首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
The capacity of sub‐yearling Siberian sturgeon (Acipenser baerii Brandt, 1869) (19.7 ± 0.8 g) to show compensatory growth was assessed for a 40‐day period for the effects of short‐term starvation and refeeding on growth, feeding performance and body composition. After acclimation, 25 experimental fish were randomly distributed among twelve 500‐L cylindrical fiberglass tanks with a flow‐through system. The fish were subjected to four different feeding regimes: control, which was fed four times daily to apparent satiation; T1: four periods of 2 days starvation alternating with 8 days re‐feeding; T2: two periods of 4 days starvation alternating with 16 days refeeding; T3: an 8 days starvation period followed by 32 days refeeding. At the end of the experiment, the deprived fish attained body weights comparable to those attained by the control fish. There were no differences in growth and feeding performances between the deprived and the control fish. Total protein and lipid contents of the control fish were significantly higher than that of T1 and T2 fish at the end of the experiment (P < 0.05). A significant difference in the energy content was observed between T2 and the control. Siberian sturgeon exhibited complete compensation, indicating a high ability of the deprived fish to grow sufficiently to fully compensate for weight loss during starvation. The results suggested that the feeding schedule involving starvation–refeeding cycles could be a promising feed management option for the culture of this species.  相似文献   

2.
Synopsis Experiments were conducted to monitor changes in body mass and metabolic energy expenditure before, during, and after periods of starvation in juveniles of three species of cyprinids: Leuciscus cephalus, Chalcalburnus chalcoides mento, and Scardinius erythrophthalmus. During the starvation period all fish lost weight at about the same rate and the total amount of oxygen consumed during an experimental period of 20 h was about 40% lower in the starved than in the fed groups. Upon refeeding, both mass specific maintenance; and routine rates of metabolism as well as relative growth rates increased rapidly, the peaks of these increases being directly proportional to the length of the starvation period. Maximum compensatory growth was observed after four weeks of starvation in C. chalcoides and S. erythrophthalmus, with relative growth rates reaching 30% d-1 during the first measuring interval after refeeding. The pattern of time-dependent compensatory growth displayed by these fish is similar to the responses of a colonial hydroid in which the rate of catch-up growth increased with the amount of stress to which the animals had been exposed. The exact cost of compensatory growth cannot be calculated because oxygen consumption and growth were not measured simultaneously. However, on the basis of data and calculations reported by Wieser & Medgyesy (1990) it appears that compensatory growth, if fuelled by the metabolic power indicated by our measurements of oxygen consumption, would have to be about twice as efficient as normal growth in the related species Rutilus rutilus.  相似文献   

3.
Temperature and starvation were found to be factors which affected the PPP dehydrogenase activities in brook trout liver. Fish acclimated at 5 °C possessed greater levels of G6PD, H6PD, and 6PGD activity than those fish maintained at 10 or 15 °C. This phenomenon was probably associated with increased lipogenesis during cold acclimation.During starvation hepatic G6PD and 6PGD activities decreased, whereas H6PD activity increased slightly. Upon refeeding, the G6PD level gradually increased, but the “overshoot” in enzyme activity reported in mammalian studies was not observed.When both cold acclimation and starvation were studied simultaneously, regulation by temperature was initially the dominant control factor. After 6 wk at 5 °C, there was no difference in specific activities between starved and fed fish. However, fish maintained at 5 °C for longer than 2 mo did show the normal response to starvation and refeeding. Therefore, regulation of the PPP by temperature appears to be a transitory phenomenon and may be associated with temporary metabolic reorganization in the fish.  相似文献   

4.
C. Fu  §  D. Li  §  W. Hu  §  Y. Wang  § Z. Zhu  §† 《Journal of fish biology》2007,71(SB):174-185
Compensatory growth is a phase of accelerated growth apparent when favourable conditions are restored after a period of growth depression. To investigate if F2 common 'all-fish' growth hormone gene transgenic common carp ( Cyprinus carpio ) could mount compensatory growth, a 9 week study at 29° C was performed. The control group was fed to satiation twice a day throughout the experiment. The other two groups were deprived of feed for 1 or 2 weeks, respectively, and then fed to satiation during the re-feeding period. At the end of the experiment, the live masses of fish in the deprived groups were still significantly lower than those of the controls. During the re-feeding period, size-adjusted mean specific growth rates and mean feed intakes were significantly higher in the deprived fish than in the controls, indicating a partial compensatory growth response in these fish. No significant differences were found in food conversion efficiency between the deprived and control fish during re-feeding, suggesting that hyperphagia was the mechanism responsible for increased growth rates. The proximate composition of the deprived fish at the end of the experiment was similar to that of the control fish. This study is, to our knowledge, the first to report that fast-growing transgenic fish can achieve partial compensation of growth following starvation.  相似文献   

5.
Synopsis Effect of food deprivation and refeeding on metabolic parameters were studied in juvenile Rutilus rutilus, weighing 280–460 mg. Tissue hydration increased with the length of the starvation period, reaching a new steady state after 4–5 weeks. Total protein concentration remained constant at about 60% of dry body mass. The concentration of glycogen decreased during food deprivation, a new steady state being reached at about 30% of control values after 4 weeks. Refeeding caused a dramatic increase of glycogen concentration which exceeded the value in fed controls by 6- to 9-fold. This is seen as a tactic for rapid storage of food energy, to be used later for the synthesis of body materials. With respect to their responses to food deprivation the 12 enzymes investigated formed four groups: (1) activity unaffected by food deprivation or refeeding (COX, THIOL, CK, GOT); (2) activity drops to about 60% of control value during the initial phase of food deprivation but remains constant thereafter (PK, LDH, Pase); (3) slow but continuous decrease in activity during the whole period of starvation, i.e. up to 7 weeks (PFK, OGDH, CS, FBPase); (4) activity increases during food deprivation, decreases again upon refeeding (GPT). A model is discussed which distinguishes between four phases in the general response of young fish to food deprivation and refeeding: stress, transition, adaptation, and recovery.  相似文献   

6.
在高温(29±1)℃下将西伯利亚鲟幼鱼(21.61±0.03)g饥饿0(对照)、6、12和18d后恢复摄食3周, 研究摄食、生长和鱼体组成的变化。结果表明, 经过不同程度饥饿的鱼体重均显著低于对照组(P0.05), 而饥饿18d(S18组)的鱼体重显著低于对照(P0.05)。在饥饿过程中,鱼体脂肪含量和肝脏肝糖原含量下降的同时, 各饥饿组的灰分含量上升, 但仅S18组与对照差异显著(P0.05)。结果表明, 西伯利亚鲟在高温下表现出完全补偿现象, 且是通过同时提高摄食率和饲料效率来实现补偿生长的, 因此在夏季高温时对鲟鱼进行一段时间适度的饥饿可以在不影响生长和体成分的前提下节约饲料成本, 减少因过量投饵而引起的环境污染。    相似文献   

7.
The effect of feed cycling (consisting of periods of starvation followed by periods of refeeding to satiation) on compensatory growth was evaluated in growth hormone transgenic and non‐transgenic wild‐type coho salmon Oncorhynchus kisutch. The specific growth rate (GSR) of feed‐restricted non‐transgenic O. kisutch was not significantly different from the GSR of fully‐fed non‐transgenic O. kisutch during two refeeding periods, whereas the GSR of feed‐restricted transgenic O. kisutch was significantly higher in relation to the GSR of fully‐fed transgenic O. kisutch during the second refeeding period, but not during the first, indicating that growth compensation mechanisms are different between non‐transgenic and growth‐hormone (GH)‐transgenic O. kisutch and may depend on life history (i.e. previous starvation). Despite the non‐significant growth rate compensation in non‐transgenic O. kisutch, these fish showed a level of body mass catch‐up growth not displayed by transgenic O. kisutch.  相似文献   

8.
The effect of starvation and subsequent re‐feeding to satiation on compensatory growth performance, insulin and blood serum values were investigated in juvenile Persian sturgeon (Acipencer persicus) with an average weight 108.04 ± 0.28 g (mean ± SEM) and in the same rearing condition over an 8‐week period. Sturgeons were allocated to one of five feeding treatments: controls (C, continuous feeding), W1 (1 week starvation), W2 (2 weeks starvation), W3 (3 weeks starvation) and W4 (4 weeks starvation), followed by a single 4 weeks of re‐feeding to satiation. Changes in growth performance and blood serum indices were examined at the end of weeks 4 and 8. Body weight, specific growth rate (SGR), condition factor (CF) and weight gain were determined to have significantly decreased during starvation. Fish starved for 1 week reached the same weight as the control fish after re‐feeding for 4 weeks, indicating that complete compensatory growth occurred. Although the specific growth rate in W2, W3 and W4 fish was greater than that in the control fish after re‐feeding, W2, W3 and W4 fish did not reach the same body weight as control fish at the end of re‐feeding period, and showed partial compensation only. Blood plasma, glucose and insulin concentrations did not change significantly during starvation and re‐feeding (P > 0.05). This suggests that sturgeon are able to maintain glycaemia during starvation, probably due to their non‐carbohydrate dietary source. Plasma total lipid and triglyceride levels increased in starvation treatments, whereas the increases were significant only in W3 treatment (P < 0.05). After a 4‐week re‐feeding period, their levels decreased in comparison to the starvation periods. Increases in plasma total lipid and triglyceride levels appear to be due to their roles as preferred nutrients for mobilization in Persian sturgeon and the magnitude and duration of compensatory growth depended on the length of food deprivation.  相似文献   

9.
Compensatory growth is the phase of rapid growth, greater than normal or control growth, which occurs upon adequate refeeding following a period of undernutrition. The effect of feed cycling periods (periods of starvation followed by periods of refeeding), ration level and repetitive feed cycles on the compensatory growth response in rainbow trout were evaluated in two experiments. A feeding cycle of 3 weeks starvation and 3 weeks feeding produced better results in terms of average percentage changes in weight and length, and in specific growth rate, than either 1 week and 1 week or 2 weeks and 2 weeks feed cycles. The fish on the 3 weeks starvation and 3 weeks feeding cycle did as well as, if not better than, the constantly fed controls over one or two complete cycles, though the controls were fed more than twice the amount of feed. Three ration levels were compared using a 3-week starvation and 3-week feeding period. The only effect of increasing ration level was to decrease conversion efficiency, indicating overfeeding. Carcass analysis of moisture, fat, protein and ash showed no significant differences between the controls and an experimental group on a 3 weeks starvation, 3 weeks feeding cycle after one complete cycle. Possible mechanisms underlying the compensatory growth response are discussed.  相似文献   

10.
Fasting and refeeding effects on gastrointestinal morphology and digestive enzyme activities of Atlantic salmon, held in tanks of seawater at 9°C and 31‰ salinity, were addressed in two trials. Trial 1: Fish (mean body mass 1190 g) were fasted for 40 days and intestines sampled at day 0, 2, 4, 11, 19 and 40. Trial 2: Fish (1334 g), fasted for 50 days, were refed and sampled at day 0, 3 and 7. Mass, length, protein, and maltase, lactase, and leucine aminopeptidase (LAP) activities were analyzed for stomach (ST), pyloric caeca (PC), proximal (PI), mid (MI), and distal intestine (DI). PC contributed 50% of gastrointestinal mass and 75% of enzyme capacity. Fasting decreased mass and enzyme capacities by 20–50% within two days, and 40–75% after 40 days. In PC, specific brush border membrane (BBM) maltase activity decreased whereas BBM LAP increased during fasting. Upon refeeding, enzyme capacities were mostly regenerated after one week. The results suggest that refeeding should start slowly with about 25% of estimated feed requirement during the first 3 days, but may then be stepped up rapidly. Investigations of digestive processes of fed fish should only be performed when intestines are feed-filled to avoid bias due to effects of fasting.  相似文献   

11.
Although otolith Strontium (Sr)/calcium (Ca) ratios have been widely used to reconstruct the past salinity environmental history of anguillid eels, factors affecting the Sr/Ca ratios in otoliths are incompletely understood. Japanese Eel (Anguilla japonica) elvers (mean length 54.7 ± 2.1 mm) were collected in the estuary during their upstream migration and reared at 5 different salinities (0, 5, 15, 25, and 35 psu) and 3 types of feeding conditions (formulated feed, tubifex, and starvation) for 30 days to evaluate the effects of salinity and diets on otolith Sr/Ca ratios. Ca and Sr concentrations in the ambient water significantly increased with salinity (SAL) as [Ca] water = 15.50SAL − 5.56, and [Sr] water = 0.21SAL + 0.03, respectively. Sr/Ca ratios in otoliths increased with salinity (SAL) of the rearing water as [(Sr/Ca) × 1000] otolith = 0.091SAL + 3.790. In diets, Sr/Ca ratios were 4 times higher in tubifex than in formulated feed. However, in otoliths, ANOVA indicated that Sr/Ca ratios did not differ significantly between groups fed on tubifex or formulated feed (p = 0.118). Otolith Sr/Ca ratios were negatively correlated with fish growth rates while the growth rates differed significantly among rearing conditions with different salinities and diets. Partition coefficients of the Sr/Ca ratios from ambient water to fish tissues and otoliths significantly increased with salinity. The Sr/Ca ratios of Japanese Eel otoliths thus were positively correlated with the ambient salinity and decreased with increasing fish growth rate, but was not affected by fish diet.  相似文献   

12.
13.
The objective of this study was to evaluate the feeding rate of the great sturgeon (Huso huso) young of the year (YOY) and to investigate the effects of different feeding rates in maintaining the weight of fish during short periods of winter starvation. Six feeding rates of 0.2, 0.4, 0.6, 0.8, 1.0% body weight (BW) day?1 and feeding to satiation were considered for the first experiment. Each feeding rate was randomly assigned to three replicate tanks, with continuous feeding throughout a 5‐week winter period of water temperatures below 10°C. Fifteen fish were held in each of 18 tanks with an average initial body weight of 219.6 ± 6.9 g. After 5 weeks of feeding, the best performance was observed in fish fed 1% BW day?1, but negative growth was observed in fish fed 0.2% BW day?1. In the second experiment, fish were deprived of feed for 3 weeks at winter temperatures. Weights and condition factors of all fish decreased during starvation, while the differences in mean weight before and after the starvation period were not significant in fish fed a level of 0.2% BW day?1 and those fish fed to satiation. No mortality was recorded in either experiment. Results of this study indicate that a feeding rate of 1% BW day?1 would be sufficient for commercial fish farming of YOY of this species to maintain them over winter. Also, to maintain fish weights and prevent weight loss in overwintering ponds, a feeding rate of around 0.3% BW day?1 seems appropriate for hatcheries.  相似文献   

14.
1. The effects of starvation (for 1, 2, 3, 6, 9 and 12 days, respectively) and refeeding (12 days starvation and 1, 2 and 3 days refeeding, respectively) on egg laying and albumen gland activity in the freshwater snail, Bulinus truncatus were studied. 2. The egg laying of starving snails rapidly decreased and ceased by day 6 of starvation. Egg laying was restored 24 hr after refeeding. The recorded decrease in albumen gland wet weight was proportional to the starvation periods. The DNA contents of the glands of the different experimental groups was not statistically different from the controls. 3. Albumen gland synthetic activity expressed as 14C-glucose incorporation into galactogen/microgram DNA and 3H-amino acids into total protein was determined. The glands showed an abrupt decrease in synthetic activity after 1 day of starvation and gradually decreased further until days 9-12. The decrease in activity of the glands was more rapid than that of egg laying. Upon refeeding, the activity of the glands recovered rapidly, simultaneous with the increase in wet weight and egg laying. 4. In conclusion, there is a correlation between egg laying and the in vitro activity of albumen glands. The results show a short-term effect of starvation on the fecundity of the snails. Such studies could be useful in field studies as well as snail control by applying molluscicides under optimal conditions.  相似文献   

15.
During starvation, muscle glycogen in Boleophthalmus boddaerti was utilized preferentially over liver glycogen. In the first 10 days of fasting, the ratio of the active‘a’form of glycogen phosphorylase to total phosphorylase present in the liver was small. During this period, the active‘I’form of glycogen synthetase increased in the same tissue. In the muscle, the phosphorylase‘a’activity declined during the first 7 days and increased thereafter while the total glycogen synthetase activity showed a drastic decline during the first 13 days of fasting. The glycogen level in the liver and muscle of mudskippers starved for 21 days increased after refeeding. After 6 and 12 h refeeding, liver glycogen level was 8·5 ± 2·3 and 6·9 ± 4·5 mg·g wet wt 1, respectively, as compared to 5·8 ± l·6mg·g wet wt 1 in unfed fish. Muscle glycogen level after 6 and 12 h refeeding was 0·96±0·76 and 0·82 ± 0·50 mg·g wet wt 1, respectively, as opposed to 0·21 ± 0·12 mg·g wet wt 1 in the 21-days fasted fish. At the same time, activities of glycogen phosphorylase in the muscle and liver increased while the active‘I’form of glycogen synthetase showed higher activity in the liver. Since glycogen was resynthesized upon refeeding, this eliminated the possibility that glycogen depletion during starvation was due to stress or physical exhaustion after handling by the investigator. Throughout the experimental starvation period, the body weight of the mudskipper decreased, with a maximum of 12% weight loss after 21 days. Liver lipid reserves were utilized at the onset of fasting but were thereafter resynthesized. Muscle proteins were also metabolized as the fish were visibly thinner. However, no apparent change in protein content expressed as per gram wet weight was detected as the tissue hydration state was maintained constant. The increased degradation of liver and muscle reserves was coupled to an increase in the activities of key gluconeogenic enzymes in the liver (G6Pase, FDPase, PEPCK, MDH and PC). The increase in glucose synthesis was possibly necessary to counteract hypoglycemia brought about by starvation in B. boddaerti.  相似文献   

16.
Oxygen uptake of growth hormone transgenic coho salmon Oncorhynchus kisutch was measured in individual fish with a closed-system respirometer and was compared with that of similar-sized non-transgenic control coho salmon during starvation and when fed a fixed ration or to satiation. Transgenic and control fish did not differ in their standard oxygen uptake after 4 days of starvation, although control fish had a higher routine oxygen uptake, scope for spontaneous activity and initial acclimation oxygen uptake. During feeding, transgenic fish ate significantly more than control fish, and had an overall oxygen uptake that was 1·7 times greater than control fish. When fish that had eaten the same per cent body mass were compared, transgenic fish had an oxygen uptake that was 1·4 times greater than control fish. Differences in oxygen uptake in growth hormone transgenic coho salmon and non-transgenic fish appear to be due to the effects of feeding, acclimation and activity level, and not to a difference in basal metabolism.  相似文献   

17.
Saithe (Pollachius virens L.) were starved for 66 days at 10 degrees C and activities of aryl sulfatase, acid proteinase, beta-glucuronidase, RNAase and acid phosphatase measured in homogenates prepared from fast and slow myotomal muscles. In fed fish, hydrolase activities were generally higher in slow than fast muscles. With the exception of acid proteinase activity in slow muscle, the activities of all the lysosomal enzymes increased by 70 to 100% during starvation. In general, there was a proportionally larger increase in the hydrolase activities in fast than in slow muscle. In a second experiment, fish were starved for 74 days, and refed for up to 52 days. The increases in aryl sulfatase and acid proteinase activity produced in fast muscle with starvation were found to be rapidly reversed by refeeding. Lysosomal enzyme activities in fish sampled after 10 days refeeding were not significantly different from fed controls. Membrane fractions enriched in aryl sulfatase activity were prepared from the fast muscle of 66-day starved fish. These were capable of degrading both myosin heavy chains and actin to lower molecular weight peptides at acid (pH 5.0), but not at neutral pH. The results suggest a role for lysosomal enzymes in the breakdown of myofibrillar proteins during starvation.  相似文献   

18.
为探究周期性饥饿再投喂对大鳞副泥鳅(Paramisgurnus dabryanus)生长性能、抗氧化能力和肠道消化酶活性的影响, 实验将初始重一致的大鳞副泥鳅随机分为4组, 每组3个重复, 饲养于12个水箱中, 每箱20尾。采用周期性饥饿2d再投喂4d(S2F4)、周期性饥饿2d再投喂6d(S2F6)、周期性饥饿2d再投喂8d(S2F8)和持续投喂(对照组)4种投喂模式, 投喂30d, 并于第0、第15和第30天收集样本进行检测。结果表明: (1)不同处理对末体长和特定生长率无显著影响(P>0.05), S2F8处理组末体重和增重率显著高于对照组(P<0.05)。(2)周期性饥饿再投喂对肥满度、脏体比和肝体比无显著影响(P>0.05)。(3)随饥饿再投喂处理时间增长, S2F6和S2F8组肝脏SOD、CAT和GSH-PX活性显著升高; 在第15天, S2F8组SOD活性显著高于对照组(P<0.05), S2F6和S2F8组肝脏CAT活性显著高于对照组(P<0.05), S2F6和S2F8组肝脏GSH-PX活性均显著高于对照组(P<0.05)。在第30天, S2F6和S2F8组SOD活性显著高于对照组(P<0.05), S2F6组CAT活性均显著高于对照组(P<0.05), S2F6和S2F8组中GSH-PX活性显著高于对照组(P<0.05)。(4)对肠道消化酶研究发现, 投喂时间对肠道蛋白酶、淀粉酶和脂肪酶活性无显著影响。在第30天时, S2F6和S2F8组肠道脂肪酶显著低于对照组(P<0.05)。综上所述, 周期性饥饿再投喂可激发大鳞副泥鳅补偿生长, 引起肝脏抗氧化酶活性增加, 肠道消化酶活性降低。其中S2F8组补偿生长最显著, 且肠道消化酶活性变化程度较小。因此, 为保证饲养效果, 推荐使用S2F8投喂模式。  相似文献   

19.
Most fish species are regularly subjected to periods of starvation during which a reduction of energy turnover might be favourable for the animal. This reduction of energy flux may be achieved by changes in thermal behaviour and/or swimming activity. We investigated such behavioural changes during starvation and subsequent refeeding in roach, Rutilus rutilus, with respect to energetic benefits and growth maximisation. Roach, acclimated to a wide range of temperatures (4, 12, 20, 24, 27 and 30 °C), were fed to excess, subjected to 3 weeks of starvation and subsequently refed in order to determine the temperature dependence of feeding rates, growth rates and conversion efficiency (K1) under control conditions and during compensatory growth. When exposed to a thermal gradient, control animals preferentially selected a temperature of 26.8ǂ.9 °C, which is in the range of the optimal temperatures for feeding, growth and conversion efficiency. Starving fish showed a distinct circadian pattern of the mean selected temperature (MST). They migrated to cooler water in the dark (MSTdark=22.8ǃ.1 °C) but returned to warmer water during daytime. This behaviour may be regarded as a trade-off between the potentially higher food density in warmer water areas and the energetic benefit of selecting cooler water patches. The circadian pattern of MST was gradually abandoned upon refeeding and control values were reached again after 3 weeks. Energetically more effective than behavioural hypothermia was the reduction of swimming activity. During starvation, activity peaks were slightly lower than under control conditions and mean daily activity decreased by about 50%. Swimming velocity, however, was not affected by feeding regime. After a period of starvation fish showed compensatory growth at all temperatures, even below 12 °C, where these animals normally do not grow. This suggests that after a period of starvation the critical temperature for growth shifts to lower values.  相似文献   

20.
The digestive enzyme activities were determined in Adriatic sturgeon and rainbow trout during starvation and refeeding period. Overall, the digestive enzyme activities are affected in the same sense in both species. The protease and lipase activities were decreased later than amylase activity. Even after 1 month of starvation, both species would be prepared to digest protein and lipids in an effective way. After 72 days of starvation, the digestive machinery of the sturgeon and of the trout shows an altered capacity to digest macronutrients. The capacity to digest proteins and lipids, after 60 days of refeeding, begins to become re-established in sturgeon and trout. In contrast, in this period, the capacity to digest carbohydrates remains depressed in both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号