首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Western blots of normal human platelets, employing a monoclonal antibody raised against the full-length amyloid precursor protein of Alzheimer's disease (APP695), revealed major bands of 100-110 and 120-130 kDa in both cytosolic, membrane, and released fractions. These species were similar in size to forms seen in brain preparations and in plasma. There was no difference in Western blots of platelet preparations from Alzheimer patients compared with controls. Purified platelet amyloid precursor proteins were sequenced and shown to be amino terminally homogeneous. Immunohistochemistry localized the antigen to the platelet and megakaryocyte and demonstrated weak immunostaining of some lymphocytes. Immunoprecipitation of material released from platelets demonstrated that sedimentable full-length APP with the carboxyl-terminal epitope, and soluble APP lacking the carboxyl-terminal epitope, may exist in the circulation. Western blots and carboxyl-terminal and amino-terminal APP radioimmunoassay of material released by platelets in response to stimulation revealed that platelets release APP during degranulation. The function of platelet APP is yet to be determined, but the present studies suggest a role in regulation of the coagulation cascade or in platelet aggregation.  相似文献   

2.
BACKGROUND: Mutations in the presenilin proteins cause early-onset, familial Alzheimer's disease (FAD). MATERIALS AND METHODS: We characterized the cellular localization and endoproteolysis of presenilin 2 (PS2) and presenilin 1 (PS1) in brains from 25 individuals with presenilin-mutations causing FAD, as well as neurologically normal individuals and individuals with sporadic Alzheimer's disease (AD). RESULTS: Amino-terminal antibodies to both presenilins predominantly decorated large neurons. Regional differences between the broad distributions of the two presenilins were greatest in the cerebellum, where most Purkinje cells showed high levels of only PS2 immunoreactivity. PS2 endoproteolysis in brain yielded multiple amino-terminal fragments similar in size to the PS1 amino-terminal fragments detected in brain. In addition, two different PS2 amino-terminal antibodies also detected a prominent 42 kDa band that may represent a novel PS2 form in human brain. Similar to PS1 findings, neither amino-terminal nor antiloop PS2 antibodies revealed substantial full-length PS2 in brain. Immunocytochemical examination of brains from individuals with the N141I PS2 mutation or eight different PS1 mutations, spanning the molecule from the second transmembrane domain to the large cytoplasmic loop domain, revealed immunodecoration of no senile plaques and only neurofibrillary tangles in the M139I PS1 mutation stained with PS1 antibodies. CONCLUSIONS: Overall presenilin expression and the relative abundance of full-length and amino-terminal fragments in presenilin FAD cases were similar to control cases and sporadic AD cases. Thus, accumulation of full-length protein or other gross mismetabolism of neither PS2 nor PS1 is a consequence of the FAD mutations examined.  相似文献   

3.
It has been suggested that mild cognitive impairment (MCI) patients deteriorate faster than the healthy elderly population and have an increased risk of developing dementia. Certain blood molecular biomarkers have been identified as prognostic markers in Alzheimer’s disease (AD). The present study was aimed to assess the status of the platelet amyloid precursor protein (APP) metabolism in MCI and AD subjects and establish to what extent any variation could have a prognostic value suggestive of predictive AD in MCI patients. Thirty-four subjects diagnosed with MCI and 45 subjects with AD were compared to 28 healthy elderly individuals for assessing for protein levels of APP, β-APP cleaving enzyme 1 (BACE1), presenilin 1 (PS1) and a disintegrin and metalloproteinase-10 (ADAM-10) by western blot, and for the enzyme activities of BACE1 and γ-secretase by using specific fluorogenic substrates, in samples of platelets. A similar pattern in the healthy elderly and MCI patients was found for BACE1 and PS1 levels. A reduction of APP levels in MCI and AD patients compared with healthy elderly individuals was found. Augmented levels of ADAM-10 in both MCI and AD were displayed in comparison with age-matched control subjects. The ratio ADAM-10/BACE1 was higher for the MCI group versus AD group. Whereas BACE1 and PS1 levels were only increased in AD regarding to controls, BACE1 and γ-secretase activities augmented significantly in both MCI and AD groups. Finally, differences and similarities between MCI and AD patients were observed in several markers of platelet APP processing. Larger sample sets from diverse populations need to be analyzed to define a signature for the presence of MCI or AD pathology and to early detect AD at the MCI stage.  相似文献   

4.
ABSTRACT: BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia. Mutations in genes such as those encoding amyloid precursor protein (APP), presenilin 1 and presenilin 2, are responsible for early-onset familial AD.Case presentation In this study, we report a 275341 G > C (Val717Leu) mutation in the APP gene in a Japanese family with early onset AD by genetic screening. This mutation has previously been detected in European families. In the Japanese family we screened, the age at onset of AD was 47.1 +/- 3.1 years old (n = 9; range, 42-52). The symptoms in the affected members included psychiatric vulnerability and focal signs such as pyramidal signs, epileptic seizures, and myoclonic discharges. An MR imaging study showed relatively mild atrophic changes in the bilateral hippocampus and cerebral cortices in all affected members compared with their clinical presentations. CONCLUSION: We conclude that the clinical features of Alzheimer's disease can be different even when caused by the same mutation in the APP gene. Further clinical and genetic studies are required to clarify the relationship between phenotypes and genotypes.  相似文献   

5.
We sequenced the entire coding region of the amyloid precursor protein (APP) genes of 11 unrelated patients with Japanese familial Alzheimer's disease (FAD) in order to determine the exact frequency of known APP gene mutations and to search for novel mutations responsible for FAD. Three out of 11 (27.3%) FAD patients showed the known Val to Ile mis-sense mutation at codon 717, but no other mutations were detected in the entire coding region. Analysis of exons 16 and 17 in 30 Japanese with sporadic AD revealed no mutations. Moreover, there were no significant differences in the allele frequencies of the DNA polymorphism in intron 9 among the 11 FAD, 39 sporadic AD, and 110 control subjects.  相似文献   

6.
Alzheimer's disease is characterized by neurodegeneration and deposition of betaA4, a peptide that is proteolytically released from the amyloid precursor protein (APP). Missense mutations in the genes coding for APP and for the polytopic membrane proteins presenilin (PS) 1 and PS2 have been linked to familial forms of early-onset Alzheimer's disease. Overexpression of presenilins, especially that of PS2, induces increased susceptibility for apoptosis that is even more pronounced in cells expressing presenilin mutants. Additionally, presenilins themselves are targets for activated caspases in apoptotic cells. When we analyzed APP in COS-7 cells overexpressing PS2, we observed proteolytic processing close to the APP carboxyl terminus. Proteolytic conversion was increased in the presence of PS2-I, which encodes one of the known PS2 pathogenic mutations. The same proteolytic processing occurred in cells treated with chemical inducers of apoptosis, suggesting a participation of activated caspases in the carboxyl-terminal truncation of APP. This was confirmed by showing that specific caspase inhibitors blocked the apoptotic conversion of APP. Sequence analysis of the APP cytosolic domain revealed a consensus motif for group III caspases ((IVL)ExD). Mutation of the corresponding Asp664 residue abolished cleavage, thereby identifying APP as a target molecule for caspase-like proteases in the pathways of programmed cellular death.  相似文献   

7.
Mutations in human presenilin (PS) genes cause aggressive forms of familial Alzheimer's disease. Presenilins are polytopic proteins that harbour the catalytic site of the gamma-secretase complex and cleave many type I transmembrane proteins including beta-amyloid precursor protein (APP), Notch and syndecan 3. Contradictory results have been published concerning whether PS mutations cause 'abnormal' gain or (partial) loss of function of gamma-secretase. To avoid the possibility that wild-type PS confounds the interpretation of the results, we used presenilin-deficient cells to analyse the effects of different clinical mutations on APP, Notch, syndecan 3 and N-cadherin substrate processing, and on gamma-secretase complex formation. A loss in APP and Notch substrate processing at epsilon and S3 cleavage sites was observed with all presenilin mutants, whereas APP processing at the gamma site was affected in variable ways. PS1-Delta9 and PS1-L166P mutations caused a reduction in beta-amyloid peptide Abeta40 production whereas PS1-G384A mutant significantly increased Abeta42. Interestingly PS2, a close homologue of PS1, appeared to be a less efficient producer of Abeta than PS1. Finally, subtle differences in gamma-secretase complex assembly were observed. Overall, our results indicate that the different mutations in PS affect gamma-secretase structure or function in multiple ways.  相似文献   

8.
Mutant forms of presenilin (PS) 1 and 2 and amyloid precursor protein (APP) lead to familial Alzheimer's disease. Several reports indicate that PS may modulate APP export from the endoplasmic reticulum (ER). To develop a test of this possibility, we reconstituted the capture of APP and PS1 in COPII (coat protein complex II) vesicles formed from ER membranes in permeabilized cultured cells. The recombinant forms of mammalian COPII proteins were active in a reaction that measures coat subunit assembly and coated vesicle budding on chemically defined synthetic liposomes. However, the recombinant COPII proteins were not active in cargo capture and vesicle budding from microsomal membranes. In contrast, rat liver cytosol was active in stimulating the sorting and packaging of APP, PS1, and p58 (an itinerant ER to Golgi marker protein) into transport vesicles from donor ER membranes. Budding was stimulated in dilute cytosol by the addition of recombinant COPII proteins. Fractionation of the cytosol suggested one or more additional proteins other than the COPII subunits may be essential for cargo selection or vesicle formation from the mammalian ER membrane. The recombinant Sec24C specifically recognized the APP C-terminal region for packaging. Titration of Sarla distinguished the packaging requirements of APP and PS1. Furthermore, APP packaging was not affected by deletion of PS1 or PS1 and 2, suggesting APP and PS1 trafficking from the ER are normally uncoupled.  相似文献   

9.
Non-amyloidogenic alpha-secretase processing of amyloid precursor protein (APP) is stimulated by protein kinase C (PKC). Levels and activity of PKC are decreased in sporadic Alzheimer's disease skin fibroblasts. We investigated whether alterations in PKC and PKC-mediated APP processing occur also in fibroblasts established from individuals with familial Alzheimer's disease APP KM670/671NL, PS1 M146V and H163Y mutations. These pathogenic mutations are known to alter APP metabolism to increase Abeta. PKC activities, but not levels, were decreased by 50% in soluble fractions from sporadic Alzheimer's disease cases. In contrast, familial Alzheimer's disease fibroblasts showed no significant changes in PKC enzyme activity. Fibroblasts bearing the APP KM670/671NL mutation showed no significant differences in either PKC levels or PKC-mediated soluble APP (APPs) secretion, compared to controls. Fibroblasts bearing PS1 M146V and H163Y mutations showed a 30% increase in soluble PKC levels and a 40% decrease in PKC-mediated APPs secretion. These results indicate that PKC deficits are unlikely to contribute to increased Abeta seen with APP and PS1 mutations, and also that PS1 mutations decrease alpha-secretase derived APPs production independently of altered PKC activity.  相似文献   

10.
Mitochondria are central in the regulation of cell death. Apart from providing the cell with ATP, mitochondria also harbor several death factors that are released upon apoptotic stimuli. Alterations in mitochondrial functions, increased oxidative stress, and neurons dying by apoptosis have been detected in Alzheimer's disease patients. These findings suggest that mitochondria may trigger the abnormal onset of neuronal cell death in Alzheimer's disease. We previously reported that presenilin 1 (PS1), which is often mutated in familial forms of Alzheimer's disease, is located in mitochondria and hypothesized that presenilin mutations may sensitize cells to apoptotic stimuli at the mitochondrial level. Presenilin forms an active gamma-secretase complex together with Nicastrin (NCT), APH-1, and PEN-2, which among other substrates cleaves the beta-amyloid precursor protein (beta-APP) generating the amyloid beta-peptide and the beta-APP intracellular domain. Here we have identified dual targeting sequences (for endoplasmic reticulum and mitochondria) in NCT and showed expression of NCT in mitochondria by immunoelectron microscopy. We also showed that NCT together with APH-1, PEN-2, and PS1 form a high molecular weight complex located in mitochondria. gamma-secretase activity in isolated mitochondria was demonstrated using C83 (alpha-secretase-cleaved C-terminal 83-residue beta-APP fragment from BD8 cells lacking presenilin and thus gamma-secretase activity) or recombinant C100-Flag (C-terminal 100-residue beta-APP fragment) as substrates. Both systems generated an APP intracellular domain, and the activity was inhibited by the gamma-secretase inhibitors l-685,458 or Compound E. This novel localization of NCT, PS1, APH-1, and PEN-2 expands the role and importance of gamma-secretase activity to mitochondria.  相似文献   

11.
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major gamma-secretase and that it contributes disproportionately to amyloid beta (Abeta) peptide generation from beta-amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimer's disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Abeta levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease-causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Abeta 42/40 ratio, comparable with PS1 mutations that cause very-early-onset FAD. Most of the PS2 mutations also cause a significant decrease in Abeta 40, APP C-terminal fragment (CTF)gamma and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFgamma and NICD production suggesting that TM5 of PS are important for gamma-secretase cleavage of APP but not Notch.  相似文献   

12.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

13.
Mutations in the human presenilin genes (PS1 or PS2) have been linked to autosomal dominant, early onset Alzheimer's disease (AD). Presenilins, probably as an essential part of gamma-secretase, modulate gamma-cleavage of the amyloid protein precursor (APP) to the amyloid beta-peptide (Abeta). Mutations in sel-12, a Caenorhabditis elegans presenilin homologue, cause a defect in egg laying that can be suppressed by loss of function mutations in a second gene, SEL-10. SEL-10 protein is a homologue of yeast Cdc4, a member of the SCF (Skp1-Cdc53/CUL1-F-box protein) E2-E3 ubiquitin ligase family. In this study, we show that human SEL-10 interacts with PS1 and enhances PS1 ubiquitination, thus altering cellular levels of unprocessed PS1 and its N- and C-terminal fragments. Co-transfection of sel-10 and APP cDNAs in HEK293 cells leads to an alteration in the metabolism of APP and to an increase in the production of amyloid beta-peptide, the principal component of amyloid plaque in Alzheimer's disease.  相似文献   

14.
Mutations in the presenilin (PS) genes are linked to the development of early-onset Alzheimer's disease by a gain-of-function mechanism that alters proteolytic processing of the amyloid precursor protein (APP). Recent work indicates that Alzheimer's-disease-linked mutations in presenilin1 and presenilin2 attenuate calcium entry and augment calcium release from the endoplasmic reticulum (ER) in different cell types. However, the regulatory mechanisms underlying the altered profile of Ca(2+) signaling are unknown. The present study investigated the influence of two familial Alzheimer's-disease-linked presenilin2 variants (N141I and M239V) and a loss-of-function presenilin2 mutant (D263A) on the activity of the transient receptor potential canonical (TRPC)6 Ca(2+) entry channel. We show that transient coexpression of Alzheimer's-disease-linked presenilin2 mutants and TRPC6 in human embryonic kidney (HEK) 293T cells abolished agonist-induced TRPC6 activation without affecting agonist-induced endogenous Ca(2+) entry. The inhibitory effect of presenilin2 and the Alzheimer's-disease-linked presenilin2 variants was not due to an increase in amyloid beta-peptides in the medium. Despite the strong negative effect of the presenilin2 and Alzheimer's-disease-linked presenilin2 variants on agonist-induced TRPC6 activation, conformational coupling between inositol 1,4,5-trisphosphate receptor type 3 (IP(3)R3) and TRPC6 was unaffected. In cells coexpressing presenilin2 or the FAD-linked presenilin2 variants, Ca(2+) entry through TRPC6 could still be induced by direct activation of TRPC6 with 1-oleoyl-2-acetyl-sn-glycerol (OAG). Furthermore, transient coexpression of a loss-of-function PS2 mutant and TRPC6 in HEK293T cells enhanced angiotensin II (AngII)- and OAG-induced Ca(2+) entry. These results clearly indicate that presenilin2 influences TRPC6-mediated Ca(2+) entry into HEK293 cells.  相似文献   

15.
Genetic study of familial cases of Alzheimer's disease   总被引:2,自引:0,他引:2  
A small number (1-5%) of Alzheimer's disease (AD) cases associated with the early-onset form of the disease (EOAD) appears to be transmitted as a pure genetic, autosomal dominant trait. To date, three genes responsible for familial EOAD have been identified in the human genome: amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2). Mutations in these genes account for a significant fraction (18 to 50%) of familial cases of early onset AD. The mutations affect APP processing causing increased production of the toxic Abeta42 peptide. According to the "amyloid cascade hypothesis", aggregation of the Abeta42 peptide in brain is a primary event in AD pathogenesis. In our study of twenty AD patients with a positive family history of dementia, 15% (3 of 20) of the cases could be explained by coding sequence mutations in the PS1 gene. Although a frequency of PS1 mutations is less than 2% in the whole population of AD patients, their detection has a significant diagnostic value for both genetic counseling and treatment in families with AD.  相似文献   

16.
17.
BACKGROUND: Members of membrane-bound disintegrin metalloproteinases (ADAMs) were shown to be capable of cleaving amyloid precursor protein (APP) at the alpha-cleavage site in different cell systems. One of the candidate alpha-secretases identified in this family is ADAM10. The present study addresses the following major questions: 1) Are the levels of an alpha-secretase candidate (i.e., ADAM10) reduced in accessible cells of Alzheimer Disease (AD) patients? 2) Are ADAM10 levels in the peripheral cells of AD patients related to a concomitant decrease in alpha APPs? MATERIALS AND METHODS: Western Blot analysis of ADAM10 is performed on platelet homogenates from 33 sporadic AD patients and on 26 age-matched control subjects. Moreover, the levels of alpha-secretase metabolite (alpha APPs) are tested both in platelets and cerebrospinal fluid (CSF) of the same pool of subjects by means of Western blot with a specific antibody. RESULTS: A significant decrease of platelet ADAM10 levels is observed in patients affected by probable AD when compared to control subjects and this is paralleled by a reduced level of alpha APPs released from platelets. Moreover, in the same pool of AD patients, alpha APPs levels were reduced concomitantly in CSF. CONCLUSIONS: ADAM10 is expressed in platelets. A reduced level of ADAM10 is observed in platelets obtained from AD patients compared to age-matched controls. Further, in the same pool of AD patients, a qualitatively and quantitatively similar decrease in alpha APPs is present both in thrombin-activated platelets and CSF, thus suggesting that alterations of APP processing might occur both in the neuronal compartment and peripheral cells.  相似文献   

18.
The cleavage of the transmembrane amyloid precursor protein (APP) by beta-secretase leaves the C-terminal fragment of APP, C99, anchored in the plasma membrane. C99 is subsequently processed by gamma-secretase, an unusual aspartyl protease activity largely dependent on presenilin (PS), generating the amyloid beta-peptide (Abeta) that accumulates in the brain of patients with Alzheimer's disease. It has been suggested that PS proteins are the catalytic core of this proteolytic activity, but a number of other proteins mandatory for gamma-secretase cleavage have also been discovered. The exact role of PS in the gamma-secretase activity remains a matter of debate, because cells devoid of PS still produce some forms of Abeta. Here, we used insect cells expressing C99 to demonstrate that the expression of presenilin 1 (PS1), which binds C99, not only increases the production of Abeta by these cells but also increases the intracellular levels of C99 to the same extent. Using pulse-chase experiments, we established that this results from an increased half-life of C99 in cells expressing PS1. In Chinese hamster ovary cells producing C99 from full-length human APP, similar results were observed. Finally, we show that a functional inhibitor of gamma-secretase does not alter the ability of PS1 to increase the intracellular levels of C99. This finding suggests that the binding of PS1 to C99 does not necessarily lead to its immediate cleavage by gamma-secretase, which could be a spatio-temporally regulated or an induced event, and provides biochemical evidence for the existence of a substrate-docking site on PS1.  相似文献   

19.
20.



为了检测Alzheimer病(Alzheimer’s disease,AD)患者外周血中淀粉样前体蛋白(Amyloid Precursor Protein, APP)基因及早老素1(Presenilin 1, PS1)基因的表达情况,进而探讨APP及PS1基因的表达与AD的相关性,采用SYBRGreenⅠ的方法对45例AD患者、25例血管性痴呆(vascular dementia, VD)患者及60名正常对照组样本的mRNA进行绝对定量,检测得到APP基因及PS1基因在对照组中的表达水平分别为0.026±0.005 amol/μg cDNA和0.026±0.004 amol/μg cDNA;在AD患者组中的表达量分别为0.044±0.006 amol/μg cDNA和0.051±0.011 amol/μg cDNA;,在VD患者组中的表达水平分别为0.072±0.013 amol/μg cDNA和0.039±0.005 amol/μg cDNA 。经显著性检验,AD患者组APP基因的表达水平上调,t=2.639, P<0.01;PS1基因的表达水平同样呈上调趋势,t=2.173,P<0.05,差异均具有统计学意义。VD患者组APP基因的表达水平上调,t=3.028,P<0.01;PS1基因的表达水平也同样呈上调趋势,t=2.012,P<0.05,均有显著性差异。因此,APP及PS1基因的表达水平的增高并不一定与AD发生特异性关联,而可能与多种导致痴呆的脑部病变发生关联。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号