首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Invasive epiphyte Lophocladia lallemandii macroalga induces changes in the erect bryozoan Reteporella grimaldii at shallow Posidonia oceanica meadows at a Mediterranean pristine location. Bryozoan densities at noninvaded seagrass plots (88.32 ± 3.11 colonies m−2) are higher than those at invaded plots (13.39 ± 1.09 colonies m−2) with a fourfold decrease in number of colonies. Activation of enzymatic pathways (catalase, superoxide dismutase, glutathione peroxidase) and increase in lipid peroxidation malondialdehyde (MDA) [0.80 ± 0.06 nmol/mg prot at Posidonia oceanica plots to 1.08 ± 0.04 nmol/mg prot at L. lallemandii (P < 0.05)] is observed on sessile bryozoans as response to anoxia caused by L. lallemandii. δ13C of bryozoan isotopic composition differed among treatments, covering a broad range (−19.30‰ invaded to −2.84‰ at noninvaded plots), suggesting modification of food sources. Induced shifts of a filter-feeding erect bryozoan by dense algal turfs at invaded seagrasses are demonstrated, highlighting the need to further address interaction across natural communities and alien species invaded systems before further cascade effects are driven.  相似文献   

2.
In the terrestrial bromeliad, Puya floccosa, a value of carbon isotopic composition (δ13C) of −22‰ has been previously reported, suggesting the operation of weak and/or intermediate (C3-CAM) crassulacean acid metabolism (CAM). In order to characterize the operation of CAM in P. floccosa and its possible induction by drought, plants were grown in Caracas and subjected to four independent drought cycles. Additionally, since plants of this species grow in Venezuela in a large range of elevations, leaf samples were collected at elevations ranging from 725 to 2,100 m a.s.l. in the Venezuelan Andes and the Coastal Range, in order to evaluate the effect of elevation on CAM performance. Even though nocturnal acid accumulation occurred in both watered and droughted plants, mean ΔH+ was higher in droughted than watered plants [ΔH+ = 60.17.5 and 22.9 ± 5.2 μmol g−1(FM), respectively]. The majority of plants from all the natural populations sampled had low values of δ13C not differing significantly from those of C3 plants collected as standards and δ13C did not change with elevation. We conclude that P. floccosa is capable of a weak CAM activity, with a large variability among populations and drought experiments probably due to local and temporal differences in microclimatic variables and drought stress; elevation bears no influence on values of δ13C in this species.  相似文献   

3.
Abstract Freshwater ecosystems derive organic carbon from both allochthonous and autochthonous sources. We studied the relative contributions of different carbon sources to zooplankton in a small, polyhumic, steeply stratified lake, using six replicate surface-to-sediment enclosures established during summer and autumn 2004. We added 13C-enriched bicarbonate to the epilimnion of half the enclosures for three weeks during each season and monitored carbon stable isotope ratios of DIC, DOC, POC and Daphnia, along with physical, chemical and biological variables. During summer, 13C-enriched DIC (δ13C up to 44 ± 7.2‰) was soon taken up by phytoplankton (δ13C up to −5.1 ± 13.6‰) and was transmitted to Daphnia13C up to −1.7 ± 7.2‰), demonstrating consumption of phytoplankton. In contrast, during autumn, 13C-enriched DIC (δ13C up to 56.3 ± 9.8‰) was not transmitted to Daphnia, whose δ13C became progressively lower (δ13C down to −45.6 ± 3.3‰) concomitant with decreasing methane concentration. Outputs from a model suggested phytoplankton contributed 64–84% of Daphnia diet during summer, whereas a calculated pelagic carbon mass balance indicated only 30–40% could have come from phytoplankton. Although autumn primary production was negligible, zooplankton biomass persisted at the summer level. The model suggested methanotrophic bacteria contributed 64–87% of Daphnia diet during autumn, although the calculated carbon mass balance indicated a contribution of 37–112%. Thus methanotrophic bacteria could supply virtually all the carbon requirement of Daphnia during autumn in this lake. The strongly 13C-depleted Daphnia values, together with the outputs from the models and the calculated carbon mass balance showed that methanotrophic bacteria can be a greater carbon source for Daphnia in lakes than previously suspected.  相似文献   

4.
Two experiments were performed to determine how application of the cytokinin benzyladenine (BA) influenced flowering in Doritaenopsis and Phalaenopsis orchid clones. In the first experiment, two vegetative orchid clones growing in 15-cm pots were transferred from a 28°C greenhouse that inhibited flowering to a 23°C greenhouse for flower induction (day 0). A foliar spray (0.2 L m−2) containing BA at 100, 200, or 400 mg L−1 or 25, 50, or 100 mg L−1 each of BA and gibberellins A4 + A7 (BA+GA) was applied on days 0, 7, and 14. Plants treated with BA alone at 200 or 400 mg L−1 had a visible inflorescence 3–9 days earlier and had a mean of 0.7–3.5 more inflorescences and 3–8 more flowers per plant than nontreated plants. The application of BA+GA had no effect on inflorescence number and total flower number at the rates tested. In the second experiment, three orchid clones received a single foliar spray of BA at 200 mg L−1 at six time points relative to time of transfer from 29°C to 23°C (−1, 0, +1, +2, +4, or +6 weeks). A separate group of plants received a BA application at week 0 but was maintained at 29°C. Inflorescence number was greatest in all three orchid clones when plants were treated with BA 1 week after the temperature transfer. Plants that were sprayed with BA and maintained at 29°C did not initiate inflorescences. The promotion of flowering by the application of BA suggests that cytokinins at least partially regulate inflorescence initiation of Doritaenopsis and Phalaenopsis, but its promotion is conditional and BA application cannot completely substitute for an inductive low temperature.  相似文献   

5.
To determine the feasibility of using stable isotopes to track diet shifts in wild gag, Mycteroperca microlepis, populations over seasonal timescales, we conducted a repeated measures diet-shift experiment on four adult gag held in the laboratory. Fish were initially fed a diet of Atlantic mackerel, Scomber scombrus, (mean δ13C = −21.3‰ ± 0.2, n = 20) for a period of 56 days and then shifted to a diet of pinfish, Lagodon rhomboids, (mean δ13C = −16.6‰ ± 0.6, n = 20) for the 256 day experiment. We developed a non-lethal surgical procedure to obtain biopsies of the muscle, liver, and gonad tissue monthly from the same four fish. We then determined the δ13C value of each tissue by isotope ratio mass spectrometry. For the gonad tissue we used the relationship between C/N and lipid content to correct for the influence of lipids on δ13C value. We observed a significant shift in the δ13C values of all of the tissues sampled in the study. Carbon turnover rates varied among the three tissues, but the shift in diet from mackerel to pinfish was clearly traceable through analysis of δ13C values. The turnover rates for muscle tissue were 0.005‰ day−1, and for gonad tissue was 0.009‰ day−1. Although it is generally thought that tissue turnover rates in ectotherms are driven primarily by growth, we found that metabolic rate can be a major factor driving tissue turnover in adult gag.  相似文献   

6.
A feeding trial was performed in the laboratory with the catfish species Pterygoplichthys disjunctivus to determine stable carbon (13C) and nitrogen (15 N) turnover rates and discrimination factors in non-lethally sampled tissues (red blood cells, plasma solutes, and fin). A second feeding trial was conducted to determine what P. disjunctivus could assimilate from low-quality wood-detritusrefractory polysaccharides (e.g., cellulose), or soluble wood-degradation products inherent in wood-detritus. This was performed by feeding the fish an artificial wood-detritus diet with fibrous (δ13C = −26.36‰; δ15N = 2.13‰) and soluble portions (δ13C = −11.82‰; δ15N = 3.39‰) that had different isotopic signatures and monitoring the dynamics of isotopic incorporation in the different tissues over time. Plasma solutes turned over more quickly than red blood cells for 13C and 15 N. However, in contrast to previous studies of juvenile fishes, C and N incorporation was primarily driven by catabolic tissue turnover as opposed to growth rate. Tissue-diet discrimination factors for 15 N varied from 4.08 to 5.17‰, whereas they were <2‰ for 13C (and less than 0.3‰ for plasma and red blood cells). The results of trial two suggested that P. disjunctivus could not assimilate refractory polysaccharides. Moreover, the δ13C and δ15 N signatures of wild-caught P. disjunctivus from Florida confirmed their detrital trophic standing in Floridian aquatic ecosystems.  相似文献   

7.
An endophytic fungus, F-23, was isolated from the roots of Dendrobium officinale Kimura et Migo, an endangered Chinese medicinal plant. The sequence of the ITS region indicated that the isolate belongs to the genus Mycena. After 4 months of inoculation, the root systems of D. officinale that were inoculated with F-23 fungus were much larger than the control’s root systems. We also observed that the hyphae of F-23 penetrated the epidermal cells within the host’s roots and spread from cell to cell. A large number of pelotons existed in the root cortical cells of D. officinale inoculated with F-23 fungus. Intracellular hyphae crossing through the host walls were also observed using SEM (scanning electron microscopy). In contrast, light microscopy and SEM showed that the transverse sections of the roots of control plants remained uncolonized. Therefore, the F-23 fungus can form mycorrhizal associations with the roots of its host plant, D. officinale, and enhance the growth of seedlings and roots. In brief, Mycena sp. was identified and shown to be a mycorrhizal fungus of the epiphytic orchid, D. officinale. This might be of potential use to the mass cultivation of D. officinale under artificial conditions.  相似文献   

8.
A total of 23 genotypes belonging to seven tropical food yams and two wild relative species of different origin and coming from two sampling ecological zones (the Republic of Benin in Africa and Guadeloupe in the Caribbean) was analysed for their 13C content. The δ13C values for all yam samples (from −25.39 and −30.07 ‰) indicated that all species had a C3 photosynthetic type.  相似文献   

9.
Protoplasts isolated from wild cotton Gossypium davidsonii were cultured in KM8P medium supplemented with different phytohormones. The most effective combination was 0.45 μM 2,4-dichlorophenoxyacetic acid, 2.68 μM α-naphthaleneacetic acid and 0.93 μM kinetin and the division percentage at the 8th day was 30.78 ± 3.04 %. The density of protoplasts at 2–10 × 105 cm−3 was suitable for protoplast division and calli formation, with a division percentage of 32.21 ± 3.64 % and a plating efficiency of 9.12 ± 2.61 % at the 40th day. The optimal osmotic potential was achieved using 0.5 M glucose or 0.1 M glucose plus 0.5 M mannitol. Protoplasts were cultured in three ways, a double-layer culture system, with liquid over solid medium was proved to be the best way. Embryo induction was further increased by addition of 0.14 μM gibberellic acid.  相似文献   

10.
Effects of arbuscular mycorrhizal fungus (Glomus mosseae) on the accumulation and speciation of selenium (Se) in alfalfa, maize, and soybean were investigated by using Se(IV)-spiked soil. Mycorrhizal inoculation decreased Se accumulation in roots and shoots of all the plants at Se spiked level of 0 or 2 mg kg−1, while an increased Se accumulation was observed in alfalfa shoots and maize roots and shoots at the spiked level of 20 mg kg−1. Concentration of inorganic Se (especially Se(VI)) in roots and shoots of the three plants was much higher in mycorrhizal than non-mycorrhizal treatment. Mycorrhizal inoculation decreased the portion of total organic Se in plant tissues with the exception of alfalfa and maize shoots at Se spiked level of 20 mg kg−1, in which organic Se portion did not reduced greatly (<5%) for mycorrhizal treatment. Mycorrhizal effects on alfalfa and maize were more obvious than on soybean in terms of root colonization rate, biomass, and Se accumulation.  相似文献   

11.
Embellisia astragali is a strong, virulent pathogen that develops within milk vetch (Astragalus adsurgens). In order to determine nutrient requirements, the fungus was cultured on 9 carbon sources, 9 nitrogen sources, and 13 growth media in the dark at 25°C. Growth rates and sporulation capacity were measured after 4 and 12 weeks. All carbon sources supported growth, but only soluble starch, inulin, and dextrose supported sporulation. In general, better growth was obtained on disaccharides and polysaccharides than on monosaccharides. Compared with no growth on NH4 +-N and urea, the fungus grew little on all NO3 -N, amino-N, and other organic-N such as peptone. There was no sporulation or very sparse conidia on almost all nitrogen sources with supplied dextrose or soluble starch as sole carbon source. The better growth and sporulation on most of the semidefined media than on defined media indicates that some components in plant or animal material may be vital to the fungus. Sporulation was positively correlated with growth rate in N source experiment at 12 weeks and in growth media experiment at 4 and 12 weeks. The fungus favors grow within agar with growth rate less than 1.18 mm day−1.  相似文献   

12.
To screen stimulators from Chinese medicinal insects for mycelial growth and polysaccharides production of Ganoderma lucidum, G. lucidum was inoculated into the media with and without supplementation of medicinal insect extracts. The ethyl acetate extract of Eupolyphaga sinensis at 55 mg l−1 lead to significant increase in both biomass and intracellular polysaccharides (IPS) concentration from 8.53 ± 0.41 to 14.16 ± 0.43 and 1.28 ± 0.09 to 2.13 ± 0.11 g l−1, respectively. In addition, the ethyl acetate extract of Catharsius molossus at 55 mg l−1 significantly enhanced extracellular polysaccharides (EPS) production; the EPS yield increased from 350.9 ± 14.1 to 475.1 ± 15.3 mg l−1. There were no new components in the two types of polysaccharides obtained by the addition of the insect extracts.  相似文献   

13.
A Gram-positive rod-shaped bacterium isolated on nutrient agar plates incubated at 28 ± 2°C. The identity of the bacterium was confirmed by sequencing of the 16S rRNA gene and it reveals that it shares highest similarity with Bacillus thioparus CECT 7196T (99.08%). It was capable of growing at temperatures ranging from 4 to 40°C, but optimum growth was observed at 28 ± 2°C. Strain NII-0902 is endowed with multiple plant growth promotion attributes such as phosphate solubilization, Indole acetic acid (IAA), siderophore and HCN production, which were expressed differentially at sub-optimal temperatures (5–40°C). It was able to solubilize phosphate (17.7 μg ml−1), and produce IAA (139.7 μg ml−1) at 28 ± 2°C. Qualitative detection of siderophore production and HCN were also observed. At 5°C it was found to express all the plant growth promotion attributes except HCN production. The ability to colonize roots is a sine qua non condition for a rhizobacteria to be considered a true plant growth-promoting rhizobacteria (PGPR). Bacillus sp. NII-0902 has a potential ability to colonize roots visualized by transparency, bacterial growth (turbid, milky and narrow zone) along and around roots and truly supported by scanning electron micrograph. Hence, it is proposed that, Bacillus thioparus sp. NII-0902 could be deployed as an inoculant to attain the desired results of bacterization.  相似文献   

14.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

15.
Zhou L  Cao X  Zhang R  Peng Y  Zhao S  Wu J 《Biotechnology letters》2007,29(4):631-634
Two oligosaccharides, a heptasaccharide (HS) and an octasaccharide (OS), isolated from Paris polyphylla var. yunnanensis, stimulated the growth and saponin accumulation of Panax ginseng hairy roots at 5–30 mg l−1. HS and OS at 30 mg l−1, fed separately to hairy root cultures at 10 days post-inoculation, increased the root biomass dry weight by more than 70% to ∼20 g l−1 from 13 g l−1 and the total saponin content of roots by more than 1-fold to ∼3.5% from 1.6% (w/w). The results suggest that the two oligosaccharides may have plant growth-regulatory activity in plant tissue cultures.  相似文献   

16.
We evaluated the combined effects of algal (Chlorella vulgaris) food levels (low, 0.5 × 106 (or 2.9 μg C ml−1); and high, 1 × 106 cells ml−1 (or 5.8 μg C ml−1)) and zinc concentrations (0, 0.125, and 0.250 mg l−1 of ZnCl2) on the competition between two common planktonic rotifers Anuraeopsis fissa and Brachionus rubens using their population growth. Median lethal concentration data (LC50) (mean ± 95% confidence intervals) showed that B. rubens was more resistant to zinc (0.554 ± 0.08 mg l−1) than A. fissa (0.315 ± 0.07 mg l−1). A. fissa when grown alone or with Zn was always numerically more abundant than B. rubens. When grown in the absence of zinc, under low- and high-food levels, the peak abundances of A. fissa varied from 251 ± 24 to 661 ± 77 ind. ml−1, respectively, and the corresponding maxima for B. rubens were 52 ± 3 and 102 ± 18 ind. ml−1. At a given food level, competition for food reduced the peak abundances of both rotifers considerably. Increase in Zn concentration also lowered the rotifer abundances. The impact of zinc on competition between the two-rotifer species was evident at low-food level, mainly for A. fissa. At zinc concentrations of 0 and 0.125 mg l−1, the populations of both rotifers continued to grow for about 10 days, but thereafter B. rubens began to decline. Role of zinc on the competitive outcome of the two species is discussed in relation to the changing algal densities in natural water bodies.  相似文献   

17.
A mutant designated as UV-3 was obtained from wild-type Enterobacter aerogenes 10293 through u.v. radiation. The activities of α-acetolactate decarboxylase (Ald), lactate dehydrogenase (Ldh) and diacetyl reductase (Dr) in UV-3 were strongly attenuated, with the lowest activities at pH 7.0–7.5, and temperature between 36 and 39°C. Compared to the wild-type, the yield of diacetyl by UV-3 was increased 18.7-fold, up to 1.05 ± 0.01 g l−1. Acetoin and ethanol productions were decreased by 48.4 and 71.4%, respectively, but acetate yield was increased by 34.6%. Optimum medium for diacetyl production by UV-3 contained 10% glucose, 0.5% peptone, 0.5% yeast extract powder, 0.01% (NH4)2SO4, 0.1% citric acid, 0.2% MnSO4 and 0.2% MgSO4, and this was determined by one-factor-at-a-time approach. Data from the five level central composite designs demonstrated that initial pH of 7.0, temperature of 37°C and rotational speed of 180 rev/min were optimum processing parameters for diacetyl production. The maximum yield of diacetyl could reach 1.35 g l−1 in a 5-l bioreactor. These results showed an enhancement of the non-enzymatic oxidative decarboxylation of α-acetolactate and a decrease in the activities of Ald, Ldh and Dr as a consequence of diacetyl accumulation in UV-3.  相似文献   

18.
19.
Protocorm-like bodies (PLBs) of Dendrobium candidum Wall. ex Lindl., orchid, were successfully cryopreserved using an encapsulation vitrification method. PLBs were precultured in liquid Murashige and Skoog (MS) medium containing 0.2 mg l−1 α-naphthalene acetic acid and 0.5 mg l−1 6-benzyladenine enriched with 0.75 M sucrose, and grown under continuous light (36 μmol m−2 s−1) at 25 ± 1°C for 5 days. PLBs were osmoprotected with a mixture of 2 M glycerol and 1 M sucrose for 80 min at 25°C and dripped in a 0.5 M CaCl2 solution containing 0.5 M sucrose at 25 ± 1°C and left for 15 min to form Ca-alginate beads (about 4 mm in diameter). Then, these were dehydrated with a plant vitrification solution 2 (PVS2) consisting of 30% (w/v) glycerol, 15% (w/v) ethylene glycol, and 15% (w/v) dimethyl sulfoxide in 0.5 M sucrose, pH 5.8, for 150 min at 0°C. Encapsulated and dehydrated PLBs were plunged directly into liquid nitrogen for 1 h. Cryopreserved PLBs were then rapidly re-warmed in a water bath at 40°C for 3 min and then washed with MS medium containing 1.2 M sucrose for three times at 10 min intervals. Within 60 days, plantlets with the cryopreserved PLBs developed normal shoots and roots, and without any observed morphological abnormalities, were obtained. The survival rate of encapsulated-vitrified PLBs was above 85%. Thus, this encapsulation-vitrification method was deemed promising for cryopreservation of PLBs of D. candidum.  相似文献   

20.
A greenhouse experiment was conducted to examine the changes in antioxidant enzyme activities of arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck and Smith inoculated (M+) and non-inoculated (M−) maize (Zea mays L.) plants (variety COHM5) under varying levels of zinc (0, 1.25, 2.5, 3.75 and 5.0 mg kg−1). Roots and shoots sampled at 45 days after sowing (DAS) were estimated for its antioxidant enzymes (superoxide dismutase, peroxidase) IAA oxidase, polyphenol oxidase, acid phosphatase and nutritional status especially P and Zn concentrations. Mycorrhizal inoculation significantly (P ≤ 0.01) increased all the four antioxidant enzymes in both roots and shoots at 45 DAS regardless of Zn levels. All enzyme activities except SOD increased progressively with increasing levels of Zn under M+ and M− conditions. The SOD activity got decreased in roots and shoots at 2.5 and 3.75 mg Zn kg−1. Acid phosphatase activity in M+ roots and shoots were higher in all levels of Zn but the values decreased with increasing levels of Zn particularly in roots. Mycorrhizal fungus inoculated plants had higher P and Zn concentrations in both stages in comparison to non-inoculated plants. Our overall data suggest that mycorrhizal symbiosis plays a vital role in enhancing activities of antioxidant enzymes and nutritional status that enables the host plant to sustain zinc deficient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号