首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the effect of parasympathetic inhibition on the cardio-ventilatory interaction during torpor in the fat-tailed dunnart (Sminthopsis crassicaudata). Studies on the influence of the autonomic nervous system on cardiac function during torpor have focused on deep hibernation in eutherians. S. crassicaudata was used as a representative of the Metatheria that exhibits shallow, daily torpor as a comparison for the patterns of cardiac function found in other mammalian heterotherms. During torpor, parasympathetic inhibition removed the cardio-ventilatory interaction, eliminated heart rate variability and increased the overall heart rate; these are responses that have been shown to be typical of eutherian hibernators under the same conditions. Similarly, there was evidence to suggest that as the bout of torpor progressed, the variation in instantaneous heart rate decreased as a result of the progressive removal of parasympathetic tone. It has been suggested that the ability to enter a "steady state" during torpor, which is characterised by a regular heart rate, is limited to deep hibernators. On the basis of this, and the results of previous physiological studies, it was proposed that there is little evidence to suggest that there is any physiological difference between shallow, daily torpor and deep hibernation.  相似文献   

2.
Torpor during hibernation defines the nadir of mammalian metabolism where whole animal rates of metabolism are decreased to as low as 2% of basal metabolic rate. This capacity to decrease profoundly the metabolic demand of organs and tissues has the potential to translate into novel therapies for the treatment of ischemia associated with stroke, cardiac arrest or trauma where delivery of oxygen and nutrients fails to meet demand. If metabolic demand could be arrested in a regulated way, cell and tissue injury could be attenuated. Metabolic suppression achieved during hibernation is regulated, in part, by the central nervous system through indirect and possibly direct means. In this study, we review recent evidence for mechanisms of central nervous system control of torpor in hibernating rodents including evidence of a permissive, hibernation protein complex, a role for A1 adenosine receptors, mu opiate receptors, glutamate and thyrotropin-releasing hormone. Central sites for regulation of torpor include the hippocampus, hypothalamus and nuclei of the autonomic nervous system. In addition, we discuss evidence that hibernation phenotypes can be translated to non-hibernating species by H(2)S and 3-iodothyronamine with the caveat that the hypothermia, bradycardia, and metabolic suppression induced by these compounds may or may not be identical to mechanisms employed in true hibernation.  相似文献   

3.
The dramatic fall in heart rate exhibited by mammals entering hibernation begins before there is any noticeable fall in body temperature. The initial, progressive decrease in heart rate is the result of a cyclic parasympathetic activation that induces skipped beats and regular asystoles as well as slows the even heart beat. As body temperature subsequently falls, the parasympathetic influence is progressively withdrawn and periods of parasympathetic and sympathetic dominance alternate and give rise to regular periods of arrhythmia (tachycardia followed by bradycardia), and occasional long asystoles or periods of highly irregular cardiac activity. Superimposed on this is a vagally-mediated, respiratory sinus arrhythmia that is accentuated in species that breathe episodically. These events give way to a uniform heart rate in deep hibernation at low temperatures where both parasympathetic and sympathetic tone appear absent. The complete absence of tone is not a function of reduced temperature but is reflective of the state of deep, steady state hibernation. The elevation in heart rate that accompanies the onset of arousal is the result of dramatic increases in sympathetic activation that precede any increases in body temperature. As body temperature then rises, sympathetic influence is slowly withdrawn. Arrhythmias are also common during natural arousals or shifts from lower to warmer hibernation temperatures as periods of parasympathetic and sympathetic dominance again alternate en route to re-establishing a steady state in euthermia. The mechanism behind, and the biological significance of, cardiac changes mediated through orchestrated arrhythmias remain unknown.  相似文献   

4.
为研究冬眠季节的光照条件对贮脂类冬眠动物入眠的影响,在达乌尔黄鼠腹腔埋植体温记录元件iButton,在体重高峰后的下降阶段置于5℃和12L:12D的光照条件下,观察测定其冬眠模式和能量消耗。达乌尔黄鼠冬眠模式出现深冬眠型、少冬眠型和不冬眠型,蛰眠阵包括深冬眠阵、短冬眠阵和日眠阵。不同冬眠阵中最低体温、冬眠阵的持续时间、阵间产热的持续时间、冷却速率和复温速率差异显著;阵间产热的最高体温基本相同。平均每日能量消耗在日眠阵中最高、短冬眠阵中居中、深冬眠阵中最低。入眠时间多集中于黑暗时相,觉醒时间多集中于光照时相。本实验结果提示,在冬眠季节施加光照黑暗循环条件可减少达乌尔黄鼠冬眠的时间,升高阵间最低体温,缩短冬眠阵与阵间产热的持续时间,降低复温速率;增加冬眠期间能量消耗。入眠与觉醒受光照条件影响,具有明显的光暗节律。  相似文献   

5.
During entrance into torpor heart and respiration rates are greatly reduced in parallel with the reduction of metabolic rate, suggesting an involvement of parasympathetic control. We compared the effect of parasympathetic inhibition with the effect of sympathetic inhibition on spontaneous torpor behaviour in the Djungarian hamster. Hamsters were acclimated to short photoperiod and displayed their standard torpor pattern as observed from Tb records. Parasympathetic inhibition was achieved by a subcutaneous implant of 21-day release pellets with Atropine and the sympathetic noradrenergic pathway was inhibited with a single injection of 6-Hydroxydopamine. Atropine treatment did not affect the occurrence and quality of spontaneous daily torpor at all. However, the reversible sympathetic inhibition by 6-Hydroxydopamine injection resulted in a complete disappearance of torpor for about 6 days. These results conclude that the onset of daily torpor requires an intact noradrenergic signalling of the sympathetic nervous system. We further observed that parasympathetic as well as sympathetic blockade resulted in an immediate abolishment of ultradian rhythms of body temperature. This suggests that the expression of ultradian oscillations in body temperature require a continued interaction of sympathetic and parasympathetic activity.  相似文献   

6.
Autonomic nervous control of heart rate was studied in voluntarily diving ducks (Aythya affinis). Ducks were injected with the muscarinic blocker atropine, the beta-adrenergic blocker nadolol, the beta-adrenergic agonist isoproterenol, and a combination of both atropine and nadolol. Saline injection was used as a control treatment. The reduction in heart rate (from the predive level) normally seen during a dive was abolished by atropine. Nadolol reduced heart rate during all phases of diving activity-predive, dive, and postdive-indicating that sympathetic output to the heart was not withdrawn during diving. Isoproterenol increased heart rate before, during, and after the dive, although the proportional increase in heart rate was not as high during the dive as compared with the increase in routine heart rate or heart rate during the predive or postdive phase. The parasympathetic system predominates in the control of heart rate during diving despite the maintenance of efferent sympathetic influences to the heart, perhaps due to accentuated antagonism between the two branches of the autonomic nervous system.  相似文献   

7.
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0°C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb. (Chronobiology International, 17(2), 103-128, 2000)  相似文献   

8.
Post-weaning individual housing induces significant alterations in the reward system of adult male rats presented with sexually receptive female rats. In this study, we examined the effects of post-weaning individual housing on autonomic nervous activity in adult male rats during encounters with sexually receptive female rats to assess whether different affective states depending on post-weaning housing conditions are produced. Changes in heart rate and spectral parameters of heart rate variability indicated that in post-weaning individually housed male rats, both sympathetic and parasympathetic activity increased with no change in the sympathovagal balance, while in post-weaning socially housed male rats, both sympathetic and parasympathetic activity decreased with a predominance of parasympathetic activity. These two patterns of shifts in sympathovagal balances closely resembled changes in autonomic nervous activity with regard to classical appetitive conditioning in male rats. The autonomic changes in male rats housed individually after weaning corresponded to changes associated with the reward-expecting state evoked by the conditioned stimulus, and the autonomic changes observed in male rats housed socially after weaning corresponded to changes associated with the reward-receiving state evoked by the unconditioned stimulus. These results suggest that different affective states were induced in adult male rats during sexual encounters depending on male–male social interactions after weaning. The remarkable change caused by post-weaning individual housing may be ascribed to alteration of the reward system during sexual encounters induced by deficiency of intermale social communication after weaning.  相似文献   

9.
A possible role of the autonomic nervous system in the left ventricular response to acute regional myocardial ischemia was sought in conscious dogs instrumented for measurement of left ventricular pressure, internal diameter, and aortic flow. Ischemia produced by occluding the left circumflex coronary artery caused tachycardia and reduced contractility. Changes during control occlusions were compared with those during occlusion.s after beta-adrenergic blockade, parasympathetic blockade, and combined sympathetic and parasymphatetic blockade. Beta-blockade did reduce the tachycardia and slightly reduced left ventricular diameter changes in response to coronary occlusion. Results obtained in animals following surgical cardiac sympathectomy indicated reduced tachycardia and no effects on other parameters. The principal effect of parasympathetic blockade was to augment the increase in end diastolic diameter during occlusion Right atrial pacing indicated this change was due to higher initial heart rates. Combined parasympathetic and sympathetic blockade did not alter inotropic responses to coronary occlusion. Results indicated that inotropic support due to changes in activity in autonomic nerves is not increased during acute occlusion of the left circumflex coronary artery.  相似文献   

10.
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics ‘hibernation’, could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor–arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor–arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.  相似文献   

11.
Mammalian hibernation is characterized by prolonged torpor bouts interspersed by brief arousal periods. Adequate antioxidant defenses are needed both to sustain cell viability over weeks of deep torpor and to defend against high rates of oxyradical formation associated with massive oxygen-based thermogenesis during arousal. The present study shows that up-regulation of peroxiredoxins contributes to antioxidant defense during torpor in thirteen-lined ground squirrels, Spermophilus tridecemlineatus. Expression levels of three isozymes of the 2-Cys peroxiredoxin (Prdx) family were quantified by Western blotting, the results showing 4.0- and 12.9-fold increases in Prdx1 protein in brown adipose tissue (BAT) and heart, respectively, during hibernation compared with euthermia. Comparable increases in Prdx2 were 2.4- and 3.7-fold whereas Prdx3 rose by 3.1-fold in heart of torpid animals. Total 2-Cys peroxiredoxin enzymatic activity also rose during hibernation by 1.5-fold in heart and 3.5-fold in BAT. Furthermore, RT-PCR showed that prdx2 mRNA levels increased by 1.7- and 3.7-fold in BAT and heart, respectively, during hibernation. A partial nucleotide sequence of prdx2 from ground squirrels was obtained by PCR amplification, the deduced amino acid sequence showing 96-97% identity with Prdx2 from other mammals. Some unique amino acid substitutions were identified that might contribute to stabilizing Prdx2 conformation at the near 0 degrees C body temperatures during torpor.  相似文献   

12.
The importance of marmosets for comparative and translational science has grown in recent years because of their relatively rapid development, birth cohorts of twins, family social structure, and genetic tractability. Despite this, they remain understudied in investigations of affective processes. In this methodological note, we establish the validity of using noninvasive commercially available equipment to record cardiac physiology and compute indices of autonomic nervous system activity—a major component of affective processes. Specifically, we recorded electrocardiogram and impedance cardiogram, from which we derived heart rate, respiration rate, measures of high‐frequency heart rate variability (indices of parasympathetic autonomic nervous system activity), and ventricular contractility (an index of sympathetic autonomic nervous system activity). Our methods produced physiologically plausible data, and further, animals with increased heart rates during testing were also more reactive to isolation from their social partner and presentation of novel objects, though no relationship was observed between reactivity and specific indices of parasympathetic or sympathetic nervous system activity.  相似文献   

13.
Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise.  相似文献   

14.
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0°C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb. (Chronobiology International, 17(2), 103–128, 2000)  相似文献   

15.
In this study characteristics of cardiac functioning were investigated in nine subjects during their nocturnal sleep. The pre-ejection period and the high frequency component of heart rate variability were used as indices of cardiac sympathetic and parasympathetic activity of the autonomic nervous system respectively. Heart rate and the autonomic indices were assessed across physiological determined sleep stages and consecutive temporal sleep cycles. Repeated measures ANOVA analyses indicated a significant pattern of heart rate as a function of sleep stages, which was mirrored by parasympathetic activity. Further, a significant decrease of heart rate as a function of sleep cycles was mirrored by an increase of sympathetic activity. Moreover, non-REM/REM differences revealed a dominant role of parasympathetic activity during sleep stages as well as sleep cycles. These findings demonstrate that sympathetic activity is influenced by time asleep, whereas parasympathetic activity is influenced by the depth of sleep.  相似文献   

16.
In this study characteristics of cardiac functioning were investigated in nine subjects during their nocturnal sleep. The pre-ejection period and the high frequency component of heart rate variability were used as indices of cardiac sympathetic and parasympathetic activity of the autonomic nervous system respectively. Heart rate and the autonomic indices were assessed across physiological determined sleep stages and consecutive temporal sleep cycles. Repeated measures ANOVA analyses indicated a significant pattern of heart rate as a function of sleep stages, which was mirrored by parasympathetic activity. Further, a significant decrease of heart rate as a function of sleep cycles was mirrored by an increase of sympathetic activity. Moreover, non-REM/REM differences revealed a dominant role of parasympathetic activity during sleep stages as well as sleep cycles. These findings demonstrate that sympathetic activity is influenced by time asleep, whereas parasympathetic activity is influenced by the depth of sleep.  相似文献   

17.
Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Increasing evidence suggests depression of mitochondrial respiration during daily torpor of the Djungarian hamster but tissue-specificity and relation to torpor depth is unknown. We first confirmed a previous study by Brown and colleagues reporting on the depressed substrate oxidation in isolated liver mitochondria of the Djungarian hamster (Phodopus sungorus) during daily torpor. Next, we show that mitochondrial respiration is not depressed in kidneys, skeletal muscle and heart. In liver mitochondria, we found that state 3 and state 4 respirations correlate with body temperature, suggesting inhibition related to torpor depth and to metabolic rate. We conclude that molecular events leading to depression of mitochondrial respiration during daily torpor are specific to liver and linked to a decrease in body temperature. Different tissue-specificity of mitochondrial depression may assist to compare and identify the molecular nature of mitochondrial alterations during torpor.  相似文献   

18.
哺乳动物的冬眠是一种季节性异温状态,是对外界恶劣自然环境的一种适应策略。冬眠-阵间觉醒周期中,伴随着生理功能的剧烈变化,从冬眠期间整体代谢的抑制,到阵间觉醒时氧代谢的急剧增加,使动物体内产生了大量的氧自由基。然而,冬眠动物出眠时并未表现出明显的氧化损伤迹象,因此,冬眠哺乳动物被认为是一种天然的抗氧化损伤模型。本文从氧化应激的产生、活性氧的来源、抗氧化防御等方面综述了冬眠哺乳动物对氧化应激的防御,并从其抗氧化的分子调控方面分析了冬眠哺乳动物对氧化应激的适应机制。  相似文献   

19.
We investigated mechanisms of energy conservation during hibernation. The amount of time torpid was significantly less for groups of three young marmots than for marmots hibernating singly. Mean daily mass loss (DML; as mg d(-1) g(-1) immergence mass) averaged 1.33 for single marmots and 1.46 for grouped young. Animals were active 17.3% of the time, which used 82.4% of the energy, and were torpid 82.7% of the time, which used 17.6% of the energy expenditure. During longer torpor bouts, more time was spent in deep torpor, which decreased the hourly cost of a complete bout. Bout oxygen consumption V dot o2, percent time in deep torpor, and body temperature (T(B)) during deep torpor changed seasonally and were curvilinearly related to when in the hibernation period the measurements were made and probably represent a stage in the circannual metabolic cycle. The decrease of environmental temperature (T(E)) to 2 degrees C significantly increased metabolism. Potential costs of low T(E) were reduced by allowing T(B) to decrease, thereby reducing the T(B) to T(E) gradient. Average monthly metabolic rate was high early and late in the hibernation period when time spent euthermic was greater and when VO2 was higher. Over the hibernation period, energy saved averaged 77.1% and 88.0% of the costs for winter and summer euthermic metabolism, respectively. Hibernation costs were reduced by the seasonal changes, the high percentage of time in torpor, the rapid decline in V dot o2 following arousal, and allowing T(B) to decline at lower T(E). Asynchrony in the torpor cycles increased energy expenditures in group hibernators, which negated possible beneficial effects of group hibernation.  相似文献   

20.
Cardiac sympathetic and parasympathetic neural activities have been found to interact with each other to efficiently regulate the heart rate and maintain homeostasis. Quantitative and noninvasive methods used to detect the presence of interactions have been lacking, however. This may be because interactions among autonomic nervous systems are nonlinear and nonstationary. The goal of this work was to identify nonlinear interactions between the sympathetic and parasympathetic nervous systems in the form of frequency and amplitude modulations in human heart rate data. To this end, wavelet analysis was performed, followed by frequency analysis of the resultant wavelet decomposed signals in several frequency brackets defined as very low frequency (f < 0.04 Hz), low frequency (LF; 0.04-0.15 Hz), and high frequency (HF; 0.15-0.4 Hz). Our analysis suggests that the HF band is significantly modulated by the LF band in the heart rate data obtained in both supine and upright body positions. The strength of modulations is stronger in the upright than supine position, which is consistent with elevated sympathetic nervous activities in the upright position. Furthermore, significantly stronger frequency modulation than in the control condition was also observed with the cold pressor test. The results with the cold pressor test, as well as the body position experiments, further demonstrate that the frequency modulation between LF and HF is most likely due to sympathetic and parasympathetic nervous interactions during sympathetic activations. The modulation phenomenon suggests that the parasympathetic nervous system is frequency modulated by the sympathetic nervous system. In this study, there was no evidence of amplitude modulation among these frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号