首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Tian W  Han X  Yan M  Xu Y  Duggineni S  Lin N  Luo G  Li YM  Han X  Huang Z  An J 《Biochemistry》2012,51(2):724-731
Overactivation or overexpression of β-catenin in the Wnt (wingless) signaling pathway plays an important role in tumorigenesis. Interaction of β-catenin with T-cell factor (Tcf) DNA binding proteins is a key step in the activation of the proliferative genes in response to upstream signals of this Wnt/β-catenin pathway. Recently, we identified a new small molecule inhibitor, named BC21 (C(32)H(36)Cl(2)Cu(2)N(2)O(2)), which effectively inhibits the binding of β-catenin with Tcf4-derived peptide and suppresses β-catenin/Tcf4 driven reporter gene activity. This inhibitor decreases the viability of β-catenin overexpressing HCT116 colon cancer cells that harbor the β-catenin mutation, and more significantly, it inhibits the clonogenic activity of these cells. Down-regulation of c-Myc and cyclin D1 expression, the two important effectors of the Wnt/β-catenin signaling, is confirmed by treating HCT116 cells with BC21. This compound represents a new and modifiable potential anticancer candidate that targets β-catenin/Tcf-4 interaction.  相似文献   

7.
Cardiovascular disease is the leading cause of morbidity and mortality in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). More than 44% of these patients present with generalized atherosclerosis at autopsy. It is accepted that endothelial progenitor cells (EPCs) participate in the repair of dysfunctional endothelium and thus protects against atherosclerosis. However, whether COPD affects the repairing capacity of EPCs is unknown. Therefore, the objective of this study was to determine whether and how EPCs are involved in the vascular repair process in patients with COPD. In our study, EPCs from 25 COPD and 16 control patients were isolated by Ficoll density-gradient centrifugation and identified using fluorescence activated cell sorting. Transwell Migratory Assay was performed to determine the number of EPC colony-forming units and the adherent capacity late-EPCs to human umbilical vein endothelial cells. Following arterial damage in NOD/SCID mice, the number of EPCs incorporated at the injured vascular site was determined using a fluorescence microscope. We found that the number of EPC clusters and cell migration, as well as the expression of CXCR4, was significantly decreased in patients with COPD. Additionally, the number of late-EPCs adherent to HUVEC tubules was significantly reduced, and fewer VEGFR2(+)-staining cells were incorporated into the injured site in COPD patients. Our study demonstrates that EPC capacity of repair was affected in COPD patients, which may contribute to altered vascular endothelium in this patient population.  相似文献   

8.
9.
Aberrant activation of the Wnt/β-catenin signaling pathway is associated with a wide range of human cancers. The interaction of β-catenin with T cell factor (Tcf) is a key step in activation of proliferative genes in this pathway. Interruption of this interaction would be a valuable strategy as a tumor therapy. In this study, we developed a novel fluorescein isothiocyanate (FITC)-labeled Tcf4-derived probe for identification of inhibitors of the β-catenin/Tcf4 interaction using a fluorescence polarization assay. This assay shows high potential for use in high-throughput screening for the discovery of inhibitors of the β-catenin/Tcf4 interaction.  相似文献   

10.
The canonical Wnt/β-catenin signaling plays essential role in development and diseases. Previous studies have implicated the canonical Wnt/β-catenin signaling in the regulation of normal palate development, but functional Wnt/β-catenin signaling and its tissue-specific activities remain to be accurately elucidated. In this study, we show that functional Wnt/β-catenin signaling operates primarily in the palate epithelium, particularly in the medial edge epithelium (MEE) of the developing mouse palatal shelves, consistent with the expression patterns of β-catenin and several Wnt ligands and receptors. Epithelial specific inactivation of β-catenin by the K14-Cre transgenic allele abolishes the canonical Wnt signaling activity in the palatal epithelium and leads to an abnormal persistence of the medial edge seam (MES), ultimately causing a cleft palate formation, a phenotype resembling that in Tgfβ3 mutant mice. Consistent with this phenotype is the down-regulation of Tgfβ3 and suppression of apoptosis in the MEE of the β-catenin mutant palatal shelves. Application of exogenous Tgfβ3 to the mutant palatal shelves in organ culture rescues the midline seam phenotype. On the other hand, expression of stabilized β-catenin in the palatal epithelium also disrupts normal palatogenesis by activating ectopic Tgfβ3 expression in the palatal epithelium and causing an aberrant fusion between the palate shelf and mandible in addition to severely deformed palatal shelves. Collectively, our results demonstrate an essential role for Wnt/β-catenin signaling in the epithelial component at the step of palate fusion during palate development by controlling the expression of Tgfβ3 in the MEE.  相似文献   

11.
12.
Clevers H  Nusse R 《Cell》2012,149(6):1192-1205
The WNT signal transduction cascade controls myriad biological phenomena throughout development and adult life of all animals. In parallel, aberrant Wnt signaling underlies a wide range of pathologies in humans. In this Review, we provide an update of the core Wnt/β-catenin signaling pathway, discuss how its various components contribute to disease, and pose outstanding questions to be addressed in the future.  相似文献   

13.
目的探讨结直肠癌中Galectin-3和β-catenin的表达与临床病理参数之间的关系。方法采用免疫组化En Vision法检测83例结直肠癌组织中galectin-3和β-catenin的表达。结果Galectin-3在结直肠癌中的阳性表达率为81.9%,β-catenin的异常表达率为62.7%。结直肠癌中galectin-3的表达与肿瘤的分化程度、浸润深度、淋巴结转移和病理分期有关(P0.05),而与患者年龄、肿瘤部位、肿瘤大小和脉管侵犯无关(P0.05)。结直肠癌中β-catenin的异常表达与分化程度、淋巴结转移、脉管侵犯和病理分期有关(P0.05),而与患者年龄、肿瘤部位、肿瘤大小和浸润深度无关(P0.05)。结直肠癌中galectin-3的表达与β-catenin异常表达呈正相关(P0.05)。结论Galectin-3的表达可能与结直肠癌的高浸润转移能力有关,其可能是通过β-catenin表达异常而促进肿瘤的浸润扩散。  相似文献   

14.
目的探讨β- catenin在上尿路移行细胞癌中表达的临床意义.方法免疫组化法检测β-catenin和磷酸化β-catenin在38例上尿路移行细胞癌中的表达情况,并分析其与预后的关系;Western blot法检测β-catenin在26例上尿路移行细胞癌中的表达情况.结果磷酸化的β-catenin在所有标本中均为阴性表达.β-catenin随着病理分级的增高正常表达率下降(P<0.05),随着临床分期的增高,正常表达率下降(P<0.05);β-catenin异常表达方式为下调表达,没有在细胞内的分布异常;β-catenin异常表达组预后不良.结论上尿路移行细胞癌中存在β-catenin的异常表达,异常表达与预后不良有关,可作为判断预后的指标.  相似文献   

15.
Levels of polyunsaturated phosphatidylcholine (PC) influence plasma membrane structure and function. Phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation/reacylation remodeling via Lands' cycle (non-Kennedy pathway). The reacylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), which adds a polyunsaturated fatty acid at the sn-2 position. Four LPCAT isoforms have been described to date, among which we found LPCAT3 to be the major isoform in adipose tissue, but its exact role in adipogenesis is unclear. In this study, we aimed to investigate whether LPCAT3 activity affects 3T3L1 cell adipogenic differentiation potential and its underline mechanism. Lentivirus-mediated LPCAT3 shRNA expression stably knocked down LPCAT3 in 3T3L1 preadipocytes and LPCAT3 deficiency dramatically reduced the levels of cellular polyunsaturated PCs. Importantly, we found that this deficiency activated the β-catenin dependent Wnt signaling pathway, which suppressed the expression of adipogenesis-related genes, thereby inhibiting 3T3L1 preadipocyte differentiation and lipid accumulation. Moreover, three different Wnt/β-catenin pathway inhibitors reversed the effect of LPCAP3 deficiency, suggesting that Wnt/β-catenin pathway activation is one of the causes for the observed phenotypes. To the best of our knowledge, we show here for the first time that PC remodeling is an important regulator of adipocyte differentiation.  相似文献   

16.
采用蛋白杂交技术 ,对 6 8例口腔癌中的α catenin和 β catenin蛋白表达进行了研究 ,探讨其表达与口腔癌颈淋巴结转移的相关性 ,发现与未发生淋巴结转移的口腔鳞癌相比 (32 ) ,淋巴结转移的口腔鳞癌组织中(36 ) ,α catenin和 β catenin蛋白表达出现明显的降低 (P <0 .0 1 )。此结果提示了口腔鳞癌淋巴结转移与α catenin和 β catenin蛋白表达的丧失是密切相关 ,可以作为较有价值的判定肿瘤转移发生可能性以及愈后的判断指标  相似文献   

17.
Li C  Zhou C  Wang S  Feng Y  Lin W  Lin S  Wang Y  Huang H  Liu P  Mu YG  Shen X 《PloS one》2011,6(10):e27053
Malignant gliomas represent one of the most aggressive types of cancers and their recurrence is closely linked to acquired therapeutic resistance. A combination of chemotherapy is considered a promising therapeutic model in overcoming therapeutic resistance and enhancing treatment efficacy. Herein, we show by colony formation, Hochest 33342 and TUNEL staining, as well as by flow cytometric analysis, that LY294002, a specific phosphatidylinositide-3-kinase (PI3K) inhibitor, enhanced significantly the sensitization of a traditional cytotoxic chemotherapeutic agent, tamoxifen-induced apoptosis in C6 glioma cells. Activation of PI3K signaling pathway by IGF-1 protected U251 cells from apoptosis induced by combination treatment of LY294002 and tamoxifen. Interference of PI3K signaling pathway by PI3K subunit P85 siRNA enhanced the sensitization of U251 glioma cells to tamoxifen -induced apoptosis. By Western blotting, we found that combination treatment showed lower levels of phosphorylated Akt(Ser473) and GSK-3β(Ser9) than a single treatment of LY294002. Further, we showed a significant decrease of nuclear β-catenin by combination treatment. In response to the inhibition of β-catenin signaling, mRNA and protein levels of Survivin and the other three antiapoptotic genes Bcl-2, Bcl-xL, and Mcl-1 were significantly decreased by combination treatment. Our results indicated that the synergistic cytotoxic effect of LY294002 and tamoxifen is achieved by the inhibition of GSK-3β/β-catenin signaling pathway.  相似文献   

18.
Extension of the vertebrate body results from the concerted activity of many signals in the posterior embryonic end. Among them, Wnt3a has been shown to play relevant roles in the regulation of axial progenitor activity, mesoderm formation and somitogenesis. However, its impact on axial growth remains to be fully understood. Using a transgenic approach in the mouse, we found that the effect of Wnt3a signaling varies depending on the target tissue. High levels of Wnt3a in the epiblast prevented formation of neural tissues, but did not impair axial progenitors from producing different mesodermal lineages. These mesodermal tissues maintained a remarkable degree of organization, even within a severely malformed embryo. However, from the cells that failed to take a neural fate, only those that left the epithelial layer of the epiblast activated a mesodermal program. The remaining tissue accumulated as a folded epithelium that kept some epiblast-like characteristics. Together with previously published observations, our results suggest a dose-dependent role for Wnt3a in regulating the balance between renewal and selection of differentiation fates of axial progenitors in the epiblast. In the paraxial mesoderm, appropriate regulation of Wnt/β-catenin signaling was required not only for somitogenesis, but also for providing proper anterior–posterior polarity to the somites. Both processes seem to rely on mechanisms with different requirements for feedback modulation of Wnt/β-catenin signaling, once segmentation occurred in the presence of high levels of Wnt3a in the presomitic mesoderm, but not after permanent expression of a constitutively active form of β-catenin. Together, our findings suggest that Wnt3a/β-catenin signaling plays sequential roles during posterior extension, which are strongly dependent on the target tissue. This provides an additional example of how much the functional output of signaling systems depends on the competence of the responding cells.  相似文献   

19.
《Cellular signalling》2014,26(1):94-101
Wnt signaling regulates a variety of cellular processes during embryonic development and in the adult. Many of these activities are mediated by the Frizzled family of seven-pass transmembrane receptors, which bind Wnts via a conserved cysteine-rich domain (CRD). Secreted Frizzled-related proteins (sFRPs) contain an amino-terminal, Frizzled-like CRD and a carboxyl-terminal, heparin-binding netrin-like domain. Previous studies identified sFRPs as soluble Wnt antagonists that bind directly to Wnts and prevent their interaction with Frizzleds. However, subsequent observations suggested that sFRPs and Frizzleds form homodimers and heterodimers via their respective CRDs, and that sFRPs can stimulate signal transduction. Here, we present evidence that sFRP1 either inhibits or enhances signaling in the Wnt3a/β-catenin pathway, depending on its concentration and the cellular context. Nanomolar concentrations of sFRP1 increased Wnt3a signaling, while higher concentrations blocked it in HEK293 cells expressing a SuperTopFlash reporter. sFRP1 primarily augmented Wnt3a/β-catenin signaling in C57MG cells, but it behaved as an antagonist in L929 fibroblasts. sFRP1 enhanced reporter activity in L cells that were engineered to stably express Frizzled 5, though not Frizzled 2. This implied that the Frizzled expression pattern could determine the response to sFRP1. Similar results were obtained with sFRP2 in HEK293, C57MG and L cell reporter assays. CRDsFRP1 mimicked the potentiating effect of sFRP1 in multiple settings, contradicting initial expectations that this domain would inhibit Wnt signaling. Moreover, CRDsFRP1 showed little avidity for Wnt3a compared to sFRP1, implying that the mechanism for potentiation by CRDsFRP1 probably does not require an interaction with Wnt protein. Together, these findings demonstrate that sFRPs can either promote or suppress Wnt/β-catenin signaling, depending on cellular context, concentration and most likely the expression pattern of Fzd receptors.  相似文献   

20.
β-catenin是一种进化上保守的多功能蛋白质,不但可与上皮型钙黏蛋白(E-cadherin)结合形成复合体参与细胞间连接,维持上皮细胞的正常形态结构,而且参与Wnt信号通路,作为其中的关键环节,调控基因转录,在胚胎发育、肿瘤发生和侵袭转移等生理病理过程中扮演举足轻重的角色.因此,对β-catenin的调节就显得尤为重要,在众多调节机制中,β-catenin的翻译后修饰对其发挥功能有着重要作用.本文对β-catenin不同位点的修饰及其调控酶的研究进展做简要综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号