首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The characteristics of lipopolysaccharide (LPS)-induced alkaline phosphatase (AP) isozymes on the various pulmonary surfactant subtypes were investigated. We used continuous sucrose-gradient centrifugation to separate surfactant into subtypes. The density of each surfactant subtype isolated from LPS-instilled rats was greater than that of the subtypes from the control rats; and the proportion of light surfactant was lower, thereby decreasing the ratio of light to heavy surfactant. The results of an inhibition study revealed the main AP isozyme in bronchoalveolar fluid (BAF) to be tissue-nonspecific AP (TNAP), but some of the activity was characteristic of intestinal-type AP (IAP). IAP, in addition to TNAP and surfactant-associated protein A (SP-A), was detected on heavy surfactant, and LPS induced both APs. To examine the expression of IAP in the lungs, we prepared primers to detect the cDNAs of two types of rat IAP mRNA, IAP-I and -II, and amplified their cDNAs. LPS instillation induced IAP-I mRNA, but not IAP-II mRNA or TNAP mRNA. Immunohistochemical localization of IAP and TNAP revealed reaction products for both in type II cells. The present study thus demonstrated that, in rats, type II cells produce both IAP and TNAP and that these surfactants bearing AP isozymes are secreted into the alveolar space following induction by intratracheal instillation of LPS.  相似文献   

2.
Alkaline phosphatase (AP) isozymes are present in a wide range of species from bacteria to man and are capable of dephosphorylation and transphosphorylation of a wide spectrum of substrates in vitro. In humans, four AP isozymes have been identified—one tissue-nonspecific (TNAP) and three tissue-specific—named according to the tissue of their predominant expression: intestinal (IAP), placental (PLAP) and germ cell (GCAP) APs. Modulation of activity of the different AP isozymes may have therapeutic implications in distinct diseases and cellular processes. For instance, changes in the level of IAP activity can affect gut mucosa tolerance to microbial invasion due to the ability of IAP to detoxify bacterial endotoxins, alter the absorption of fatty acids and affect ectopurinergic regulation of duodenal bicarbonate secretion. To identify isozyme selective modulators of the human and mouse IAPs, we developed a series of murine duodenal IAP (Akp3-encoded dIAP isozyme), human IAP (hIAP), PLAP, and TNAP assays. High throughput screening and subsequent SAR efforts generated a potent inhibitor of dIAP, ML260, with specificity for the Akp3-, compared to the Akp5- and Akp6-encoded mouse isozymes.  相似文献   

3.
The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.  相似文献   

4.
Structural evidence of functional divergence in human alkaline phosphatases   总被引:6,自引:0,他引:6  
The evolution of the alkaline phosphatase (AP) gene family has lead to the existence in humans of one tissue-nonspecific (TNAP) and three tissue-specific isozymes, i.e. intestinal (IAP), germ cell (GCAP), and placental AP (PLAP). To define the structural differences between these isozymes, we have built models of the TNAP, IAP, and GCAP molecules based on the 1.8-structure of PLAP(1) and have performed a comparative structural analysis. We have examined the monomer-monomer interface as this area is crucial for protein stability and enzymatic activity. We found that the interface allows the formation of heterodimers among IAP, GCAP, and PLAP but not between TNAP with any of the three tissue-specific isozymes. Secondly, the active site cleft was mapped into three regions, i.e. the active site itself, the roof of the cleft, and the floor of the cleft. This analysis led to a structural fingerprint of the active site of each AP isozyme that suggests a diversification in substrate specificity for this isozyme family.  相似文献   

5.
Gut-derived lipopolysaccharide (LPS) plays a role in the pathogenesis of liver diseases like fibrosis. The enzyme alkaline phosphatase (AP) is present in, among others, the intestinal wall and liver and has been previously shown to dephosphorylate LPS. Therefore, we investigated the effect of LPS on hepatic AP expression and the effect of AP on LPS-induced hepatocyte responses. LPS-dephosphorylating activity was expressed at the hepatocyte canalicular membrane in normal and fibrotic animals. In addition to this, fibrotic animals also displayed high LPS-dephosphorylating activity around bile ducts. The enzyme was shown to dephosphorylate LPS from several bacterial species. LPS itself rapidly enhanced the intrahepatic mRNA levels for this enzyme within 2 h by a factor of seven. Furthermore, in vitro and in vivo studies showed that exogenous intestinal AP quickly bound to the asialoglycoprotein receptor on hepatocytes. This intestinal isoform significantly attenuated LPS-induced hepatic tumor necrosis factor-alpha and nitric oxide (nitrite and nitrate) responses in vitro. The enzyme also reduced LPS-induced hepatic glycogenolysis in vivo. This study shows that LPS enhances AP expression in hepatocytes and that intestinal AP is rapidly taken up by these same cells, leading to an attenuation of LPS-induced responses in vivo. Gut-derived LPS-dephosphorylating activity or enzyme upregulation within hepatocytes by LPS may therefore be a protective mechanism within the liver.  相似文献   

6.
7.
Among the four existing isoforms of alkaline phosphatase (AP), the present study is devoted to tissue-nonspecific alkaline phosphatase (TNAP) in mineralized dental tissues. Northern blot analysis and measurements of phosphohydrolase activity on microdissected epithelium and ectomesenchyme, in situ hybridization, and immunolabeling on incisors confirmed that the AP active in rodent teeth is TNAP. Whereas the developmental pattern of TNAP mRNA and protein and the previously described activity were similar in supra-ameloblastic and mesenchymal cells, they differed in enamel-secreting cells, the ameloblasts. As previously shown for other proteins involved in calcium and phosphate handling in ameloblasts, a biphasic pattern of steady-state TNAP mRNA levels was associated with additional variations in ameloblast TNAP protein levels during the cyclic modulation process. Although the association of TNAP upregulation and the initial phase of biomineralization appeared to be a basic feature of all mineralized tissues, ameloblasts (and to a lesser extent, odontoblasts) showed a second selectively prominent upregulation of TNAP mRNA/protein/activity during terminal growth of large enamel crystals only, i.e., the maturation stage. This differential expression/activity for TNAP in teeth vs bone may explain the striking dental phenotype vs bone reported in hypophosphatasia, a hereditary disorder related to TNAP mutation. (J Histochem Cytochem 47:1541-1552, 1999)  相似文献   

8.
IL-10 is highly expressed in the uterus and placenta and is implicated in controlling inflammation-induced pathologies of pregnancy. To investigate the role of IL-10 in regulating preterm labor, the response of IL-10 null mutant mice to low-dose LPS in late gestation was evaluated. When IL-10 null mutant C57BL/6 (IL-10(-/-)) and control (IL-10(+/+)) mice were administered LPS on day 17 of pregnancy, the dose of LPS required to elicit 50% preterm fetal loss was 10-fold lower in IL-10(-/-) mice than in IL-10(+/+) mice. Surviving fetuses in IL-10(-/-) mice exhibited fetal growth restriction at lower doses of LPS than IL-10(+/+) mice. Marked elevation of LPS-induced immunoactive TNF-alpha and IL-6 was evident in the serum, uterus, and placenta of IL-10(-/-) mice, and TNF-alpha and IL-6 mRNA expression was elevated in the uterus and placenta, but not the fetus. Serum IL-1alpha, IFN-gamma, and IL-12p40 were increased and soluble TNFRII was diminished in the absence of IL-10, with these changes also reflected in the gestational tissues. Administration of rIL-10 to IL-10(-/-) mice attenuated proinflammatory cytokine synthesis and alleviated their increased susceptibility to preterm loss. Exogenous IL-10 also protected IL-10(+/+) mice from fetal loss. These data show that IL-10 modulates resistance to inflammatory stimuli by down-regulating proinflammatory cytokines in the uterus and placenta. Abundance of endogenous IL-10 in gestational tissues is therefore identified as a critical determinant of resistance to preterm labor, and IL-10 may provide a useful therapeutic agent in this common condition.  相似文献   

9.
Pregnancy loss is a serious social and medical issue, with one important cause associated with aberrant embryo implantation during early pregnancy. However, whether and how the process of embryo implantation is affected by environmental factors such as stress-induced sympathetic activation remained elusive. Here we report an unexpected, transient effect of β(2)-adrenoreceptor (β(2)-AR) activation (day 4 postcoitus) in disrupting embryo spacing at implantation, leading to substantially increased midterm pregnancy loss. The abnormal embryo spacing could be prevented by pretreatment of β(2)-AR antagonist or genetic ablation of β-AR. Similar β(2)-AR activation at day 5 postcoitus, when implantation sites have been established, did not affect embryo spacing or pregnancy outcome, indicating that the adverse effect of β(2)-AR activation is limited to the preimplantation period before embryo attachment. In vitro and in vivo studies demonstrated that the transient β(2)-AR activation abolished normal preimplantation uterine contractility without adversely affecting blastocyst quality. The contractility inhibition is mediated by activation of the cAMP-PKA pathway and accompanied by specific down-regulation of lpa3, a gene previously found to be critical for uterine contraction and embryo spacing. These results indicated that normal uterine contraction-mediated correct intrauterine embryo distribution is crucial for successful ongoing pregnancy. Abnormal β(2)-AR activation at early pregnancy provided a molecular clue in explaining how maternal stress at early stages could adversely affect the pregnancy outcome.  相似文献   

10.
11.
LPS is the known component of bacterial pathogens that stimulates a number of proinflammatory factors. However, the mechanism of the induction of these factors by LPS has not been fully elucidated. We show here that LPS induces retinoic acid-inducible gene-I (RIG-I) in vitro and in vivo as a result from autocrine secretion of IFN-beta in macrophages. TIR-domain-containing adapter-inducing IFN-beta-deficient mouse embryo fibroblast (trif(-/)(-)) fail to show expression of RIG-I following LPS stimulation. Interference of RIG-I expression short interfering RNA represses the expression of LPS-induced TNF-alpha, whereas over-expression of RIG-I leads to the activation of TNF-alpha promoter and the induction of TNF-alpha expression. LPS- and IFN-beta-induced TNF-alpha are suppressed in RIG-I-deficient mouse embryo fibroblasts (rig(-/)(-)). Thus, RIG-I plays a key role in the expression of TNF-alpha in macrophages in response to LPS stimulation, mainly for the late phase LPS-induced expression of TNF-alpha.  相似文献   

12.
The alkaline phosphatases are a small family of isozymes. Bovine preattachment embryos transcribe mRNA for two tissue-specific alkaline phosphatases (TSAP2 and TSAP3) beginning at the 4- and 8-cell stages. Whereas no mRNA has been detected in oocytes, there is maternally inherited alkaline phosphatase activity. It is not known which isozyme(s) is responsible for the maternal activity or when TSAP2 and TSAP3 form functional protein. No antibodies are available that recognize the relevant bovine alkaline phosphatases. Therefore, sensitivity to heat and chemical inhibition was used to separate the different isozymes. By screening tissues, it was determined that the bovine tissue-nonspecific alkaline phosphatase (TNAP) is inactivated by low temperatures (65C) and low concentrations of levamisole (<1 mM), whereas bovine tissue-specific isozymes require higher temperatures (90C) and levamisole concentrations (>5 mM). Inhibition by L-homoarginine and L-phenylalanine was less informative. Cumulus cells transcribe two isozymes and the pattern of inhibition suggested heterodimer formation. Inhibition of alkaline phosphatase in bovine embryos before the 8-cell stage indicated the presence of only TNAP. At the 16-cell stage the pattern was consistent with TNAP plus TSAP2 or -3 activity, and in morulae and blastocysts the pattern indicated that the maternal TNAP is fully supplanted by TSAP2 or TSAP3.  相似文献   

13.
PGE2 is essential for mammalian female reproduction. This study was to examine the expression of EP2 gene in the rat uterus during early pregnancy, delayed implantation and artificial decidualization by in situ hybridization and immunohistochemistry. There was no detectable EP2 mRNA expression in the uterus from days 1 to 4 of pregnancy (day 1 = day of vaginal sperm). A low level of EP2 immunostaining was observed in the luminal and glandular epithelium from days 1 to 4 of pregnancy. Both EP2 mRNA and protein expression were highly detected in the luminal epithelium at implantation sites on day 6 of pregnancy. EP2 expression decreased from day 7 of pregnancy and was undetectable on days 8 and 9 of pregnancy. After delayed implantation was terminated by estrogen treatment and the embryo implanted, both EP2 mRNA and protein expression were strongly observed in the luminal epithelium at the implantation site. There was no detectable EP2 expression in both control and decidualized uteri. In conclusion, these data suggest that EP2 expression at implantation site may play an important role during embryo implantation in rats.  相似文献   

14.
The effect of bacterial lipopolysaccharide endotoxin (LPS), immune system activator, on differentiation and migration of gonadotropin-releasing, hormone producing neurons in rat embryogenesis has been studied. Intraperitoneal introduction of LPS (18 jg/kg) to pregnant rats on the 12th day of pregnancy led to 50% decrease in total number of GRH-neurons in the forebrain of 17-day-old embryos and 17% decrease in 19-day-old embryos. At the same time, the number of GRH-neurons in the nasal area of the head of 17- and 19-day-old embryos increased by 40 and 50%, respectively, whereas it increased by 20% in olfactory bulbs of 17-day-old embryos and did not changed in olfactory bulbs of 19-day-old embryos. Neither the total number of neurons nor their distribution patterns were affected by the introduction of LPS into pregnant rats on the 15th day of pregnancy. Singular localization of GRH-neurons in embryo forebrain was observed after LPS administration, whereas the neurons were located by groups of 3-4 cells in rostral areas. Therefore, at the early stages of pregnancy, LPS was shown to suppress initial stages of differentiation and migration of GRH producing neurons. The effects observed in our study may be mediated by LPS-induced, proinflammatory cytokines.  相似文献   

15.
Perinatal infections are a risk factor for fetal neurological pathologies, including cerebral palsy and schizophrenia. Cytokines that are produced as part of the inflammatory response are proposed to partially mediate the neurological injury. This study investigated the effects of intraperitoneal injections of lipopolysaccharide (LPS) to pregnant rats on the production of cytokines and stress markers in the fetal environment. Gestation day 18 pregnant rats were treated with LPS (100 microg/kg body wt i.p.), and maternal serum, amniotic fluid, placenta, chorioamnion, and fetal brain were harvested at 1, 6, 12, and 24 h posttreatment to assay for LPS-induced changes in cytokine protein (ELISA) and mRNA (real-time RT-PCR) levels. We observed induction of proinflammatory cytokines interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha (TNF-alpha) as well as the anti-inflammatory cytokine IL-10 in the maternal serum within 6 h of LPS exposure. Similarly, proinflammatory cytokines were induced in the amniotic fluid in response to LPS; however, no significant induction of IL-10 was observed in the amniotic fluid. LPS-induced mRNA changes included upregulation of the stress-related peptide corticotropin-releasing factor in the fetal whole brain, TNF-alpha, IL-6, and IL-10 in the chorioamnion, and TNF-alpha, IL-1 beta, and IL-6 in the placenta. These findings suggest that maternal infections may lead to an unbalanced inflammatory reaction in the fetal environment that activates the fetal stress axis.  相似文献   

16.

Objective

Embryo implantation is directly affected by genes related to uterine receptivity. Studies have demonstrated the important roles of miRNAs in the regulation of gene expression. Our early miRNA chip analyses revealed that the mmu-miR-141 expression in endometrial tissue is lower after embryo implantation than before it. However, the possible roles of miR-141 in embryo implantation have not yet been elucidated. Here, mmu-miR-141 was designed to detect the expression and role of miR-141 in the endometria of mice in early pregnancy following embryo implantation.

Methods

Real-time PCR and in-situ hybridization were used to study mmu-miR-141 expression in mouse uterus. Cell proliferation was detected by tetrazolium dye (MTT) assay and flow cytometry. Real-time PCR and Western blot analysis were used to confirm the mRNA and protein levels of phosphatase and tensin homolog (PTEN) to determine whether it was the target gene of mmu-miR-141. Enhanced green fluorescent protein (EGFP) fluorescence reporter vector analysis was also performed. A functional study was performed by injecting mice uteri with mmu-miR-141 inhibitor or mimic vectors.

Results

mmu-miR-141 expression was lower on day 6 (D6) than day 4 (D4) and could be increased by progesterone. Reduced mmu-miR-141 could decrease the proliferation activity of stromal cells and promote apoptosis. Upregulation of mmu-miR-141 inhibited PTEN protein expression but downregulation of mmu-miR-141 increased it, while the mRNA level remained unchanged. EGFP fluorescence reporter vector analysis showed that miR-141 targets the 3′-untranslated region of the PTEN mRNA. In addition, when the physiological mmu-miR-141 level was altered on D2 by injecting with inhibitor or mimic, the embryo implantation sites were significantly decreased on D7.

Conclusions

This study demonstrated that mmu-miR-141 might influence cell proliferation and apoptosis in the endometrium by negatively regulating PTEN expression, and could also influence the number of embryo implantation sites. mmu-miR-141 plays an essential role in embryo implantation.  相似文献   

17.
通过Real-time PCR、Western blot及免疫组织化学方法分析了IK细胞因子(IK cytokine)在早孕小鼠(妊娠D1~D7)子宫内膜中的表达规律及宫角注射IK细胞因子反义寡聚脱氧核苷酸后对胚胎着床的影响。结果显示,IK细胞因子mRNA表达在D1~D4逐渐升高,于D4达到高峰(P<0.05);Western blot和免疫组织化学结果与Real-time PCR结果基本一致,其蛋白表达在D1~D5逐渐升高,于D5达到高峰(P<0.05);IK细胞因子在D5胚胎着床点的表达显著高于着床旁组织;假孕小鼠子宫内膜IK细胞因子蛋白表达明显低于正常妊娠,且整个假孕过程中没有表达高峰;宫角注射IK细胞因子反义寡聚脱氧核苷酸后24 h和48 h(即D4和D5)子宫内膜IK细胞因子表达明显受到抑制,MHCⅡ抗原表达增强,且胚胎着床数量明显减少(P<0.05),提示IK细胞因子在胚胎着床中发挥着重要作用。  相似文献   

18.
Regular exercise during pregnancy can prevent offspring from several diseases, such as cardiovascular diseases, obesity, and type II diabetes during adulthood. However, little information is available about whether maternal exercises during pregnancy protect the offspring from infectious diseases, such as sepsis and multiple organ dysfunction syndrome (MODS). This study aimed to investigate whether maternal exercise training protects the offspring from endotoxin-induced septic shock in mice. Female C57BL/6 mice performed voluntary wheel exercises during pregnancy. All dams and offspring were fed normal chow with sedentary activity during lactation and after weaning. At 10-week-old, mice were intraperitoneally injected a lethal (30 mg/kg) or nonlethal (15 mg/kg) dose of lipopolysaccharide (LPS), following which the survival of mice that were administered a lethal dose was monitored for 60 h. Plasma, lung, and liver samples were collected 18 h after the injection to evaluate the cytokine concentration or mRNA expression from those administered a nonlethal dose. Although maternal exercise training could not prevent lethality during an LPS-induced septic shock, it significantly inhibited the LPS-induced loss of body weight in female offspring. Regular maternal exercise significantly inhibited the mRNA expression of the LPS-induced inflammatory cytokines, such as interleukin-1β (IL-1β) and interferon-γ (IFN-γ), in the plasma and liver. Thus, maternal exercise inhibited the LPS-induced inflammatory response in female offspring, suggesting that regular exercise during pregnancy could be a potential candidate of the onset of sepsis and MODS in offspring.  相似文献   

19.
20.
The effect of bacterial lipopolysaccharide endotoxin (LPS), immune system activator, on differentiation and migration of gonadotropin-releasing hormone-producing neurons in rat embryogenesis has been studied. Intraperitoneal injection with LPS (18 μg/kg) into pregnant rats on the 12th day of pregnancy led to 50% decrease in total number of GnRH-neurons in the forebrain of 17-day-old embryos and 17% decrease in 19-day-old embryos. At the same time, the number of GnRH-neurons in the nasal area of the head of 17- and 19-day-old embryos was increased by 40 and 50%, respectively, whereas it increased by 20% in olfactory bulbs of 17-day-old embryos and was not changed in olfactory bulbs of 19-day-old embryos. Neither the total number of neurons nor their distribution patterns were affected by LPS injection into pregnant rats on the 15th day of pregnancy. Singular localization of GnRH-neurons in embryo forebrain was observed after LPS administration, whereas the neurons were located by groups of 3–4 cells in rostral areas. Therefore, at the early stages of pregnancy, LPS was shown to suppress initial stages of differentiation and migration of GnRH-producing neurons. The effects observed in our study may be mediated by LPS-induced proinflammatory cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号