首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial nitrate-dependent Fe(II) oxidation is known to contribute to iron biogeochemical cycling; however, the microorganisms responsible are virtually unknown. In an effort to elucidate this microbial metabolic process in the context of an environmental system, a 14-cm sediment core was collected from a freshwater lake and geochemically characterized concurrently with the enumeration of the nitrate-dependent Fe(II)-oxidizing microbial community and subsequent isolation of a nitrate-dependent Fe(II)-oxidizing microorganism. Throughout the sediment core, ambient concentrations of Fe(II) and nitrate were observed to coexist. Concomitant most probable number enumeration revealed the presence of an abundant nitrate-dependent Fe(II)-oxidizing microbial community (2.4 x 10(3) to 1.5 x 10(4) cells g(-1) wet sediment) from which a novel anaerobic, lithoautotrophic, Fe(II)-oxidizing bacterium, strain 2002, was isolated. Analysis of the complete 16S rRNA gene sequence revealed that strain 2002 was a member of the beta subclass of the proteobacteria with 94.8% similarity to Chromobacterium violaceum, a bacterium not previously recognized for the ability to oxidize nitrate-dependent Fe(II). Under nongrowth conditions, both strain 2002 and C. violaceum incompletely reduced nitrate to nitrite with Fe(II) as the electron donor, while under growth conditions nitrate was reduced to gaseous end products (N2 and N2O). Lithoautotrophic metabolism under nitrate-dependent Fe(II)-oxidizing conditions was verified by the requirement of CO2 for growth as well as the assimilation of 14C-labeled CO2 into biomass. The isolation of strain 2002 represents the first example of an anaerobic, mesophilic, neutrophilic Fe(II)-oxidizing lithoautotroph isolated from freshwater samples. Our studies further demonstrate the abundance of nitrate-dependent Fe(II) oxidizers in freshwater lake sediments and provide further evidence for the potential of microbially mediated Fe(II) oxidation in anoxic environments.  相似文献   

2.
Anaerobic nitrate-dependent Fe(II) oxidation is widespread in various environments and is known to be performed by both heterotrophic and autotrophic microorganisms. Although Fe(II) oxidation is predominantly biological under acidic conditions, to date most of the studies on nitrate-dependent Fe(II) oxidation were from environments of circumneutral pH. The present study was conducted in Lake Grosse Fuchskuhle, a moderately acidic ecosystem receiving humic acids from an adjacent bog, with the objective of identifying, characterizing and enumerating the microorganisms responsible for this process. The incubations of sediment under chemolithotrophic nitrate-dependent Fe(II)-oxidizing conditions have shown the enrichment of TM3 group of uncultured Actinobacteria. A time-course experiment done on these Actinobacteria showed a consumption of Fe(II) and nitrate in accordance with the expected stoichiometry (1:0.2) required for nitrate-dependent Fe(II) oxidation. Quantifications done by most probable number showed the presence of 1 × 104 autotrophic and 1 × 107 heterotrophic nitrate-dependent Fe(II) oxidizers per gram fresh weight of sediment. The analysis of microbial community by 16S rRNA gene amplicon pyrosequencing showed that these actinobacterial sequences correspond to ∼0.6% of bacterial 16S rRNA gene sequences. Stable isotope probing using 13CO2 was performed with the lake sediment and showed labeling of these Actinobacteria. This indicated that they might be important autotrophs in this environment. Although these Actinobacteria are not dominant members of the sediment microbial community, they could be of functional significance due to their contribution to the regeneration of Fe(III), which has a critical role as an electron acceptor for anaerobic microorganisms mineralizing sediment organic matter. To the best of our knowledge this is the first study to show the autotrophic nitrate-dependent Fe(II)-oxidizing nature of TM3 group of uncultured Actinobacteria.  相似文献   

3.
Repeated anaerobic microbial redox cycling of iron   总被引:4,自引:0,他引:4  
Some nitrate- and Fe(III)-reducing microorganisms are capable of oxidizing Fe(II) with nitrate as the electron acceptor. This enzymatic pathway may facilitate the development of anaerobic microbial communities that take advantage of the energy available during Fe-N redox oscillations. We examined this phenomenon in synthetic Fe(III) oxide (nanocrystalline goethite) suspensions inoculated with microflora from freshwater river floodplain sediments. Nitrate and acetate were added at alternate intervals in order to induce repeated cycles of microbial Fe(III) reduction and nitrate-dependent Fe(II) oxidation. Addition of nitrate to reduced, acetate-depleted suspensions resulted in rapid Fe(II) oxidation and accumulation of ammonium. High-resolution transmission electron microscopic analysis of material from Fe redox cycling reactors showed amorphous coatings on the goethite nanocrystals that were not observed in reactors operated under strictly nitrate- or Fe(III)-reducing conditions. Microbial communities associated with N and Fe redox metabolism were assessed using a combination of most-probable-number enumerations and 16S rRNA gene analysis. The nitrate-reducing and Fe(III)-reducing cultures were dominated by denitrifying Betaproteobacteria (e.g., Dechloromonas) and Fe(III)-reducing Deltaproteobacteria (Geobacter), respectively; these same taxa were dominant in the Fe cycling cultures. The combined chemical and microbiological data suggest that both Geobacter and various Betaproteobacteria participated in nitrate-dependent Fe(II) oxidation in the cycling cultures. Microbially driven Fe-N redox cycling may have important consequences for both the fate of N and the abundance and reactivity of Fe(III) oxides in sediments.  相似文献   

4.
Azospira suillum strain PS (formally Dechlorosoma suillum strain PS) is a metabolically versatile betaproteobacterium first identified for its ability to grow by dissimilatory reduction of perchlorate and chlorate [denoted (per)chlorate]. Together with Dechloromonas species, these two genera represent the dominant (per)chlorate-reducing bacteria in mesophilic freshwater environments. In addition to (per)chlorate reduction, A. suillum is capable of the anaerobic oxidation of humic substances and is the first anaerobic nitrate-dependent Fe(II) oxidizer outside the Diaphorobacter and Acidovorax genera for which there is a completed genome sequence.  相似文献   

5.
In order to assess the importance of nitrate-dependent Fe(II) oxidation and its impact on the growth physiology of dominant Fe oxidizers, we counted these bacteria in freshwater lake sediments and studied their growth physiology. Most probable number counts of nitrate-reducing Fe(II)-oxidizing bacteria in the sediment of Lake Constance, a freshwater lake in Southern Germany, yielded about 105 cells mL−1 of the total heterotrophic nitrate-reducing bacteria, with about 1% (103 cells mL−1) of nitrate-reducing Fe(II) oxidizers. We investigated the growth physiology of Acidovorax sp. strain BoFeN1, a dominant nitrate-reducing mixotrophic Fe(II) oxidizer isolated from this sediment. Strain BoFeN1 uses several organic compounds (but no sugars) as substrates for nitrate reduction. It also reduces nitrite, dinitrogen monoxide, and O2, but cannot reduce Fe(III). Growth experiments with cultures amended either with acetate plus Fe(II) or with acetate alone demonstrated that the simultaneous oxidation of Fe(II) and acetate enhanced growth yields with acetate alone (12.5 g dry mass mol−1 acetate) by about 1.4 g dry mass mol−1 Fe(II). Also, pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans strains can oxidize Fe(II) with nitrate, whereas Pseudomonas fluorescens and Thiobacillus denitrificans strains did not. Our study demonstrates that nitrate-dependent Fe(II) oxidation contributes to the energy metabolism of these bacteria, and that nitrate-dependent Fe(II) oxidation can essentially contribute to anaerobic iron cycling.  相似文献   

6.
Anthropogenic activities are influencing aquatic environments through increased chemical pollution and thus are greatly affecting the biogeochemical cycling of elements. This has increased greenhouse gas emissions, particularly methane, from lakes, wetlands, and canals. Most of the methane produced in anoxic sediments is converted into carbon dioxide by methanotrophs before it reaches the atmosphere. Anaerobic oxidation of methane requires an electron acceptor such as sulphate, nitrate, or metal oxides. Here, we explore the anaerobic methanotrophy in sediments of three urban canals in Amsterdam, covering a gradient from freshwater to brackish conditions. Biogeochemical analysis showed the presence of a shallow sulphate–methane transition zone in sediments of the most brackish canal, suggesting that sulphate could be a relevant electron acceptor for anaerobic methanotrophy in this setting. However, sediment incubations amended with sulphate or iron oxides (ferrihydrite) did not lead to detectable rates of methanotrophy. Despite the presence of known nitrate-dependent anaerobic methanotrophs (Methanoperedenaceae), no nitrate-driven methanotrophy was observed in any of the investigated sediments either. Interestingly, graphene oxide stimulated anaerobic methanotrophy in incubations of brackish canal sediment, possibly catalysed by anaerobic methanotrophs of the ANME-2a/b clade. We propose that natural organic matter serving as electron acceptor drives anaerobic methanotrophy in brackish sediments.  相似文献   

7.
硝酸盐型厌氧铁氧化菌的种类、分布和特性   总被引:2,自引:0,他引:2  
王茹  郑平  张萌  赵和平  周晓馨 《微生物学通报》2015,42(12):2448-2456
硝酸盐型厌氧铁氧化(NAFO)是指微生物在厌氧条件下利用硝酸盐或亚硝酸盐作为电子受体,将低价铁(二价铁或零价铁)氧化为高价铁(三价铁)的过程。具有NAFO代谢能力的微生物称为硝酸盐型厌氧铁氧化菌(NAFOM)。NAFO是微生物领域的重大发现,也是环境领域开发新型脱氮技术和地学领域研究铁、氮循环的理论依据。整理文献报道的NAFOM资料,分析NAFOM系统发育性状,探讨典型NAFOM的生态分布及其营养、代谢特性,以期为NAFOM菌种资源的开发、地球铁素和氮素循环的研究、NAFO过程的优化提供借鉴。  相似文献   

8.
A species of Dechlorospirillum was isolated from an Fe(II)-oxidizing, opposing-gradient-culture enrichment using an inoculum from a circumneutral, freshwater creek that showed copious amounts of Fe(III) (hydr)oxide precipitation. In gradient cultures amended with a redox indicator to visualize the depth of oxygen penetration, Dechlorospirillum sp. strain M1 showed Fe(II)-dependent growth at the oxic-anoxic interface and was unable to utilize sulfide as an alternate electron donor. The bacterium also grew with acetate as an electron donor under both microaerophilic and nitrate-reducing conditions, but was incapable of organotrophic Fe(III) reduction or nitrate-dependent Fe(II) oxidation. Although members of the genus Dechlorospirillum are primarily known as perchlorate and nitrate reducers, our results suggest that some species are members of the microbial communities involved in iron redox cycling at the oxic-anoxic transition zones in freshwater sediments.  相似文献   

9.
Adsorption of heavy metals and radionuclides (HMR) onto iron and manganese oxides has long been recognized as an important reaction for the immobilization of these compounds. However, in environments containing elevated concentrations of these HMR the adsorptive capacity of the iron and manganese oxides may well be exceeded, and the HMR can migrate as soluble compounds in aqueous systems. Here we demonstrate the potential of a bioremediative strategy for HMR stabilization in reducing environments based on the recently described anaerobic nitrate-dependent Fe(II) oxidation by Dechlorosoma species. Bio-oxidation of 10 mM Fe(II) and precipitation of Fe(III) oxides by these organisms resulted in rapid adsorption and removal of 55 microM uranium and 81 microM cobalt from solution. The adsorptive capacity of the biogenic Fe(III) oxides was lower than that of abiotically produced Fe(III) oxides (100 microM for both metals), which may have been a result of steric hindrance by the microbial cells on the iron oxide surfaces. The binding capacity of the biogenic oxides for different heavy metals was indirectly correlated to the atomic radius of the bound element. X-ray absorption spectroscopy indicated that the uranium was bound to the biogenically produced Fe(III) oxides as U(VI) and that the U(VI) formed bidentate and tridentate inner-sphere complexes with the Fe(III) oxide surfaces. Dechlorosoma suillum oxidation was specific for Fe(II), and the organism did not enzymatically oxidize U(IV) or Co(II). Small amounts (less than 2.5 microM) of Cr(III) were reoxidized by D. suillum; however, this appeared to be inversely dependent on the initial concentration of the Cr(III). The results of this study demonstrate the potential of this novel approach for stabilization and immobilization of HMR in the environment.  相似文献   

10.
11.
As part of a study to elucidate the environmental parameters that control microbial perchlorate respiration, we investigated the reduction of perchlorate by the dissimilatory perchlorate reducer Dechlorosoma suillum under a diverse set of environmental conditions. Our results demonstrated that perchlorate reduction by D. suillum only occurred under anaerobic conditions in the presence of perchlorate and was dependent on the presence of molybdenum. Perchlorate reduction was dependent on the presence of the enzyme chlorite dismutase, which was induced during metabolism of perchlorate. Anaerobic conditions alone were not enough to induce expression of this enzyme. Dissolved oxygen concentrations less than 2 mg liter(-1) were enough to inhibit perchlorate reduction by D. suillum. Similarly to oxygen, nitrate also regulated chlorite dismutase expression and repressed perchlorate reduction by D. suillum. Perchlorate-grown cultures of D. suillum preferentially reduced nitrate in media with equimolar amounts of perchlorate and nitrate. In contrast, an extended (40 h) lag phase was observed if a similar nitrate-perchlorate medium was inoculated with a nitrate-grown culture. Perchlorate reduction commenced only when nitrate was completely removed in either of these experiments. In contrast to D. suillum, nitrate had no inhibitory effects on perchlorate reduction by the perchlorate reducer Dechloromonas agitata strain CKB. Nitrate was reduced to nitrite concomitant with perchlorate reduction to chloride. These studies demonstrate that microbial respiration of perchlorate is significantly affected by environmental conditions and perchlorate reduction is directly dependent on bioavailable molybdenum and the presence or absence of competing electron acceptors. A microbial treatment strategy can achieve and maintain perchlorate concentrations below the recommended regulatory level, but only in environments in which the variables described above can be controlled.  相似文献   

12.
Microbiological reduction of soluble U(VI) to insoluble U(IV) has been proposed as a remediation strategy for uranium-contaminated groundwater. Nitrate is a common co-contaminant with uranium. Nitrate inhibited U(VI) reduction in acetate-amended aquifer sediments collected from a uranium-contaminated site in New Mexico. Once nitrate was depleted, both U(VI) and Fe(III) were reduced concurrently. When nitrate was added to sediments in which U(VI) had been reduced, U(VI) reappeared in solution. Parallel studies with the dissimilatory Fe(III)-, U(VI)- and nitrate-reducing microorganism, Geobacter metallireducens, demonstrated that nitrate inhibited reduction of Fe(III) and U(VI) in cell suspensions of cells that had been grown with nitrate as the electron acceptor, but not in Fe(III)-grown cells. Suspensions of nitrate-grown G. metallireducens oxidized Fe(II) and U(IV) with nitrate as the electron acceptor. U(IV) oxidation was accelerated when Fe(II) was also added, presumably due to the Fe(III) being formed abiotically oxidizing U(IV). These studies demonstrate that although the presence of nitrate is not likely to be an impediment to the bioremediation of uranium contamination with microbial U(VI) reduction, it is necessary to reduce nitrate before U(VI) can be reduced. These results also suggest that anaerobic oxidation of U(IV) to U(VI) with nitrate serving as the electron acceptor may provide a novel strategy for solubilizing and extracting microbial U(IV) precipitates from the subsurface.  相似文献   

13.
Nine out of ten anaerobic enrichment cultures inoculated with sediment samples from various freshwater, brackish-water, and marine sediments exhibited ferrous iron oxidation in mineral media with nitrate and an organic cosubstrate at pH 7.2 and 30° C. Anaerobic nitrate-dependent ferrous iron oxidation was a biological process. One strain isolated from brackish-water sediment (strain HidR2, a motile, nonsporeforming, gram-negative rod) was chosen for further investigation of ferrous iron oxidation in the presence of acetate as cosubstrate. Strain HidR2 oxidized between 0.7 and 4.9 mM ferrous iron aerobically and anaerobically at pH 7.2 and 30° C in the presence of small amounts of acetate (between 0.2 and 1.1 mM). The strain gained energy for growth from anaerobic ferrous iron oxidation with nitrate, and the ratio of iron oxidized to acetate provided was constant at limiting acetate supply. The ability to oxidize ferrous iron anaerobically with nitrate at approximately pH 7 appears to be a widespread capacity among mesophilic denitrifying bacteria. Since nitrate-dependent iron oxidation closes the iron cycle within the anoxic zone of sediments and aerobic iron oxidation enhances the reoxidation of ferrous to ferric iron in the oxic zone, both processes increase the importance of iron as a transient electron carrier in the turnover of organic matter in natural sediments. Received: 24 April 1997 / Accepted: 22 September 1997  相似文献   

14.
Benzene and toluene were biodegraded when chelated Fe(III) served as the terminal electron acceptor in aquifer sediments contaminated by a petroleum refinery. Benzene biodegradation ceased when Fe(III) was depleted but resumed upon reamendment. Microorganisms from the same sediments degraded toluene, but not benzene, under nitrate reducing conditions. However, the anaerobic oxidation of Fe(II) to Fe(III) was also observed in toluene-degrading incubations. Fe(II) oxidation was dependent on the presence of nitrate and enhanced when organic electron donors were provided. Microbial nitrate-linked Fe(II) oxidation was also documented in other petroleum-contaminated aquifer sediments, sludge from an oil–water separator, a landfill leachate-impacted aquifer and a garden soil. These observations suggest that some of the reported effects of nitrate on hydrocarbon biodegradation may be indirect through the reoxidation of Fe(II).  相似文献   

15.
Anaerobic enrichments with acetate as the electron donor and Fe(III) as the terminal electron acceptor were obtained from sediments of Salt Pond, a coastal marine basin near Woods Hole, Mass. A pure culture of a facultatively anaerobic Fe(III) reducer was isolated, and 16S rRNA analysis demonstrated that this organism was most closely related to Pantoea (formerly Enterobacter) agglomerans, a member of the family Enterobacteriaceae within the gamma subdivision of the Proteobacteria. This organism, designated strain SP1, can grow by coupling the oxidation of acetate or H(2) to the reduction of a variety of electron acceptors, including Fe(III), Mn(IV), Cr(VI), and the humic substance analog 2,6-anthraquinone disulfonate, but not sulfate. To our knowledge, this is the first mesophilic facultative anaerobe reported to couple acetate oxidation to dissimilatory metal reduction.  相似文献   

16.
17.
A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe3O4). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35°C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO2 was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO3). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.  相似文献   

18.
Understanding the mechanisms of anaerobic microbial iron cycling is necessary for a full appreciation of present‐day biogeochemical cycling of iron and carbon and for drawing conclusions about these cycles on the ancient Earth. Towards that end, we isolated and characterized an anaerobic nitrate‐dependent Fe(II)‐oxidizing bacterium from a freshwater sediment. The 16SrRNA gene sequence of the isolated bacterium (strain BoFeN1) places it within the β‐Proteobacteria, with Acidovorax sp. strain G8B1 as the closest known relative. During mixotrophic growth with acetate plus Fe(II) and nitrate as electron acceptor, strain BoFeN1 forms Fe(III) mineral crusts around the cells. The amount of the organic cosubstrate acetate present seems to control the rate and extent of Fe(II) oxidation and the viability of the cells. The crystallinity of the mineral products is influenced by nucleation by Fe minerals that are already present in the inoculum.  相似文献   

19.
Availability of fixed nitrogen is a pivotal driver on primary productivity in the oceans, thus the identification of key processes triggering nitrogen losses from these ecosystems is of major importance as they affect ecosystems function and consequently global biogeochemical cycles. Denitrification and anaerobic ammonium oxidation coupled to nitrite reduction (Anammox) are the only identified marine sinks for fixed nitrogen. The present study provides evidence indicating that anaerobic ammonium oxidation coupled to the reduction of sulfate, the most abundant electron acceptor present in the oceans, prevails in marine sediments. Tracer analysis with 15N-ammonium revealed that this microbial process, here introduced as Sulfammox, accounts for up to 5 μg 15N2 produced g?1 day?1 in sediments collected from the eastern tropical North Pacific coast. Raman and X-ray diffraction spectroscopies revealed that elemental sulfur and sphalerite (ZnFeS) were produced, besides free sulfide, during the course of Sulfammox. Anaerobic ammonium oxidation linked to Fe(III) reduction (Feammox) was also observed in the same marine sediments accounting for up to 2 μg 15N2 produced g?1 day?1. Taxonomic characterization, based on 16S rRNA gene sequencing, of marine sediments performing the Sulfammox and Feammox processes revealed the microbial members potentially involved. These novel nitrogen sinks may significantly fuel nitrogen loss in marine environments. These findings suggest that the interconnections among the oceanic biogeochemical cycles of N, S and Fe are much more complex than previously considered.  相似文献   

20.

After reductive immobilization of uranium, the element may be oxidized and remobilized in the presence of nitrate by the activity of dissimilatory nitrate-reducing bacteria. We examined controls on microbially mediated nitrate-dependent U(IV) oxidation in landfill leachate-impacted subsurface sediments. Nitrate-dependent U(IV)-oxidizing bacteria were at least two orders of magnitude less numerous in these sediments than glucose- or Fe(II)-oxidizing nitrate-reducing bacteria and grew more slowly than the latter organisms, suggesting that U(IV) is ultimately oxidized by Fe(III) produced by nitrate-dependent Fe(II)-oxidizing bacteria or by oxidation of Fe(II) by nitrite that accumulates during organotrophic dissimilatory nitrate reduction. We examined the effect of nitrate and reductant concentration on nitrate-dependent U(IV) oxidation in sediment incubations and used the initial reductive capacity (RDC = [reducing equivalents] - [oxidizing equivalents]) of the incubations as a unified measurement of the nitrate or reductant concentration. When we lowered the RDC with progressively higher nitrate concentrations, we observed a corresponding increase in the extent of U(IV) oxidation, but did not observe this relationship between RDC and U(IV) oxidation rate, especially when RDC > 0, suggesting that nitrate concentration strongly controls the extent, but not the rate of nitrate-dependent U(IV) oxidation. On the other hand, when we raised the RDC in sediment incubations with progressively higher reductant (acetate, sulfide, soluble Fe(II), or FeS) concentrations, we observed progressively lower extents and rates of nitrate-dependent U(IV) oxidation. Acetate was a relatively poor inhibitor of nitrate-dependent U(IV) oxidation, while Fe(II) was the most effective inhibitor. Based on these results, we propose that it may be possible to predict the stability of U(IV) in a bioremediated aquifer based on the geochemical characteristics of that aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号