首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The present study investigates the effects of a weak (+/-200 microT(pk)), pulsed, extremely low frequency magnetic field (ELF MF) upon the human electroencephalogram (EEG). We have previously determined that exposure to pulsed ELF MFs can affect the EEG, notably the alpha frequency (8-13 Hz) over the occipital-parietal region of the scalp. In the present study, subjects (n = 32) were exposed to two different pulsed MF sequences (1 and 2, used previously) that differed in presentation rate, in order to examine the effects upon the alpha frequency of the human EEG. Results suggest that compared to sham exposure, alpha activity was lowered over the occipital-parietal regions of the brain during exposure to Sequence 1, while alpha activity over the same regions was higher after Sequence 2 exposure. These effects occurred after approximately 5 min of pulsed MF exposure. The results also suggest that a previous exposure to the pulsed MF sequence determined subjects' responses in the present experiment. This study supports our previous observation of EEG changes after 5 min pulsed ELF MF exposure. The results of this study are also consistent with existing EEG experiments of ELF MF and mobile phone effects upon the brain.  相似文献   

2.
Resting EEG is affected by exposure to a pulsed ELF magnetic field   总被引:8,自引:0,他引:8  
An increasing number of reports have demonstrated a significant effect of extremely low frequency magnetic fields (ELF MFs) on aspects of animal and human behavior. Recent studies suggest that exposure to ELF MFs affects human brain electrical activity as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here we report that exposure to a pulsed ELF MF with most power at frequencies between 0 and 500 Hz, known to affect aspects of analgesia and standing balance, also affects the human EEG. Twenty subjects (10 males; 10 females) received both a magnetic field (MF) and a sham session in a counterbalanced design for 15 min. Analysis of variance (ANOVA) revealed that alpha activity was significantly higher over the occipital electrodes (O1, Oz, O2) [F(1,16) = 6.858; P =.019, eta2 = 0.30] and marginally higher over the parietal electrodes (P3, Pz, P4) [F(1,16) = 4.251; P =.056, eta2 = 0.21] post MF exposure. This enhancement of alpha activity was transient, as it marginally decreased over occipital [F(1,16) = 4.417; P =.052; eta2 = 0.216] and parietal electrodes [F(1,16) = 4.244; P =.056; eta2 = 0.21] approximately 7 min after MF exposure compared to the sham exposure. Significantly higher occipital alpha activity is consistent with other experiments examining EEG responses to ELF MFs and ELF modulated radiofrequency fields associated with mobile phones. Hence, we suggest that this result may be a nonspecific physiological response to the pulsed MFs.  相似文献   

3.
The investigation of weak (<500 microT), extremely low frequency (ELF, 0-300 Hz) magnetic field (MF) exposure upon human cognition and electrophysiology has yielded incomplete and contradictory evidence that MFs interact with human biology. This may be due to the small number of studies undertaken examining ELF MF effects upon the human electroencephalogram (EEG), and the associated analysis of evoked related potentials (ERPs). Relatively few studies have examined how MF exposure may affect cognitive and perceptual processing in human subjects. The introduction of this review considers some of the recent studies of ELF MF exposure upon the EEG, ERPs and cognitive and perceptual tasks. We also consider some of the confounding factors within current human MF studies and suggest some new strategies for further experimentation.  相似文献   

4.
Extremely low frequency (ELF, <300 Hz) magnetic fields (MF) have been reported to modulate cognitive performance in humans. However, little research exists with MF exposures comparable to the highest levels experienced in occupations like power line workers and industrial welders. This research aims to evaluate the impact of a 60 Hz, 3 mT MF on human cognitive performance. Ninety‐nine participants completed the double‐blind protocol, performing a selection of psychometric tests under two consecutive MF exposure conditions dictated by assignment to one of three groups (sham/sham, MF exposure/sham, or sham/MF exposure). Data were analyzed using a 3 × 2 mixed model analysis of variance. Performance between repetitions improved in 11 of 15 psychometric parameters (practice effect). A significant interaction effect on the digit span forward test (F = 5.21, P < 0.05) revealed an absence of practice effects for both exposure groups but not the control group. This memory test indicates MF‐induced abolition of the improvement associated with practice. Overall, this study does not establish any clear MF effect on human cognition. It is speculated that an ELF MF may interfere with the neuropsychological processes responsible for this short‐term learning effect supported by brain synaptic plasticity. Bioelectromagnetics. Bioelectromagnetics 32:620–633, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
The purpose of this study was to reproduce and extend two earlier studies of the effects of human exposure to 50 Hz magnetic fields (MF). In a recent paper, we described results of two double-blind investigations performed to examine effects of 100 microT(rms) 50 Hz MF exposure on psychological parameters in the same group of healthy human volunteers. In each exposure session, at 1 week intervals, with sham, continuous, and intermittent (15 s ON/OFF cycles) MF conditions, mood ratings, performance measures, and electrophysiological measures were taken. In the first study, significant amplitude changes were observed in the event-related brain potentials (ERP) recorded during a dichotic listening task. In the second study, latency and reaction time (RT) slowing were seen on a visual discrimination task (P(300) paradigm). Although these results were little related to the number of parameters analysed, they indicate that low level 50 Hz MF might have a slight influence on ERP and RT under specific circumstances of sustained attention. Before concluding that moderately strong MF exposure can influence cognitive function, previous results should be replicated, using the same paradigms with another group of healthy volunteers. In the present study, 18 healthy subjects were exposed to three experimental sessions of 30 min each, given at 1 week intervals. The sessions consisted of continuous 100 microT(rms) 50 Hz MF exposure, sham condition, and bright light (5000 lux) exposure. The study was performed double-blind, with the exposure order counter-balanced. The data on mood, ERP, RT, and other performance measures did not show any differences among the sham exposure, light exposure, and MF exposure conditions. The results of this study do not support the hypothesis that extremely low frequency (ELF) MF exposure affects the brain's electrical activity or cognitive function at field strength (100 microT(rms)) similar to that found in very close proximity of some household and industrial electrical appliances and well in excess of the average MF strength (c. 0.1 microT) found in homes. The sensitivity of the experiment was possibly not sufficient to detect an effect at this relatively low MF, and larger sample sizes would be required in further studies.  相似文献   

6.
Photosynthetic CO2 uptake rate and early growth parameters of radish Raphanus sativus L. seedlings exposed to an extremely low frequency magnetic field (ELF MF) were investigated. Radish seedlings were exposed to a 60 Hz, 50 microT(rms) (root mean square) sinusoidal magnetic field (MF) and a parallel 48 microT static MF for 6 or 15 d immediately after germination. Control seedlings were exposed to the ambient MF but not the ELF MF. The CO2 uptake rate of ELF MF exposed seedlings on day 5 and later was lower than that of the control seedlings. The dry weight and the cotyledon area of ELF MF exposed seedlings on day 6 and the fresh weight, the dry weight and the leaf area of ELF MF exposed seedlings on day 15 were significantly lower than those of the control seedlings, respectively. In another experiment, radish seedlings were grown without ELF MF exposure for 14 d immediately after germination, and then exposed to the ELF MF for about 2 h, and the photosynthetic CO2 uptake rate was measured during the short-term ELF MF exposure. The CO2 uptake rate of the same seedlings was subsequently measured in the ambient MF (control) without the ELF MF. There was no difference in the CO2 uptake rate of seedlings exposed to the ELF MF or the ambient MF. These results indicate that continuous exposure to 60 Hz, 50 microT(rms) sinusoidal MF with a parallel 48 microT static MF affects the early growth of radish seedlings, but the effect is not so severe that modification of photosynthetic CO2 uptake can observed during short-term MF exposure.  相似文献   

7.
All creatures on Earth, including human beings, can be influenced by the power frequency electromagnetic field (EMF), even though the consequence and degree of the effect may vary due to regional context, species, etc. Most of the outstanding scientific achievements about the EMF effect on life have come from behavioral studies. In such studies, in contrast to the geomagnetic field or static magnetic field (MF), the oscillating MF has attracted far less attention so far. Following a previous report, to attain deep basic knowledge about the effect of an extremely low frequency (ELF) MF on animal behavior, we characterized the 60‐Hz MF‐responsive movement activity of common cutworm larvae using sophisticated experimental schemes. The MF‐exposed third instar larvae showed significantly reduced locomotive activity compared to the matching sham‐exposed larvae. Moreover, repeated MF exposure to the same larvae up to three times also showed similar behavioral responsiveness even though the extent of movement decrease was attenuated by the repetition time. These results suggest that sinusoidal power frequency MF could disrupt the normal locomotory activity of insect larvae, and the insects may show adaptive desensitization to the same MF.  相似文献   

8.
We recently reported that continuous exposure, for 8 weeks, of extremely low frequency (ELF) magnetic field (MF) of 0.1 or 0.5 mT might induce testicular germ cell apoptosis in BALB/c mice. In that report, the ELF MF exposure did not significantly affect the body weight or testicular weight, but significantly increased the incidence of testicular germ cell death. In the present study, we aimed to further characterize the effect of a 16-week continuous exposure to ELF MF of 14 or 200 microT on testicular germ cell apoptosis in mice. There were no significant effects of MF on body weight and testosterone levels in mice. In TUNEL staining (In situ terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling), germ cells showed a significantly higher apoptotic rate in exposed mice than in sham controls (P < 0.001). TUNEL-positive cells were mainly spermatogonia. In an electron microscopic study, degenerating spermatogonia showed condensation of nuclear chromatin similar to apoptosis. These results indicate that apoptosis may be induced in spermatogenic cells in mice by continuous exposure to 60 Hz MF of 14 microT.  相似文献   

9.
The aim of the present study was to investigate cognitive effects of a continuous, vertical extremely low frequency (ELF) magnetic field (MF) of 20 and 400 microT 50 Hz in healthy young men during performance on cognitive tests. Thirty-two volunteers (20-30 years old, mean 22.6 +/- 2.2 years) participated in this double blind study. The test protocol consisted of a set of tests: divided attention, flexibility, memory updating, digit span, digit span with articulary suppression, and time perception. The total duration of the exposure was 65 min. Participants were assigned four sessions: three conditions in the helmet (sham exposure, 20 and 400 microT) and one condition out of the helmet (to control the expectancy effect). No effect of MF exposure was observed on performance.  相似文献   

10.
The aim of this study was to evaluate the influence of an extremely low frequency sinusoidal magnetic field (ELF MF) with frequency of 10 Hz and intensity of 1.8-3.8 mT on the levels of the biogenic amines dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine (3-MT), 5-hydroxytryptamine (5-HT), 5-hydroxyindolacetic acid (5-HIAA), and noradrenaline (NA), as well as on DA and 5-HT turnover in corpus striatum and frontal cortex of adult male Wistar rats. We found that ELF MF exposure for 14 days, 1 h daily, did not influence the level of the examined biogenic amines and metabolites, but increased the rate of synthesis (turnover) of DA and 5-HT in rat frontal cortex as compared to control, sham exposed rats. On the basis of the present results and our previous findings, extremely low frequency magnetic field (ELF MF) exposure has been found to alter both turnover and receptor reactivity of monoaminergic systems, as well as some behaviors induced by these systems or their agonists and antagonists.  相似文献   

11.
The aim of the present study was to assess whether exposure to a sinusoidal extremely low frequency magnetic field (ELF‐MF; 50 Hz, 1 mT) can affect proliferation and differentiation in the human neuroblastoma cell line BE(2)C, which is representative of high risk neuroblastomas. Cells were subjected to ELF‐MF exposure in the presence or absence of a neuronal differentiating agent (all‐trans‐retinoic acid, ATRA) for 24–72 h. In each experiment, ELF‐MF‐exposed samples were compared to sham‐exposed samples. Cells exposed to ELF‐MF combined with retinoic treatment showed a decreased cellular proliferation and an increased proportion of G0/G1 phase cells compared to cells exposed to either treatment alone. Moreover, ELF‐MF‐ and ATRA‐treated cells showed more differentiated morphological traits (a higher neurite number/cell, an increased neurite length), together with a significant increase of mRNA levels of p21WAF1/CIP1 and cdk5 genes, both involved in neuronal differentiation. In addition, the expression of cyp19 gene, which is involved both in neuronal differentiation and stress response, was evaluated; cyp19 gene expression was enhanced by ATRA treatment and significantly enhanced further by ELF‐MF exposure combined with ATRA. In conclusion, our data suggest that ELF‐MF exposure can strengthen ATRA effects on neuroblastoma cells. Bioelectromagnetics 31:425–433, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
We investigated the premorbid behavioral changes produced by the administration of cocaine and acute exposure to extremely low frequency (ELF) magnetic field (MF) in the mouse. ICR mice received intraperitoneal injections of cocaine at two doses (65 and 70 mg/kg) and were subsequently exposed to one of eight ELF-MF fields (2, 3, 4, 8, 10, 15, 25, or 60 Hz) of about 20 G (2 mT) intensity immediately after injection. Twelve mice were used for each of applied cocaine dose and ELF-MF level. For a given dose of cocaine, the applied MF frequencies were randomly ordered, and blind tests were carried out in which the behavior observer did not know the frequencies of MF. The premorbid behaviors were defined in the ICR mice and their changes were observed over the exposure of various ELF-MFs. Our data show that the onset times of stop rearing and tonic-clonic seizure in the 4 Hz MF exposure group are significantly different from those of the sham group.  相似文献   

13.
Extremely low frequency (ELF) magnetic fields (MF) are omnipresent in our modern daily environment, but their effects on humans are still not clearly established. The aim of this study was to determine the effect of a 50 Hz, 1,000 microT MF centered at the level of the head on human index finger micro-displacements. Twenty-four men recruited among the personnel of the French company, Electricité de France (EDF), completed the experiment. Their postural and kinetic tremors were recorded under four "field-on" and four "field-off" conditions, each tested during a real and a sham sequence. Eight postural and four kinetic tremor characteristics were calculated on recorded time series and were used for statistical analysis. No effect of the MF was found for kinetic tremor. Concerning postural tremor, the proportion of oscillations at low frequencies (between 2 and 4 Hz) was higher during the real than during the sham exposure sequence (P<.05). It suggests that MF could have a subtle delayed effect on human behavior, which is clearly not pathological. These results should be taken into account for the establishment of new exposure limits.  相似文献   

14.
15.
前期研究发现,50 Hz弱磁场辐照能明显降低细胞的微丝含量和组装效率,对actin骨架形态也有明显影响.电磁生物学效应是否与辐照场频率相关,一直受到研究者的关注.单体球状肌动蛋白(G-actin)是带电结构,电磁场频率会影响其振荡频率并对微丝聚合效率产生影响.本文从细胞骨架形态和蛋白质两层次,采用免疫荧光技术考察0.4 m T,在35~140 Hz范围内5个频率的极低频磁场(ELF-MF)对FL细胞中纤维状肌动蛋白(F-actin)含量的影响,并采用荧光共振能量转移技术(FRET)验证效应最明显的频率对离体G-actin组装效率的干扰程度.结果显示,相比假辐照组,细胞中F-actin含量在50 Hz辐照组下降了(34.66±3.14)%,110 Hz次之,而另外3组(35、70和140 Hz)无显著性差异.同时利用FRET方法验证,在50 Hz磁场辐照下,离体环境中G-actin组装成F-actin的效率较假辐照组、35和70 Hz组显著降低.经初步分析,G-actin在弱ELF-MF中受到以洛伦兹力和感生电场力的合力为主的相关电磁力干扰,致使组装效率下降,且由于工频磁场周期与微丝组装周期的特殊相干性,在50 Hz频率附近可能存在一个外磁场干扰actin骨架组装的频率窗口.  相似文献   

16.
The effects of extremely low frequency magnetic fields (ELF‐MF) on acetylcholinesterase (AChE) activity of synaptosomal membranes were investigated. Sinusoidal fields with 50 Hz frequency and different amplitudes caused AChE activity to decrease about 27% with a threshold of about 0.74 mT. The decrease in enzymatic activity was independent of the time of permanence in the field and was completely reversible. Identical results were obtained with exposure to static MF of the same amplitudes. Moreover, the inhibitory effects on enzymatic activity are spread over frequency windows with different maximal values at 60, 200, 350, and 475 Hz. When synaptosomal membranes were solubilized with Triton, ELF‐MF did not affect AChE activity, suggesting the crucial role of the membrane, as well as the lipid linkage of the enzyme, in determining the conditions for inactivation. The results are discussed in order to give an interpretation at molecular level of the macroscopic effects produced by ELF‐MF on biological systems, in particular the alterations of embryo development in many organisms due to acetylcholine accumulation. Bioelectromagnetics 31:270–276, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Changes in the behavior of Morimus funereus individuals were investigated as early manifestations of the contact of a living system with a changed environment primarily established via the nervous system. These experiments were aimed at revealing possible behavioral differences of a laboratory population of cerambycid beetle M. funereus in an “open field” before and after exposure to an extremely low frequency magnetic field (ELF‐MF, 50 Hz, 2 mT). The experimental groups were divided into several activity categories and exposed to ELF‐MF. The results showed that the activity increased in the groups with medium and low motor activity, but decreased in highly active individuals. High individual variability was found in the experimental groups, as well as differences in motor activities between the sexes, both before and after exposure to ELF‐MF. According to preliminary results, we assume the changes of activity in both sexes after exposure to ELF‐MF. The results showed a tendency toward locomotor activity decrease, the affect being more pronounced in females. As opposed to this type of activity, stereotypic activity of males was increased after the exposure, whereas females maintained the expected tendency of decrease. However, we did not obtain statistically significant differences because of a high individual variability and a low total number of individuals in the experiment (N = 28). Only a detailed analysis of the locomotor activity at 1‐min intervals showed some statistically significant differences in behavior between the sexes.  相似文献   

18.
Four-day-old chicken embryos were exposed to extremely low frequency (ELF) magnetic fields (MF) prior to UV exposure (75 min, predominantly UV-C, 0.4 mW/cm2) to investigate possible MF-mediated protection against lethal effects of UV. The UV exposure typically resulted in a 20% survival rate (as judged by beating hearts) in sham-exposed embryos 3 h postexposure. In contrast, exposure to a 50 (10, 50, or 100 µT) or 60 Hz (10 µT) vertical MF caused a significant increase in survival rate, observed only 30 min after UV exposure. No difference in protection levels was seen between these exposure intensities. A horizontal 50 Hz MF (10, 50, or 100 µT) did not result in the general protection against UV-induced death observed for vertical fields, suggesting that the size of the induced electric field (which differs between horizontal and vertical exposure) is important for the MF-induced protection. To explore the molecular mechanisms involved in this effect, immunoblotting experiments with an antibody against the inducible form of hsp70 were performed. These showed that application of MF (50 Hz, 200 µT, 1 h) induced hsp70 expression in human K562 cells.  相似文献   

19.
Understanding the biological mechanisms by which extremely low-frequency (ELF, < 300 Hz) magnetic fields (MFs) interact with human brain activity is an active field of research. Such knowledge is required by international agencies providing guidelines for general public and workers exposure to ELF MFs (such as ICNIRP, the International Commission on Non-Ionizing Radiation Protection). The identification of these interaction mechanisms is extremely challenging, since the effects of ELF MF exposure need to be monitored and understood at very different spatial (from micrometers to centimeters) and temporal (from milliseconds to minutes) scales. One possibility to overcome these issues is to develop biophysical models, based on the systems of mathematical equations describing the electric or metabolic activity of the brain tissue. Biophysical models of the brain activity offer the possibility to simulate how the brain tissue interacts with ELF MFs, in order to gain new insights into experimental data, and to test novel hypotheses regarding interaction mechanisms. This paper presents novel hypotheses regarding the effects of power line (60 Hz in North America) MFs on human brain activity, with arguments from biophysical models. We suggest a hypothetic chain of events that could bridge MF exposure with detectable effects on human neurophysiology. We also suggest novel directions of research in order to reach a convergence of biophysical models of brain activity and corresponding experimental data to identify interaction mechanisms.  相似文献   

20.
OF1 mice were chronically exposed to a 50‐Hz sinusoidal East–West magnetic field 15 µT (rms), in order to evaluate the blood coagulation variations related to the effect of this nonionizing radiation. Mating and pregnancy of ancestors (first generation), and birth, lactation, and development of second‐generation female mice until adulthood took place in the experimental field. A global blood coagulation study of both control and exposed 14‐ to 15‐week‐old and 50‐ to 52‐week‐old, second‐generation females was carried out. Plasma calcium content was determined by atomic absorption spectrophotometry. Different steps of blood coagulation were studied by thromboelastography (TEG) in whole blood (WB), platelet‐rich plasma (PRP), and platelet‐poor plasma (PPP). A significant decrease (approximately 34.5%) of calcium concentration was detected with aging; however, no change was induced by medium‐term or long‐term exposure to extremely low frequency magnetic field (ELF‐MF). Medium‐term exposure could not be related to noticeable changes in global coagulation. However, a great deterioration of fibrin clot formation in mature exposed female mice was detected as a result of the long‐term exposure that was strengthened by aging. These deficiencies seemed to be compensated by the discrete, although statistically not significant, decrease of platelet counts and the significant decrease of blood cells' mean corpuscular volume associated to ELF‐MF exposure of 50‐Hz, 15 µT. Consequently, whole blood TEG values of mature exposed female mice were similar to those from the young control group. In view of the obtained results, further studies on variations associated with ELF‐MF exposure in different coagulation parameters will be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号