首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TLR3(Toll like receptor 3)是Toll样受体家族的重要成员,通过识别病原相关分子模式,诱导宿主天然免疫应答。研究从斜带石斑鱼(Epinephelus coioides)中克隆得到TLR3 cDNA序列,全长为2937 bp,包括107bp的5′非编码区、100 bp的3′非编码区和编码909个氨基酸的2730 bp的开放阅读框。TLR3全长氨基酸序列包含1个信号肽、18个富含亮氨酸的重复序列(Leucine-rich Repeat LRR)、1个跨膜结构域和1个胞内TIR结构域(IL-R1 homologous region)。同源比对显示,斜带石斑鱼TLR3与其他已报道硬骨鱼类的TLR3具有较高的同源性(52%—67%)。组织表达分析显示,TLR3在健康斜带石斑鱼的组织中具有较广的表达分布,其中在前脑、体肾和脾脏中表达量较高。刺激隐核虫(Cryptocaryon irritans)感染斜带石斑鱼后:在皮肤中TLR3的表达量呈现先降低后升高的趋势,从感染后第7天开始上调,并在第10天达到高峰;而在脾脏中,TLR3的表达量在感染6h时就显著上调并达到峰值。结果表明斜带石斑鱼TLR3在抗刺激隐核虫的免疫应答过程中可能发挥重要作用。  相似文献   

2.
The toll-like receptors (TLRs) are an important gene family in host innate immunologic surveillance. The TLR22 gene is an essential member of the TLRs that is only found in aquatic animals and has been detected in some bony fish. Here, a TLR22 homolog, EcTLR22, was characterized in the orange-spotted grouper (Epinephelus coioides) via homology cloning. The 3321 bp full-length cDNA sequence of EcTLR22 was obtained, which included an open reading frame of 2880 bp encoding a putative peptide of 960 amino acids containing three highly typical domains with the characteristics of TLR family members. The deduced amino acid sequence of EcTLR22 showed a relatively high similarity to flounder TLR22. Phylogenetic analysis showed that the orange-spotted grouper TLR22 sequence was clustered with those of Perciforme, such as flounder and croaker. Real-time quantitative PCR analysis revealed broad expression of EcTLR22, with relatively high expression detected in the head kidney, trunk kidney, spleen, peripheral blood leukocytes (PBLs) and heart of orange-spotted grouper. After injection with Vibrio alginolyticus, there was significant up-regulation of the expression of EcTLR22 in the spleen. In evaluating unstimulated/stimulated head kidney leukocytes and spleen leukocytes, a significant increase in EcTLR22 mRNA expression was detected, which implied a sensitive immune response. Furthermore, four important molecules for signal transduction, MyD88, TRIF, TNF-α and IRF3, were chosen to analyze the role of the EcTLR22 signaling pathway in anti-pathogen responses. Upon LPS or Poly I:C challenge, expression of the four genes was induced, with an increasing tendency detected in head kidney leukocytes, suggesting that the four genes might work with EcTLR22 in host defense against pathogenic microbes.  相似文献   

3.
Cryptocaryon irritans is one of the most important ectoparasites of marine fish, and can have a devastating effect on aquacultured fish populations. The role of TLR signaling pathways in anti-parasitic immune responses is poorly understood in fish. In this paper, we first cloned Epinephelus coioides MyD88 full-length cDNA (EcMyD88) and its respective gene. The open reading frame (ORF) of cDNA is 873 bp encoding 291 amino acid residues. Similar to other species, the EcMyD88 gene contains of five conserved exons and four diverse introns. The constitutive expression of EcMyD88 was detected in the gill, trunk kidney, head kidney, spleen, and heart in high concentrations, while the skin, brain, liver, and muscles contained much lower titers, indicating that EcMyD88 may play a crucial role in host innate immunologic surveillance. To identify the potential role of TLR pathways in fish anti-C. irritans immune responses, we chose three important molecules involved in anti-parasite responses, TLR2, MyD88 and IL-1β to indicate TLR pathway’s signal-in, signal transduction, and signal-out functions, respectively. The expression profile of these three genes was detected in grouper infected by C. irritans. Results showed these molecules each experience significant changes within the skin, gill (two infected mucosal sites), head kidney and spleen (two systematic immune organs) after C. irritans infection. These findings indicate the TLR signaling pathway may play an important role in host defense against C. irritans.  相似文献   

4.
5.
Toll-like receptors (TLRs) are a large family of pattern recognition receptors, which are involved in triggering host immune responses against various pathogens by detecting their evolutionarily conserved pathogen associated molecular patterns (PAMPs). TLR21 is a non-mammalian type TLR, which recognizes unmethylated CpG DNA, and is considered as a functional homolog of mammalian TLR9. In this study, we attempted to identify and characterize a novel TLR21 counterpart from rock bream (Oplegnathus fasciatus) designated as RbTLR21, at molecular level. The complete coding sequence of RbTLR21 was 2919 bp in length, which encodes a polypeptide of 973 amino acids with a predicted molecular mass of 112 kDa and a theoretical isoelectric point of 8.6. The structure of the deduced RbTLR21 protein is similar to that of the members of typical TLR family, and includes the ectodomain, which consists of 16 leucine rich repeats (LRRs), a transmembrane domain, and a cytoplasmic Toll/interleukin-1 receptor (TIR) domain. According to the pairwise sequence analysis data, RbTLR21 was homologous to that of the orange-spotted grouper (Epinephelus coioides) with 76.9% amino acid identity. Furthermore, our phylogenetic analysis revealed that RbTLR21 is closely related to E. coioides TLR21. The RbTLR21 was ubiquitously expressed in all the tissues tested, but the highest expression was found in spleen. Additionally, upon stimulation with Streptococcus iniae, rock bream iridovirus (RBIV), and Edwardsiella tarda, RbTLR21 mRNA was significantly up-regulated in spleen tissues. Collectively, our findings suggest that RbTLR21 is indeed an ortholog of the TLR21 family and may be important in mounting host immune responses against pathogenic infections.  相似文献   

6.
The Toll-like receptor 7 (TLR7) is activated by single strand RNA and RNA-like compounds (imidazoquinoline), and it induces interferon production. We identified and described carp TLR7 cDNA and its mRNA expression. The full-length cDNA of carp TLR7 gene is 3427 bp, encoding 1049 amino acids (AB553573). The similarities of carp TLR7 with zebrafish, rainbow trout, fugu, and human TLR7 were 89.6, 83.4, 80.6 and 74.6%, respectively, at the amino acid sequence level. Furthermore, the expression of TLR7 mRNA was investigated in normal tissues of carp by semi-quantitative RT-PCR analysis. Carp TLR7 expression was exhibited in healthy tissues (kidney, brain, spleen, skin, intestine, muscle, liver, gills and heart) and though the expression level in each tissue varied among healthy fish. Carp TLR7 expression was significantly increased in head kidney stimulated with TLR7 agonist, imiquimod, at 8, 24 and 48 h in vitro when compared to expression in the control group. Moreover, carp head kidney leukocytes produced elevated levels of pro-inflammatory and type 1 interferon cytokine mRNA in response to imiquimod stimulation.  相似文献   

7.
为研究TLR21(Toll like receptor 21)在低等脊椎动物中的功能及表达调控机制,我们扩增获得了日本鳗鲡TLR21(AjTLR21)cDNA序列,其编码的蛋白具有TLR家族的共同特征。AjTLR21基因结构与其他鱼类和两栖类TLR21相同,由单个外显子编码。荧光定量结果显示,AjTLR21在血液、鳃、脾脏、中肾等11个组织/器官中转录表达,其中在血液中表达量最高。经Poly I:C诱导后8h,AjTLR21在脾脏和中肾中的表达量显著性上调;诱导后16h,AjTLR21在血液、鳃、肠和脾脏中的表达量显著性上调(P < 0.05)。双荧光素酶报告基因结果显示,在AjTLR21 5'上游调控序列-1179 bp到+117 bp存在Poly I:C调节的正调控元件。经Edwardsiella tarda诱导后16h和72h,AjTLR21分别在血液和中肾组织的表达量显著性上调,表明AjTLR21同时也参与了抗细菌免疫应答,其在机体免疫系统中的功能具有多样性。研究对于理解日本鳗鲡AjTLR21的免疫学功能具有重要的理论意义和应用价值。  相似文献   

8.
Toll-like receptors (TLRs) are considered as key sensors to trigger the host's innate immune system and adaptive immune responses by recognizing various PAMPs and initiating signal transduction. TLR9, as a member of TLR family, mediates the recognition of unmethylated CpG dinucleotide motifs commonly found in both bacterial and viral genomes. In the current study, the TLR9 gene was isolated from one of flatfish species, half-smooth tongue sole (Cynoglossus semilaevis). In the 4588 bp genomic sequence, three exons, two introns, and 5′ UTR of 23 bp and 3′ UTR of 342 bp were identified. Putative amino acid sequence was 1062 residues long, including a typical conserved cytosolic Toll/interleukin-1 receptor (TIR) domain, 14 leucine-rich repeat (LRR) motifs, with greater than 60% identity to gilthead sea bream Sparus aurata and Japanese flounder Paralichthys olivaceus orthologs. Quantitative RT-PCR analysis indicated a broad expression of csTLR9, especially in spleen and gonads. No statistically significant changes were observed for csTLR9 mRNA levels in spleen and head kidney after inactive Vibrio anguillarum immunisation. In C. semilaevis ontogeny, the expression of csTLR9 appeared to be developmentally regulated. The presence of maternal TLR9 mRNA and the dramatic decrease of TLR9 expression at metamorphic stage indicated TLR9 might be involved in C. semilaevis development. Comparing sequence and expression profile of csTLR9 with mammalian and other piscine TLR9s suggested that the main function of TLR9 might be conserved across vertebrates, although species-specific features were present.  相似文献   

9.
Toll-like receptors (TLRs) are one of the key components of innate immunity. Among various TLR types, TLR2 is involved in recognizing specific microbial structures such as peptidoglycan (PGN), lipoteichoic acid (LTA), zymosan etc., and after binding them it triggers myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway to induce various cytokines. In this report, TLR2 gene was cloned and characterized in rohu (Labeo rohita), which is highly commercially important fish species in the farming-industry of Indian subcontinent. Full-length rohu TLR2 (rTLR2) cDNA comprised of 2691 bp with a single open reading frame (ORF) of 2379 bp encoding a polypeptide of 792 amino acids (aa) with an estimated molecular mass of 90.74 kDa. Structurally, it comprised of one leucine-rich repeat region (LRR) each at N-terminal (LRR-NT; 44-55 aa) and C-terminal (LRR-CT; 574-590 aa), 21 LRRs in between C and N-terminal, one trans-membrane (TM) domain (595-612 aa), and one TIR domain (645-790 aa). Phylogenetically, rohu TLR2 was closely related to common carp and exhibited significant similarity (93.1%) and identity (88.1%) in their amino acids. During embryogenesis, rTLR2 expression was detected as early as ∼7 h post fertilization indicating its importance in embryonic innate immune defense system in fish. Basal expression analysis of rTLR2 showed its constitutive expression in all the tissues examined, highest was in the spleen and the lowest was in the eye. Inductive expression of TLR2 was observed following zymosan, PGN and LTA exposure and Streptococcus uberis and Edwardsiella tarda infections. Expression of immunoregulatory cytokine interleukin (IL)-8, in various organs was significantly enhanced by ligands exposure and bacterial infections, and was correlated with inductive expression of TLR2. In vitro studies showed that PGN treatment induced TLR2, MyD88 and TRAF6 (TNF receptor associated factor 6) expression, NF-κB (nuclear factor kappa B) activation and IL-8 expression. Blocking NF-κB resulted in down-regulation of PGN mediated IL-8 expression indicating the involvement of NF-κB in IL-8 induction. Together, these findings highlighted the important role of TLR2 in immune surveillance of various organs, and in augmenting innate immunity in fish in response to pathogenic invasion. This study will be helpful in developing preventive measures against infectious diseases in fish.  相似文献   

10.
Toll-like receptors (TLRs) are important components of innate immunity. They were found to recognise specific structures on pathogens termed pathogen-associated molecular patterns (PAMPs) and utilise conserved signaling pathways to activate pro-inflammatory cytokines and type-1 interferons. In spite of much understanding gained from the mammalian systems, many fish TLRs are unknown. Recent studies in Japanese flounder as well as in zebrafish suggested that the ligand binding and activation of inflammatory responses in fish may be different from and more complex than those found in mammals. In channel catfish, the major aquaculture species in the United States, only partial sequences of TLR3 and TLR5 were reported. As a part of efforts to characterise the innate immune components in channel catfish, here we cloned and sequenced both the cDNA and the gene for TLR2, a receptor believed mostly responsible for recognition of lipopeptides on the surface of most Gram-positive bacteria. However, expression analysis after infection with a Gram-negative bacterium, Edwardsiella ictaluri indicated that TLR2 was modestly down-regulated in the head kidney tissue of blue catfish, and with a similar pattern in the head kidney of channel catfish though the down-regulation in channel catfish was not statistically significant. In the spleen, an insignificant down-regulation was initially observed early after infection, with an increase of TLR expression later after infection. These results suggest the involvement of TLR2 in the responses after the bacterial infection. As LPS is believed to be the major PAMP for Gram-negative bacteria, additional research is warranted to determine the functions and mechanisms of TLR2 in infections of Gram-negative bacteria.  相似文献   

11.
12.
Toll-like receptors (TLR) mediate pathogen recognition in vertebrate species through detection of conserved microbial ligands. Families of TLR molecules have been described from the genomes of the teleost fish model species zebrafish and Takifugu, but much research remains to characterize the full length sequences and pathogen specificities of individual TLR members in fish. While the majority of these pathogen receptors are conserved among vertebrate species with clear orthologues present in fish for most mammalian TLRs, several interesting differences are present in the TLR repertoire of teleost fish when compared to that of mammals. A soluble form of TLR5 has been reported from salmonid fish and Takifugu rubripes which is not present in mammals, and a large group of TLRs (arbitrarily numbered 19-23) was identified from teleost genomes with no easily discernible orthologues in mammals. To better understand these teleost adaptations to the TLR family, we have isolated, sequenced, and characterized the full-length cDNA and gene sequences of TLR5S, TLR20, and TLR21 from catfish as well as studied their expression pattern in tissues. We also mapped these genes to bacterial artificial chromosome (BAC) clones for genome analysis. While TLR5S appeared to be common in teleost fish, and TLR21 is common to birds, amphibians and fish, TLR20 has only been identified in zebrafish and catfish. Phylogenetic analysis of catfish TLR20 indicated that it is closely related to murine TLR11 and TLR12, two divergent TLRs about which little is known. All three genes appear to exist in catfish as single copy genes.  相似文献   

13.
Toll-like receptors (TLRs) are essential for activation of the innate immune system in response to invading pathogens. TLR14, which is unique to fish, has been identified in several fish species, but its function is unclear. In this study, Japanese flounder (Paralichthys olivaceus) TLR14 gene (JfTLR14) was cloned and its expression profiles were analyzed after infection with viral hemorrhagic septicemia virus, gram-positive Streptococcus iniae and gram-negative Edwardsiella tarda. The coding region of JfTLR14 cDNA was 2,607 bp, encoding 878 amino acid residues. JfTLR14 was highly expressed in head kidney of healthy flounder. In response to infection with VHSV and S. iniae, the JfTLR14 gene was up-regulated at only 1 day post-infection (dpi). However, E. tarda infection increased JfTLR14 gene expression from 1 to 6 dpi. These results imply that JfTLR14 participates more in the immune response against E. tarda infection than in the immune responses to other pathogen infections.  相似文献   

14.
Information concerning TLR-mediated antigen recognition and regulation of immune responses during helminth infections is scarce. TLR2 is a key molecule required for innate immunity and is involved in the recognition of a wide range of viruses, bacteria, fungi and parasites. Here, we evaluated the role of TLR2 in a Taenia crassiceps cysticercosis model. We compared the course of T. crassiceps infection in C57BL/6 TLR2 knockout mice (TLR2-/-) with that in wild type C57BL/6 (TLR2+/+) mice. In addition, we assessed serum antibody and cytokine profiles, splenic cellular responses and cytokine profiles and the recruitment of alternatively activated macrophages (AAMφs) to the site of the infection. Unlike wild type mice, TLR2-/- mice failed to produce significant levels of inflammatory cytokines in either the serum or the spleen during the first two weeks of Taenia infection. TLR2-/- mice developed a Th2-dominant immune response, whereas TLR2+/+ mice developed a Th1-dominant immune response after Taenia infection. The insufficient production of inflammatory cytokines at early time points and the lack of Th1-dominant adaptive immunity in TLR2-/- mice were associated with significantly elevated parasite burdens; in contrast, TLR2+/+ mice were resistant to infection. Furthermore, increased recruitment of AAMφs expressing PD-L1, PD-L2, OX40L and mannose receptor was observed in TLR2-/- mice. Collectively, these findings indicate that TLR2-dependent signaling pathways are involved in the recognition of T. crassiceps and in the subsequent activation of the innate immune system and production of inflammatory cytokines, which appear to be essential to limit infection during experimental cysticercosis.  相似文献   

15.
Interferon (IFN) plays crucial roles in innate immune responses against viral infections. In the present study, we report cloning and characterization of the IFN gene from the sevenband grouper (Epinephelus septemfasciatus), and the anti-viral effects of its recombinant IFN protein in vivo. The isolated cDNA from sevenband grouper IFN encoded a protein consisting of 178 amino acids, and its first 22 amino acids represented a putative signal peptide. We named the identified sevenband grouper IFN gene as SgIFNa1 based on the result from phylogenetic analysis that categorized the deduced protein sequence into fish IFNa family. The expression of SgIFNa1 mRNA in the head kidney cells was induced by synthetic Poly(I:C), which is known as an inducer of IFN. It has also been confirmed that injection of recombinant SgIFNa1 protein (rSgIFNa1) upregulates expression of the Mx gene, which is known as an IFN-responsive gene, in head kidney cells. Moreover, we observed that preliminarily injection of rSgIFNa1 provided significant protection against a lethal challenge of nervous necrosis virus (NNV), which is a serious disease of sevenband grouper. These results demonstrate that SgIFNa1 has anti-viral activity and the administration of rSgIFNa1 to sevenband grouper is effective in preventing severe symptom development after NNV infection.  相似文献   

16.
Wang L  Wei Y 《Biochemical genetics》2012,50(5-6):467-475
Ferritin is a ubiquitous and conserved iron storage protein that plays a central role in iron metabolism. The ferritin heavy chain subunit (FerH) homolog was isolated from yellow grouper (Epinephelus awoara) spleen using suppression subtractive hybridization and RACE-PCR. The nucleotide sequence of FerH full-length cDNA was 1173 bp and contained an open reading frame of 534 bp, encoding a putative protein of 177 amino acids. The encoded protein shows 78-94% identity with homologs. Based on phylogenetic analysis, yellow grouper FerH is highly conserved throughout evolution and is closer to European seabass than to other species. RT-PCR analysis demonstrated that FerH was widely expressed in various healthy tissues and significantly up-regulated in liver, spleen, and anterior kidney by lipopolysaccharide. The results suggest that yellow grouper FerH may play a role in immune response.  相似文献   

17.
Toll-like receptors (TLRs) are a family of transmembrane proteins that recognize specific pathogen-associated molecular patterns and use conserved signaling pathways to activate proinflammatory cytokines and type-1 interferons to fight infection. TLR3 in mammals is best known for its recognition of dsRNA as ligand and its MyD88-independent signaling. TLR3, upon recognition of dsRNA, recruits and binds its adaptor protein TIR domain-containing adapter molecule (TICAM) 1. Here we report the genomic sequences and structures of TLR3 and a TICAM adaptor from channel catfish (Ictalurus punctatus). Whereas a partial TLR3 cDNA sequence has been reported from channel catfish, and complete TLR3 genes are known from other teleost fish species, a complete TICAM sequence has not been previously reported from a nonmammalian species. Analysis of catfish TLR3 and TICAM expression after infection with Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC), suggested a conserved TLR3-TICAM receptor–adaptor relation in catfish. Comparison of TLR3 and TICAM expression profiles in channel catfish with those from the closely related blue catfish species (Ictalurus furcatus), which exhibits strong resistance to ESC, revealed a striking pattern of species-specific expression. A dramatic downregulation of TLR3 and TICAM gene expression was observed in blue catfish head kidney and spleen, which we speculate may be the result of maturation and migration of different cell types to and from the lymphoid tissues following infection.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.Puttharat Baoprasertkul and Eric Peatman contributed equally to this work.  相似文献   

18.
Toll-like receptor 9 (TLR9) recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alternatively spliced isoforms, namely gTLR9A (full-length) and gTLR9B (with a truncated Cʹ-terminal signal transducing domain), whose regulation and function remain unclear. Here, we report a unique regulatory mechanism of gTLR9 signaling in orange-spotted grouper (Epinephelus coioides), whose gTlr9 sequence also contains two introns. We demonstrated that the grouper gTlr9 gene indeed has the capacity to produce two gTLR9 isoforms via alternative RNA splicing. We found that gTLR9B could function as a negative regulator to suppress gTLR9 signaling as demonstrated by the suppression of downstream gene expression. Following stimulation with CpG oligodeoxynucleotide (ODN), gTLR9A and gTLR9B were observed to translocate into endosomes and co-localize with ODN and the adaptor protein gMyD88. Both gTLR9A and gTLR9B could interact with gMyD88; however, gTLR9B could not interact with downstream IRAK4 and TRAF6. Further analysis of the expression profile of gTlr9A and gTlr9B upon immune-stimulation revealed that the two isoforms were differentially regulated in a time-dependent manner. Overall, these data suggest that fish TLR9B functions as a negative regulator, and that its temporal expression is mediated by alternative RNA splicing. This has not been observed in mammalian TLR9s and might have been acquired relatively recently in the evolution of fish.  相似文献   

19.
We have previously observed that in common carp (Cyprinus carpio), administration of β-glucan (MacroGard®) as feed additive leads to a lower expression of pro-inflammatory cytokines suggesting that this immunostimulant may be preventing an acute and potentially dangerous response to infection, particularly in the gut. However, in general, mechanisms to detect and eliminate pathogens must also be induced in order to achieve an efficient clearance of the infection. Protection against viral diseases acquired through β-glucan-supplemented feed has been extensively reported for several experimental models in fish but the underlining mechanisms are still unknown. Thus, in order to better characterize the antiviral action induced by β-glucans in fish, MacroGard® was administered daily to common carp in the form of supplemented commercial food pellets. Carp were fed for a period of 25 days prior to intra-peritoneal injection with polyinosinic:polycytidylic acid (poly(I:C)), a well-known double-stranded RNA mimic that triggers a type-I interferon (IFN) response. Subsequently, a set of immune related genes, including mx, were analysed by real-time PCR on liver, spleen, head kidney and mid gut tissues. Results obtained confirmed that treatment with β-glucan alone generally down-regulated the mRNA expression of selected cytokines when compared to untreated fish, while mx gene expression remained stable or was slightly up-regulated. Injection with poly(I:C) induced a similar down-regulated gene expression pattern for cytokines in samples from β-glucan fed fish. In contrast, poly(I:C) injection markedly increased mx gene expression in samples from β-glucan fed fish but hardly in samples from fish fed control feed. In an attempt to explain the high induction of mx, we studied Toll-like receptor 3 (TLR3) gene expression in these carp. TLR3 is a prototypical pattern recognition receptor considered important for the binding of viral double-stranded RNA and triggering of a type-I IFN response. Through genome data mining, two sequences for carp tlr3 were retrieved (tlr3.1 and tlr3.2) and characterized. Constitutive gene expression of both tlr3.1 and tlr3.2 was detected by real-time PCR in cDNA of all analysed carp organs. Strikingly, 25 days after β-glucan feeding, very high levels of tlr3.1 gene expression were observed in all analysed organs, with the exception of the liver. Our data suggest that β-glucan-mediated protection against viral diseases could be due to an increased Tlr3-mediated recognition of ligands, resulting in an increased antiviral activity of Mx.  相似文献   

20.
Toll-like receptors (TLRs) are the key molecular sensors used by the mammalian innate immune system to detect various types of pathogens. Tlr13 is a novel and uncharacterized member of the mammalian TLR family. Here we report the cloning and characterization of tlr13. Tlr13 is predominantly expressed in the spleen, particularly in dendritic cells and macrophages. Tlr13 appears to activate a MyD88- and TAK1-dependent TLR signaling pathway, inducing the activation of NF-κB. This receptor can also activate type 1 interferon through IRF7. Furthermore, Tlr13 seems to be another intracellular TLR. Remarkably, cells expressing tlr13 fail to respond to known TLR ligands but instead respond specifically to vesicular stomatitis virus. Cells with the knockdown of tlr13 are highly susceptible to vesicular stomatitis virus infection. Thus, these results provide an important insight into the potential role of the novel Toll-like receptor tlr13 in the recognition of viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号