα-stimulated IRS protein Ser/Thr phosphorylation and degradation were blocked. Our results indicate that: 1) NFκB and ER stress contribute in part to PKCδ activation; 2) PKCδ plays a key role in the propagation of the TNFα signal; and 3) PKCδ contributes to TNFα-induced inhibition of insulin signaling events.  相似文献   

16.
17.
18.

We have previously examined the in vitro and in vivo antitumor action of TAP7f, a synthetic triazolylpeptidyl penicillin, on murine melanoma cells. In this work, we explored the signal transduction pathways modulated by TAP7f in murine B16-F0 and human A375 melanoma cells, and the contribution of some intracellular signals to the apoptotic cell death. TAP7f decreased ERK1/2 phosphorylation and increased phospho-p38, phospho-JNK and phospho-Akt levels. ERK1/2 blockage suppressed cell growth, while inhibition of p38, JNK and PI3K-I pathways reduced the antitumor effect of TAP7f. Pharmacological inhibition of p38 and JNK, or blockage of PI3K-I/Akt cascade with a dominant negative PI3K-I mutant diminished Bax expression levels and PARP-1 cleavage, indicating the involvement of these pathways in apoptosis. PI3K-I/Akt inhibition also favored an autophagic response, as evidenced by the higher expression levels of Beclin-1 and LC3-II detected in transfected cells exposed to TAP7f. However, although PI3K-I/Akt blockage promoted an autophagic survival response, this mechanism appears not to be critical for TAP7f antitumor action. It was also shown that TAP7f induced ER stress by enhancing the expression of ER stress-related genes and proteins. Downregulation of CHOP protein with specific siRNA increased cell growth and decreased cleavage of PARP-1, supporting its role in apoptosis. Furthermore, it was found that activation of p38, JNK and Akt occurred downstream ER perturbation. In summary, our results showed that TAP7f triggers an apoptotic cell death in melanoma cells through induction of ER stress and activation of p38, JNK and PI3K-I/Akt pathways.

  相似文献   

19.
Preclinical and clinical findings suggest that tumor-specific immune responses may be responsible – at least in part – for the clinical success of therapeutic regimens that rely on immunogenic cell death (ICD) inducers, including anthracyclines and oxaliplatin. The molecular pathways whereby some, but not all, cytotoxic agents promote bona fide ICD remain to be fully elucidated. Nevertheless, a central role for the endoplasmic reticulum (ER) stress response has been revealed in all scenarios of ICD described thus far. Hence, components of the ER stress machinery may constitute clinically relevant druggable targets for the induction of ICD. In this review, we will summarize recent findings in the field of ICD research with a special focus on ER stress mechanisms and their implication for cancer therapy.  相似文献   

20.
Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity. Endoplasmic reticulum (ER) and oxidative stress are elicited by palmitate and high glucose concentrations further potentiating JNK activity. Our aim was to determine the role of the JNK subtypes JNK1, JNK2 and JNK3 in palmitate and high glucose-induced β-cell apoptosis. We established insulin-producing INS1 cell lines stably expressing JNK subtype specific shRNAs to understand the differential roles of the individual JNK isoforms. JNK activity was increased after 3 h of palmitate and high glucose exposure associated with increased expression of ER and mitochondrial stress markers. JNK1 shRNA expressing INS1 cells showed increased apoptosis and cleaved caspase 9 and 3 compared to non-sense shRNA expressing control INS1 cells when exposed to palmitate and high glucose associated with increased CHOP expression, ROS formation and Puma mRNA expression. JNK2 shRNA expressing INS1 cells did not affect palmitate and high glucose induced apoptosis or ER stress markers, but increased Puma mRNA expression compared to non-sense shRNA expressing INS1 cells. Finally, JNK3 shRNA expressing INS1 cells did not induce apoptosis compared to non-sense shRNA expressing INS1 cells when exposed to palmitate and high glucose but showed increased caspase 9 and 3 cleavage associated with increased DP5 and Puma mRNA expression. These data suggest that JNK1 protects against palmitate and high glucose-induced β-cell apoptosis associated with reduced ER and mitochondrial stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号