首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Tomato mosaic virus (genus, Tobamovirus) is a member of the alphavirus-like superfamily of positive-strand RNA viruses, which include many plant and animal viruses of agronomical and clinical importance. The RNA of alphavirus-like superfamily members encodes replication-associated proteins that contain a putative superfamily 1 helicase domain. To date, a viral three-dimensional superfamily 1 helicase structure has not been solved. For the study reported herein, we expressed tomato mosaic virus replication proteins that contain the putative helicase domain and additional upstream N-terminal residues in Escherichia coli. We found that an additional 155 residues upstream of the N-terminus of the helicase domain were necessary for stability. We developed an efficient procedure for the expression and purification of this fragment and have examined factors that affect its stability. Finally, we also showed that the stable fragment has nucleoside 5'-triphosphatase activity.  相似文献   

2.
Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5'-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions.  相似文献   

3.
RNA helicases of the DExD/H-box superfamily are critically involved in all RNA-related processes. No crystal structures of human DExH-box domains had been determined previously, and their structures were difficult to predict owing to the low level of homology among DExH-motif-containing proteins from diverse species. Here we present the crystal structures of the conserved domain 1 of the DEIH-motif-containing helicase DHX9 and of the DEAD-box helicase DDX20. Both contain a RecA-like core, but DHX9 differs from DEAD-box proteins in the arrangement of secondary structural elements and is more similar to viral helicases such as NS3. The N-terminus of the DHX9 core contains two long α-helices that reside on the surface of the core without contributing to nucleotide binding. The RNA-polymerase-II-interacting minimal transactivation domain sequence forms an extended loop structure that resides in a hydrophobic groove on the surface of the DEIH domain. DHX9 lacks base-selective contacts and forms an unspecific but important stacking interaction with the base of the bound nucleotide, and our biochemical analysis confirms that the protein can hydrolyze ATP, guanosine 5′-triphosphate, cytidine 5′-triphosphate, and uridine 5′-triphosphate. Together, these findings allow the localization of functional motifs within the three-dimensional structure of a human DEIH helicase and show how these enzymes can bind nucleotide with high affinity in the absence of a Q-motif.  相似文献   

4.
5.
Brome mosaic virus (BMV) is a representative member of positive-strand RNA viruses. The 1a replicase from BMV is a membrane protein of unknown structure with a methyltransferase N-terminal domain and a putative helicase activity in the C-terminal domain. In order to make a functional prediction of the helicase activity of the BMV 1a C-terminal domain, we have built a model of its structure. The use of fold recognition servers hinted at two different superfamilies of helicases [superfamily 1 (SF1) and superfamily 2 (SF2)] as putative templates for the C-terminal fragment of BMV 1a. A structural model of BMV 1a in SF2 was obtained by means of a fold recognition server (3D-PSSM). On the other hand, we used the helicase motifs described in the literature to construct a model of the structure of the BMV 1a C-terminal domain as a member of the SF1. The biological functionality and statistic potentials were used to discriminate between the two models. The results illustrate that the use of sequence profiles and patterns helps modeling. Accordingly, the C-terminal domain of BMV 1a is a potential member of the SF1 of helicases, and it can be modeled with the structure of a member of the UvrD family of helicases. The helicase mechanism was corroborated by the model and this supports the hypothesis that BMV 1a should have helicase activity.  相似文献   

6.
The bacterial replicative helicases known as DnaB are considered to be members of the RecA superfamily. All members of this superfamily, including DnaB, have a conserved C- terminal domain, known as the RecA core. We unearthed a series of mycobacteriophage encoded proteins in which the RecA core domain alone was present. These proteins were phylogenetically related to each other and formed a distinct clade within the RecA superfamily. A mycobacteriophage encoded protein, Wildcat Gp80 that roots deep in the DnaB family, was found to possess a core domain having significant sequence homology (Expect value < 10-5) with members of this novel cluster. This indicated that Wildcat Gp80, and by extrapolation, other members of the DnaB helicase family, may have evolved from a single domain RecA core polypeptide belonging to this novel group. Biochemical investigations confirmed that Wildcat Gp80 was a helicase. Surprisingly, our investigations also revealed that a thioredoxin tagged truncated version of the protein in which the N-terminal sequences were removed was fully capable of supporting helicase activity, although its ATP dependence properties were different. DnaB helicase activity is thus, primarily a function of the RecA core although additional N-terminal sequences may be necessary for fine tuning its activity and stability. Based on sequence comparison and biochemical studies we propose that DnaB helicases may have evolved from single domain RecA core proteins having helicase activities of their own, through the incorporation of additional N-terminal sequences.  相似文献   

7.
Pif-1 proteins are 5′→3′ superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3′ ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity.  相似文献   

8.
Clérot D  Bernardi F 《Journal of virology》2006,80(22):11322-11330
The Rep protein of tomato yellow leaf curl Sardinia virus (TYLCSV), a single-stranded DNA virus of plants, is the replication initiator essential for virus replication. TYLCSV Rep has been classified among ATPases associated with various cellular activities (AAA+ ATPases), in superfamily 3 of small DNA and RNA virus replication initiators whose paradigmatic member is simian virus 40 large T antigen. Members of this family are DNA- or RNA-dependent ATPases with helicase activity necessary for viral replication. Another distinctive feature of AAA+ ATPases is their quaternary structure, often composed of hexameric rings. TYLCSV Rep has ATPase activity, but the helicase activity, which is instrumental in further characterization of the mechanism of rolling-circle replication used by geminiviruses, has been a longstanding question. We present results showing that TYLCSV Rep lacking the 121 N-terminal amino acids has helicase activity comparable to that of the other helicases: requirements for a 3' overhang and 3'-to-5' polarity of unwinding, with some distinct features and with a minimal AAA+ ATPase domain. We also show that the helicase activity is dependent on the oligomeric state of the protein.  相似文献   

9.
The Tm-1 gene of tomato confers resistance to Tomato mosaic virus (ToMV). Tm-1 encodes a protein that binds ToMV replication proteins and inhibits the RNA-dependent RNA replication of ToMV. The replication proteins of resistance-breaking mutants of ToMV do not bind Tm-1, indicating that the binding is important for inhibition. In this study, we analyzed how Tm-1 inhibits ToMV RNA replication in a cell-free system using evacuolated tobacco protoplast extracts. In this system, ToMV RNA replication is catalyzed by replication proteins bound to membranes, and the RNA polymerase activity is unaffected by treatment with 0.5 M NaCl-containing buffer and remains associated with membranes. We show that in the presence of Tm-1, negative-strand RNA synthesis is inhibited; the replication proteins associate with membranes with binding that is sensitive to 0.5 M NaCl; the viral genomic RNA used as a translation template is not protected from nuclease digestion; and host membrane proteins TOM1, TOM2A, and ARL8 are not copurified with the membrane-bound 130K replication protein. Deletion of the polymerase read-through domain or of the 3′ untranslated region (UTR) of the genome did not prevent the formation of complexes between the 130K protein and the host membrane proteins, the 0.5 M NaCl-resistant binding of the replication proteins to membranes, and the protection of the genomic RNA from nucleases. These results indicate that Tm-1 binds ToMV replication proteins to inhibit key events in replication complex formation on membranes that precede negative-strand RNA synthesis.  相似文献   

10.
11.
12.
Bacterial DNA helicases are nucleic acid-dependent NTPases that play important roles in DNA replication, recombination and repair. We are interested in the DNA helicases of Mycobacteria, a genus of the phylum Actinobacteria, which includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis SftH, a superfamily II helicase with a distinctive domain structure, comprising an N-terminal NTPase domain and a C-terminal DUF1998 domain (containing a putative tetracysteine metal-binding motif). We show that SftH is a monomeric DNA-dependent ATPase/dATPase that translocates 3' to 5' on single-stranded DNA and has 3' to 5' helicase activity. SftH homologs are found in bacteria representing 12 different phyla, being especially prevalent in Actinobacteria (including M. tuberculosis). SftH homologs are evident in more than 30 genera of Archaea. Among eukarya, SftH homologs are present in plants and fungi.  相似文献   

13.
Mini-chromosome maintenance (MCM) proteins form a conserved family found in all eukaryotes and are essential for DNA replication. They exist as heteromultimeric complexes containing as many as six different proteins. These complexes are believed to be the replicative helicases, functioning as hexameric rings at replication forks. In most archaea a single MCM protein exists. The protein from Methanobacterium thermoautotrophicum (mtMCM) has been reported to assemble into a large complex consistent with a dodecamer. We show that mtMCM can assemble into a heptameric ring. This ring contains a C-terminal helicase domain that can be fit with crystal structures of ring helicases and an N-terminal domain of unknown function. While the structure of the ring is very similar to that of hexameric replicative helicases such as bacteriophage T7 gp4, our results show that such ring structures may not be constrained to have only six subunits.  相似文献   

14.
A statistically significant similarity was demonstrated between the amino acid sequences of 4 Escherichia coli helicases and helicase subunits, a family of non-structural proteins of eukaryotic positive-strand RNA viruses and 2 herpesvirus proteins all of which contain an NTP-binding sequence motif. Based on sequence analysis and secondary structure predictions, a generalized structural model for the ATP-binding core is proposed. It is suggested that all these proteins constitute a superfamily of helicases (or helicase subunits) involved in NTP-dependent duplex unwinding during DNA and RNA replication and recombination.  相似文献   

15.
DNA and RNA helicases of superfamily I are characterized by seven conserved motifs. The five N-terminal motifs are separated from the two C-terminal ones by a spacer that is highly variable in both sequence and length, suggesting the existence of two distinct domains. Using computer methods for protein sequence analysis, we show that PhoH, an ATP-binding protein that is conserved in Escherichia coli and Mycobacterium leprae, is homologous to the putative N-terminal domain of the helicases, whereas the putative E. coli protein YjhR is homologous to the C-terminal domain. These findings suggest that the N-and C-terminal domains of superfamily I helicases have distinct activities, with only the N-terminal domain having the ATPase activity. It is speculated that PhoH and YjhR have evolved from helicases through deletion of the portions of the helicase genes coding for the C- and N-terminal domain, respectively.  相似文献   

16.
Hexameric DnaB type replicative helicases are essential for DNA strand unwinding along with the direction of replication fork movement. These helicases in general contain an amino terminal domain and a carboxy terminal domain separated by a linker region. Due to the lack of crystal structure of a full-length DnaB like helicase, the domain structure and function of these types of helicases are not clear. We have reported recently that Helicobacter pylori DnaB helicase is a replicative helicase in vitro and it can bypass Escherichia coli DnaC activity in vivo. Using biochemical, biophysical and genetic complementation assays, here we show that though the N-terminal region of HpDnaB is required for conformational changes between C6 and C3 rotational symmetry, it is not essential for in vitro helicase activity and in vivo function of the protein. Instead, an extreme carboxy terminal region and an adjacent unique 34 amino acid insertion region were found to be essential for HpDnaB activity suggesting that these regions are important for proper folding and oligomerization of this protein. These results confer great potential in understanding the domain structures of DnaB type helicases and their related function.  相似文献   

17.
DEAD box helicases are involved in nearly all aspects of RNA metabolism. They share a common helicase core, and may comprise additional domains that contribute to RNA binding. The Thermus thermophilus helicase Hera is the first dimeric DEAD box helicase. Crystal structures of Hera fragments reveal a bipartite C-terminal domain with a novel dimerization motif and an RNA-binding module. We provide a first glimpse on the additional RNA-binding module outside the Hera helicase core. The dimerization and RNA-binding domains are connected to the C-terminal RecA domain by a hinge region that confers exceptional flexibility onto the helicase, allowing for different juxtapositions of the RecA-domains in the dimer. Combination of the previously determined N-terminal Hera structure with the C-terminal Hera structures allows generation of a model for the entire Hera dimer, where two helicase cores can work in conjunction on large RNA substrates.  相似文献   

18.
RecQ helicases maintain chromosome stability by resolving a number of highly specific DNA structures that would otherwise impede the correct transmission of genetic information. Previous studies have shown that two human RecQ helicases, BLM and WRN, have very similar substrate specificities and preferentially unwind noncanonical DNA structures, such as synthetic Holliday junctions and G-quadruplex DNA. Here, we extend this analysis of BLM to include new substrates and have compared the substrate specificity of BLM with that of another human RecQ helicase, RECQ1. Our findings show that RECQ1 has a distinct substrate specificity compared with BLM. In particular, RECQ1 cannot unwind G-quadruplexes or RNA-DNA hybrid structures, even in the presence of the single-stranded binding protein, human replication protein A, that stimulates its DNA helicase activity. Moreover, RECQ1 cannot substitute for BLM in the regression of a model replication fork and is very inefficient in displacing plasmid D-loops lacking a 3'-tail. Conversely, RECQ1, but not BLM, is able to resolve immobile Holliday junction structures lacking an homologous core, even in the absence of human replication protein A. Mutagenesis studies show that the N-terminal region (residues 1-56) of RECQ1 is necessary both for protein oligomerization and for this Holliday junction disruption activity. These results suggest that the N-terminal domain or the higher order oligomer formation promoted by the N terminus is essential for the ability of RECQ1 to disrupt Holliday junctions. Collectively, our findings highlight several differences between the substrate specificities of RECQ1 and BLM (and by inference WRN) and suggest that these enzymes play nonoverlapping functions in cells.  相似文献   

19.
The crystal structure of the Thermus aquaticus DnaB helicase monomer   总被引:1,自引:1,他引:0  
The ring-shaped hexameric DnaB helicase unwinds duplex DNA at the replication fork of eubacteria. We have solved the crystal structure of the full-length Thermus aquaticus DnaB monomer, or possibly dimer, at 2.9Å resolution. DnaB is a highly flexible two domain protein. The C-terminal domain exhibits a RecA-like core fold and contains all the conserved sequence motifs that are characteristic of the DnaB helicase family. The N-terminal domain contains an additional helical hairpin that makes it larger than previously appreciated. Several DnaB mutations that modulate its interaction with primase are found in this hairpin. The similarity in the fold of the DnaB N-terminal domain with that of the C-terminal helicase-binding domain (HBD) of the DnaG primase also includes this hairpin. Comparison of hexameric homology models of DnaB with the structure of the papillomavirus E1 helicase suggests the two helicases may function through different mechanisms despite their sharing a common ancestor.  相似文献   

20.
The superfamily 1 helicase nonstructural protein 13 (nsp13) is required for SARS-CoV-2 replication. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the RNA substrate. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be activated >50-fold by piconewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, such as hepatitis C virus NS3, and instead draws stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号