首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nelson A  Chomitz KM 《PloS one》2011,6(8):e22722
Protected areas (PAs) cover a quarter of the tropical forest estate. Yet there is debate over the effectiveness of PAs in reducing deforestation, especially when local people have rights to use the forest. A key analytic problem is the likely placement of PAs on marginal lands with low pressure for deforestation, biasing comparisons between protected and unprotected areas. Using matching techniques to control for this bias, this paper analyzes the global tropical forest biome using forest fires as a high resolution proxy for deforestation; disaggregates impacts by remoteness, a proxy for deforestation pressure; and compares strictly protected vs. multiple use PAs vs indigenous areas. Fire activity was overlaid on a 1 km map of tropical forest extent in 2000; land use change was inferred for any point experiencing one or more fires. Sampled points in pre-2000 PAs were matched with randomly selected never-protected points in the same country. Matching criteria included distance to road network, distance to major cities, elevation and slope, and rainfall. In Latin America and Asia, strict PAs substantially reduced fire incidence, but multi-use PAs were even more effective. In Latin America, where there is data on indigenous areas, these areas reduce forest fire incidence by 16 percentage points, over two and a half times as much as naïve (unmatched) comparison with unprotected areas would suggest. In Africa, more recently established strict PAs appear to be effective, but multi-use tropical forest protected areas yield few sample points, and their impacts are not robustly estimated. These results suggest that forest protection can contribute both to biodiversity conservation and CO2 mitigation goals, with particular relevance to the REDD agenda. Encouragingly, indigenous areas and multi-use protected areas can help to accomplish these goals, suggesting some compatibility between global environmental goals and support for local livelihoods.  相似文献   

2.
Most evaluations of the effectiveness of PAs have relied on indirect estimates based on comparisons between protected and unprotected areas. Such methods can be biased when protection is not randomly assigned. We add to the growing literature on the impact of PAs by answering the following research questions: What is the impact of Chilean PAs on deforestation which occurred between 1986 and 2011? How do estimates of the impact of PAs vary when using only public land as control units? We show that the characteristics of the areas in which protected and unprotected lands are located differ significantly. To satisfactorily estimate the effects of PAs, we use matching methods to define adequate control groups, but not as in previous research. We construct control groups using separately non-protected private areas and non-protected public lands. We find that PAs avoid deforestation when using unprotected private lands as valid controls, however results show no impact when the control group is based only on unprotected public land. Different land management regimes, and higher levels of enforcement inside public lands may reduce the opportunity to add additional conservation benefits when the national systems for PAs are based on the protection of previously unprotected public lands. Given that not all PAs are established to avoid deforestation, results also admit the potential for future studies to include other outcomes including forest degradation (not just deforestation), biodiversity, wildlife, primary forests (not forests in general), among others.  相似文献   

3.
Global protected area impacts   总被引:3,自引:0,他引:3  
Protected areas (PAs) dominate conservation efforts. They will probably play a role in future climate policies too, as global payments may reward local reductions of loss of natural land cover. We estimate the impact of PAs on natural land cover within each of 147 countries by comparing outcomes inside PAs with outcomes outside. We use 'matching' (or 'apples to apples') for land characteristics to control for the fact that PAs very often are non-randomly distributed across their national landscapes. Protection tends towards land that, if unprotected, is less likely than average to be cleared. For 75 per cent of countries, we find protection does reduce conversion of natural land cover. However, for approximately 80 per cent of countries, our global results also confirm (following smaller-scale studies) that controlling for land characteristics reduces estimated impact by half or more. This shows the importance of controlling for at least a few key land characteristics. Further, we show that impacts vary considerably within a country (i.e. across a landscape): protection achieves less on lands far from roads, far from cities and on steeper slopes. Thus, while planners are, of course, constrained by other conservation priorities and costs, they could target higher impacts to earn more global payments for reduced deforestation.  相似文献   

4.
Aim We aimed to complete the first systematic assessment of extinction risk based on projected population declines derived from spatially explicit habitat projections for any taxonomic group at a regional scale, to use the outputs to ascertain the efficacy of an existing protected area network in covering species of conservation concern, and identify gaps therein. Location This study focused on Amazonia; an area of exceptional biodiversity, currently experiencing the highest absolute rate of forest loss globally but where the proportion of species assessed as ‘threatened’ on the International Union for the Conservation of Nature (IUCN) Red List in the region is below global averages. Methods For all forest‐dependent Amazonian bird species (814), we revised extinction risk estimates by combining data from a spatially explicit deforestation model with generation length estimates. By overlaying distribution maps for these revised threatened species, we identified crisis areas (areas of projected deforestation supporting the highest numbers of threatened species), refugia (areas projected to retain forest supporting the highest numbers of threatened species) and areas of high irreplaceability: short‐ and long‐term priorities for new protected areas (PAs). Results The number of species qualifying as threatened rose substantially from 24 (3%) to 64–92 (8–11%). Areas of particular concern are the crisis and highly irreplaceable areas within the ‘arc of deforestation’ in the southern Brazilian Amazon states of Rondônia, Mato Grosso and Pará. Main conclusions Through a novel application of the IUCN Red List criteria, we present a spatially accurate rendering of the extinction risks of Amazonian birds. Important areas in the Amazon are not secure. We identify priorities for expansion of the PAs network and key locations where protection should be enforced. We recommend a collaborative approach employing our methods to repeat this process for other taxonomic groups.  相似文献   

5.
Evaluating whether protected areas reduce tropical deforestation in Sumatra   总被引:2,自引:0,他引:2  
Aim  This study determines whether the establishment of tropical protected areas (PAs) has led to a reduction in deforestation within their boundaries or whether deforestation has been displaced to adjacent unprotected areas: a process termed neighbourhood leakage.
Location  Sumatra, Indonesia.
Methods  We processed and analysed 98 corresponding LANDSAT satellite images with a c.  800 m2 resolution to map deforestation from 1990 to 2000 across 440,000 km2 on the main island of Sumatra and the smaller island of Siberut. We compared deforestation rates across three categories of land: (1) within PAs; (2) in adjacent unprotected land lying with 10 km of PA boundaries; and (3) within the wider unprotected landscape. We used the statistical method of propensity score matching to predict the deforestation that would have been observed had there been no PAs and to control for the generally remote locations in which Sumatran PAs were established.
Results  During the period 1990–2000 deforestation rates were found to be lower inside PAs than in adjacent unprotected areas or in the wider landscape. Deforestation rates were also found to be lower in adjacent unprotected areas than in the wider landscape.
Main conclusions  Sumatran PAs have lower deforestation rates than unprotected areas. Furthermore, a reduction in deforestation rates inside Sumatran PAs has promoted protection, rather than deforestation, in adjacent unprotected land lying within 10 km of PA boundaries. Despite this positive evaluation, deforestation and logging have not halted within the boundaries of Sumatran PAs. Therefore the long-term viability of Sumatran forests remains open to question.  相似文献   

6.
Protected areas (PAs) not only serve as refuges of biodiversity conservation but are also part of large ecosystems and are vulnerable to change caused by human activity from surrounding lands, especially in biodiversity hotspots. Assessing threats to PAs and surrounding areas is therefore a critical step in effective conservation planning. We apply a threat framework as a means of quantitatively assessing local and surrounding threats to different types of PAs with gradient buffers, and to main ecoregions in the Hengduan Mountain Hotspot of southwest China. Our findings show that national protected areas (NPAs) have lower and significantly lower threat values (p<0.05) than provincial protected areas (PPAs) and other protected areas (OPAs), respectively, which indicates that NPAs are lands with a lower threat level and higher levels of protection and management. PAs have clear edge effects, as the proportion of areas with low threat levels decline dramatically in the 5-kilometer buffers just outside the PAs. However, NPAs suffered greater declines (58.3%) than PPAs (34.8%) and OPAs (33.4%) in the 5-kilometer buffers. Moreover, a significant positive correlation was found between the size of PAs and the proportion of areas with low threat levels that they contained in both PAs and PA buffers (p<0.01). To control or mitigate current threats at the regional scale, PA managers often require quantitative information related to threat intensities and spatial distribution. The threat assessment in the Hengduan Mountain Hotspot will be useful to policy makers and managers in their efforts to establish effective plans and target-oriented management strategies.  相似文献   

7.
The world's primates have been severely impacted in diverse and profound ways by anthropogenic pressures. Here, we evaluate the impact of various infrastructures and human-modified landscapes on spatial patterns of primate species richness, at both global and regional scales. We overlaid the International Union for the Conservation of Nature (IUCN) range maps of 520 primate species and applied a global 100 km2 grid. We used structural equation modeling and simultaneous autoregressive models to evaluate direct and indirect effects of six human-altered landscapes variables (i.e., human footprint [HFP], croplands [CROP], road density [ROAD], pasture lands [PAST], protected areas [PAs], and Indigenous Peoples' lands [IPLs]) on global primate species richness, threatened and non-threatened species, as well as on species with decreasing and non-decreasing populations. Two-thirds of all primate species are classified as threatened (i.e., Critically Endangered, Endangered, and Vulnerable), with ~86% experiencing population declines, and ~84% impacted by domestic or international trade. We found that the expansion of PAST, HFP, CROP, and road infrastructure had the most direct negative effects on primate richness. In contrast, forested habitat within IPLs and PAs was positively associated in safeguarding primate species diversity globally, with an even stronger effect at the regional level. Our results show that IPLs and PAs play a critical role in primate species conservation, helping to prevent their extinction; in contrast, HFP growth and expansion has a dramatically negative effect on primate species worldwide. Our findings support predictions that the continued negative impact of anthropogenic pressures on natural habitats may lead to a significant decline in global primate species richness, and likely, species extirpations. We advocate for stronger national and international policy frameworks promoting alternative/sustainable livelihoods and reducing persistent anthropogenic pressures to help mitigate the extinction risk of the world's primate species.  相似文献   

8.
Brazil has a variety of aquatic ecosystems and rich freshwater biodiversity, but these components have been constantly damaged by the expansion of unsustainable activities. An array of different conservation strategies is needed, especially the creation of protected areas (PAs, hereafter). However, Brazil's PAs are biased towards terrestrial ecosystems and we argue that current PAs have limited efficacy in the protection of freshwater biodiversity. New PAs should better consider aquatic environments, covering entire basins, rivers and other freshwater habitats. We recommend ways to implement these PAs and provide guidance to avoid social impacts. Freshwater systems in Brazil provide essential goods and services but these ecosystems are being rapidly degraded and will be lost if not adequately protected.  相似文献   

9.
湖北后河自然保护区拥有丰富的生物多样性,为中国生物多样性三大关键地区之一的川东-湘鄂西关键地区的重要组成部分。但所处的贫困山区少数民族县长期以来以森工产业为其县域经济的主要支柱,长期的木材采伐和狩猎习俗曾对该保护区的生物多样性带来了严重破坏。自然保护区的建立使其生物多样性逐渐得到了有效保护,特别是升为国家级自然保护区后,生物多样性保护进入了一个新阶段。但该保护区的生物多样性依然面临多种威胁,保护区自身科学研究力量的薄弱和保护区面积相对较小,限制着该区域生物多样性的进一步研究和保护。进一步扩充保护区面积、引进科研力量并提升自身人员科研素质、协调并增强区内外社区共管是该区生物多样性得到进一步保护和恢复的当务之急。  相似文献   

10.
湖北后河自然保护区拥有丰富的生物多样性,为中国生物多样性三大关键地区之一的川东-湘鄂西关键地区的重要组成部分。但所处的贫困山区少数民族县长期以来以森工产业为其县域经济的主要支柱,长期的木材采伐和狩猎习俗曾对该保护区的生物多样性带来了严重破坏。自然保护区的建立使其生物多样性逐渐得到了有效保护,特别是升为国家级自然保护区后,生物多样性保护进入了一个新阶段。但该保护区的生物多样性依然面临多种威胁,保护区自身科学研究力量的薄弱和保护区面积相对较小,限制着该区域生物多样性的进一步研究和保护。进一步扩充保护区面积、引进科研力量并提升自身人员科研素质、协调并增强区内外社区共管是该区生物多样性得到进一步保护和恢复的当务之急。  相似文献   

11.
Climate change, habitat loss, and human disturbance are major threats to biodiversity. Protecting habitats plays a pivotal role in biodiversity conservation, and there is a global imperative to establish an effective system of protected areas (PAs) to implement habitat conservation and halt biodiversity decline. However, the protected patch size of habitat for a species is just as important for biodiversity conservation as the expansion of areas already under protection. In China, conservation management is often carried out based on administrative divisions. Therefore, here, an analytical conservation management framework was developed based on administrative divisions to assess whether the current network of PAs can effectively meet species' conservation needs using the minimum area requirements (MARs) of species as criteria for medium and large-sized mammals in China. This study found that the MAR of medium and large-sized mammals was larger in the northwest and smaller in the southeast, while taking the Hu line as the dividing line. Precipitation seasonality, elevation, annual mean temperature, and annual precipitation are the main environmental factors driving the distribution of a species MAR. Compared with MAR for each species, the maximum protected patch size of habitat is severely undersized in most provinces where those species primarily distribute, and this is particularly true for large carnivores and threatened species. The densely populated provinces of eastern China are particularly affected by this. The present study's framework can identify the provinces needing to expand PAs or implement other effective area-based conservation measures and habitat restoration. This analytical framework is also relevant for biodiversity conservation in different taxa and regions around the globe.  相似文献   

12.
Tropical deforestation varies temporally and spatially which can inhibit the ability of existing protected areas to stem forest loss. Identifying the spatial–temporal distribution of deforestation and its concentration can help decision makers decide conservation priorities and leverage limited resources. This study assessed how topographic and anthropogenic variables affect deforestation patterns within and outside protected areas on the islands of Sumatra and Kalimantan in Indonesia. Emerging hotspot analysis (EHA) was used to evaluate spatial and temporal trends of forest loss on the Hansen annual forest loss data for these islands from 2001–2018. For the two islands, most hotspots were detected outside protected areas; those within protected areas were mainly concentrated at boundaries, where lower elevation/slope and high human pressure could be observed. New hotspots were identified within the three PAs in Sumatra, while three kinds of hotspots (consecutive, oscillating, and sporadic) were found in the two PAs of Kalimantan (Kutai and Teluk Kelumpang). Areas with high human pressure (average human footprint higher than 12) were covered by a high density of hotspots. The results identify specific areas where forest loss has emerged recently, which could indicate a conservation priority. It is suggested that new protected areas be established in locations showing intensifying and persistent hotspots—those where deforestation has occurred for ≥16 of 18 years of the study period.

Emerging hotspot analysis, a new approach that can evaluate spatial and temporal trends of forest loss, was performed on annual forest loss data for these islands from 2001–2018. Most hotspots were detected outside PAs; those within PAs were mainly concentrated at boundaries, where lower elevation/slope and high human pressure could be observed. More hotspots were detected on Sumatra than Kalimantan and were mainly distributed in the island''s center  相似文献   

13.
Rapid deforestation has occurred in northern Thailand and is expected to continue. Thus, identification and protection of sufficient amounts of the highest quality habitat is urgent. Wildlife occurrence data were gathered along wildlife trails and patrolling routes in protected areas and forest patches outside of protected areas. Geographic Information Systems, bio-physical and anthropogenic variables were used to generate suitable habitats for 17 mammal species using maximum entropy theory (MAXENT). Suitable habitats for all species were aggregated, and used to set priorities for wildlife conservation in northern Thailand. In addition, predicted deforestation was overlaid on moderate and high priority areas to determine future wildlife threats and aid decision-making concerning which areas to protect. The results revealed that the total extent of suitable habitats for the studied species covers approximately 37% of the region. Nearly 70% of the total habitat for endangered and vulnerable species is predicted in large and contiguous protected areas. Threatened areas with high biodiversity encompass approximately 1.9% of the region, and 66% of this figure is predicted to occur in existing protected areas. Based on the model outcomes, we recommend reducing human pressures, enhancing the density of prey species and conservation outside protected areas, as well as increasing connectivity of suitable habitats among protected areas that are too small to maintain viable populations in isolation.  相似文献   

14.
Terrestrial protected areas (PAs) are cornerstones of global biodiversity conservation. Their efficacy in terms of maintaining biodiversity is, however, much debated. Studies to date have been unable to provide a general answer as to PA conservation efficacy because of their typically restricted geographic and/or taxonomic focus, or qualitative approaches focusing on proxies for biodiversity, such as deforestation. Given the rarity of historical data to enable comparisons of biodiversity before/after PA establishment, many smaller scale studies over the past 30 years have directly compared biodiversity inside PAs to that of surrounding areas, which provides one measure of PA ecological performance. Here we use a meta-analysis of such studies (N = 86) to test if PAs contain higher biodiversity values than surrounding areas, and so assess their contribution to determining PA efficacy. We find that PAs generally have higher abundances of individual species, higher assemblage abundances, and higher species richness values compared with alternative land uses. Local scale studies in combination thus show that PAs retain more biodiversity than alternative land use areas. Nonetheless, much variation is present in the effect sizes, which underscores the context-specificity of PA efficacy.  相似文献   

15.
Habitat destruction and overexploitation are the main threats to biodiversity and where they co-occur, their combined impact is often larger than their individual one. Yet, detailed knowledge of the spatial footprints of these threats is lacking, including where they overlap and how they change over time. These knowledge gaps are real barriers for effective conservation planning. Here, we develop a novel approach to reconstruct the individual and combined footprints of both threats over time. We combine satellite-based land-cover change maps, habitat suitability models and hunting pressure models to demonstrate our approach for the community of larger mammals (48 species > 1 kg) across the 1.1 million km2 Gran Chaco region, a global deforestation hotspot covering parts of Argentina, Bolivia and Paraguay. This provides three key insights. First, we find that the footprints of habitat destruction and hunting pressure expanded considerably between 1985 and 2015, across ~40% of the entire Chaco – twice the area affected by deforestation. Second, both threats increasingly acted together within the ranges of larger mammals in the Chaco (17% increase on average, ± 20% SD, cumulative increase of co-occurring threats across 465 000 km2), suggesting large synergistic effects. Conversely, core areas of high-quality habitats declined on average by 38%. Third, we identified remaining priority areas for conservation in the northern and central Chaco, many of which are outside the protected area network. We also identify hotspots of high threat impacts in central Paraguay and northern Argentina, providing a spatial template for threat-specific conservation action. Overall, our findings suggest increasing synergistic effects between habitat destruction and hunting pressure in the Chaco, a situation likely common in many tropical deforestation frontiers. Our work highlights how threats can be traced in space and time to understand their individual and combined impact, even in situations where data are sparse.  相似文献   

16.
Efficient management of protected areas (PAs) is important to ensure conservation and long-term sustenance of threatened species. It is therefore essential to understand the vulnerability of PAs in a multi-pronged approach by considering the cumulative effects of species, climatic, and anthropogenic attributes. We assessed the overall vulnerability of PAs in the Central Indian Highlands (CIH), which is a landscape of high biodiversity value. Over 81% of PAs experienced medium to high vulnerability due to anthropogenic pressures, and 68.75% of PAs faced medium to high vulnerability due to climate change and conservation status of species within the PA. Our categorization of PAs revealed that 50% of PAs were vulnerable to all 3 attributes. Further, there was a strong correlation between species and anthropogenic vulnerability indices in the PAs of the CIH landscape. Our results may help local policy makers in prioritizing the optimal and cost-effective conservation management of existing PAs, which can be extended for cost-effectiveness and efficient resource allocation of PAs, through this multipronged approach, beyond the CIH landscape.  相似文献   

17.
Crop Expansion and Conservation Priorities in Tropical Countries   总被引:1,自引:0,他引:1  
Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km2 per year from 1999–2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential—while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones—may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having ‘low vulnerability’, in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy feedstocks.  相似文献   

18.
In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records) and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain a priority to update historical information.  相似文献   

19.
尤溪县生物多样性保护优先地区分析   总被引:9,自引:2,他引:7  
李迪强  林英华  陆军 《生态学报》2002,22(8):1315-1322
选择人类活动频繁的常绿阔叶林林区具有代表性的福建尤溪县进行了生物多样性保护的优先性分析。在多次实地调查基础上,利用野生动物野外实地样带调查数据,已有的珍稀淑危鸟,兽和植物物种的分布资料,同时结合利用地理信息系统软件ARC/INFO数字化1:10万林相图和1:5万地形图,建立了基于GIS的尤溪县生物多样性信息系统,然后根据物种多样性,珍稀濒危物种保护和生态系统保护目标,确立了保护优先性分析原则,即珍稀濒危物种尽可能包含在保护区和保护小区内,同时在优先保护区尽可能包含更多的其它物种,用最新的森林分布图及调查物种分布与生境关系,生态系统在保护物种与生态系统功能等方面的作用等,提出了生态系统的保护优先地区,将提出保护优先地区与已建保护小区和保护点分布图进行叠加分析表明,保护小区和保护点的方法是保护珍稀濒危物种的有效方法,但是需要考虑保护小区之间的联系,在对大型哺乳动物保护时需要建立面积较大的自然保护区,最后,提出了建立自然保护区规划。  相似文献   

20.
Transitioning from fossil fuels to renewable energy is fundamental for halting anthropogenic climate change. However, renewable energy facilities can be land‐use intensive and impact conservation areas, and little attention has been given to whether the aggregated effect of energy transitions poses a substantial threat to global biodiversity. Here, we assess the extent of current and likely future renewable energy infrastructure associated with onshore wind, hydropower and solar photovoltaic generation, within three important conservation areas: protected areas (PAs), Key Biodiversity Areas (KBAs) and Earth's remaining wilderness. We identified 2,206 fully operational renewable energy facilities within the boundaries of these conservation areas, with another 922 facilities under development. Combined, these facilities span and are degrading 886 PAs, 749 KBAs and 40 distinct wilderness areas. Two trends are particularly concerning. First, while the majority of historical overlap occurs in Western Europe, the renewable electricity facilities under development increasingly overlap with conservation areas in Southeast Asia, a globally important region for biodiversity. Second, this next wave of renewable energy infrastructure represents a ~30% increase in the number of PAs and KBAs impacted and could increase the number of compromised wilderness areas by ~60%. If the world continues to rapidly transition towards renewable energy these areas will face increasing pressure to allow infrastructure expansion. Coordinated planning of renewable energy expansion and biodiversity conservation is essential to avoid conflicts that compromise their respective objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号