首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 275 毫秒
1.
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0°C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb. (Chronobiology International, 17(2), 103–128, 2000)  相似文献   

2.
We undertook a study to determine presence of circadian rhythms during woodchuck hibernation using continuously monitored body temperatures. Males had shorter torpor and longer euthermic periods than females. Circular statistics revealed a significant mean vector for males entering into torpor (10:21 h), but not for females. No significant mean vector was found for male or female arousal from torpor. A contingency test was applied to the torpor bout durations. All 7 males tested had significant τ’s between 24 and 26 h, while 6 of the 13 females tested had significant τ’s with a range of 22–27 h. These results implicate a free-running circadian clock during torpor bouts. Overall, the data support the existence of biological rhythms during hibernation in woodchucks, especially for males during arousals. Since entries into torpor appear to be synchronized for males, arousal periods may be used to resynchronize their circadian system. The persistence of biological rhythms during hibernation may help to insure successful mating in the spring after emergence.  相似文献   

3.
M Steiner  G E Folk 《Cryobiology》1978,15(4):488-491
Among several mammalian hibernators, an endogenous circannual sequence of physiological events is believed to mediate the timing of torpor. Dawe and Spurrier (3) reported that a bloodborne substance (hibernation induction trigger) is important in initiating the torpor phase of those events in the 13-lined ground squirrel. We have reported the induction of summer hibernation among 13-lined ground squirrels using dialysates of serum from hibernating golden hamsters (a nonseasonal hibernator). While those animals receiving saline injections hibernated in 36.3 ± 2.9 days, an earlier induction (22 ± 8.8 days) occurred among those receiving the hibernation serum dialysate (P = 0.05). It was also observed that naive animals departed from a strict circannual rhythm and displayed a high incidence of hibernation, although not significant when compared to the experimental saline controls. The spontaneity of torpor in summer among the naive sample may in part be a characteristic of wild-caught animals employed in the bioassay. Nevertheless, the induction of hibernation among those animals receiving the hibernation serum preparations is supportive of the studies of Dawe and Spurrier (2, 3). That a “trigger” material apparently is present in the hamster, a phylogenetically distinct nonseasonal hibernator, suggests that a characteristic of rodent hibernators is the presence of a material which is associated with the initiation of torpor.  相似文献   

4.
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian‐mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30‐fold longer, and mean torpor bout duration >25‐fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.  相似文献   

5.
6.
The temporal pattern of hibernation was studied in three genotypes of Syrian hamsters with different circadian periodicity to assess a potential circadian control of alternating torpor and euthermy. We recorded the pattern of hibernation by measuring activity in continuous dim light and constant environmental temperature (6 +/- 1 degrees C). In spite of differences in the endogenous circadian period of three genotypes (tau +/+: approximately equals 24 h, tau +/-: approximately equals 22 h, and tau -/-: approximately equals 20 h) torpor bout duration was statistically indistinguishable (tau +/+: 86.9+/-5.3 h; tau +/-: 94.2+/-3.3 h; tau -/-: 88.8+/-6.2 h). The time between two consecutive arousals from torpor showed unimodal distributions not significantly different between genotypes. The first entry into torpor occurred within the active phase of the circadian cycle in all genotypes whereas the first arousal from torpor appeared to be timed randomly with respect to the prior circadian cycle. The amplitude of the activity rhythm was lower after hibernation compared with the amplitude before hibernation. The results suggest that in the Syrian hamster the circadian system does not control periodicity of torpor and arousal onsets in prolonged hibernation at 6 degrees C.  相似文献   

7.
Hibernation by tree-roosting bats   总被引:1,自引:1,他引:0  
In summer, long-eared bats (Nyctophilus spp.) roost under bark and in tree cavities, where they appear to benefit from diurnal heating of roosts. In contrast, hibernation is thought to require a cool stable temperature, suggesting they should prefer thermally insulated tree cavities during winter. To test this prediction, we quantified the winter thermoregulatory physiology and ecology of hibernating tree-roosting bats, Nyctophilus geoffroyi and N. gouldi in the field. Surprisingly, bats in winter continued to roost under exfoliating bark (65%) on the northern, sunny side of trees and in shallow tree cavities (35%). Despite passive re-warming of torpid bats by 10-20 degrees C per day, torpor bouts lasted up to 15 days, although shorter bouts were also common. Arousals occurred more frequently and subsequent activity lasted longer on warmer nights, suggesting occasional winter foraging. We show that, because periodic arousals coincide with maximum roost temperatures, when costs of rewarming and normothermic thermoregulation are minimal, exposure to a daily temperature cycle could largely reduce energy expenditure during hibernation. Our study provides further evidence that models of torpor patterns and energy expenditure from hibernators in cold temperate climates are not directly applicable in milder climates, where prolonged torpor can be interspersed with more frequent arousals and occasional foraging.  相似文献   

8.
Hibernation in the tropics: lessons from a primate   总被引:7,自引:0,他引:7  
The Malagasy primate Cheirogaleus medius hibernates in tree holes for 7 months, although ambient temperatures during hibernation rise above 30°C in their natural environment. In a field study we show that during hibernation the body temperature of most lemurs fluctuates between about 10°C and 30°C, closely tracking the diurnal fluctuations of ambient temperature passively. These lemurs do not interrupt hibernation by spontaneous arousals, previously thought to be obligatory for all mammalian hibernators. However, some lemurs hibernate in large trees, which provide better thermal insulation. Their body temperature fluctuates only little around 25°C, but they show regular arousals, as known from temperate and arctic hibernators. The results from this study demonstrate that maximum body temperature is a key factor necessitating the occurrence of arousals. Furthermore, we show that hibernation is not necessarily coupled to low body temperature and, therefore, low body temperature should no longer be included in the definition of hibernation.  相似文献   

9.
The biochemical mechanisms by which hibernators cool as they enter torpor are not fully understood. In order to examine whether rates of substrate oxidation vary as a function of hibernation, liver mitochondria were isolated from telemetered ground squirrels (Spermophilus lateralis) in five phases of their annual hibernation cycle: summer active, and torpid, interbout aroused, entrance, and arousing hibernators. Rates of state 3 and state 4 respiration were measured in vitro at 25 degrees C. Relative to mitochondria from summer-active animals, rates of state 3 respiration were significantly depressed in mitochondria from torpid animals yet fully restored during interbout arousals. These findings indicate that a depression of ADP-dependent respiration in liver mitochondria occurs during torpor and is reversed during the interbout arousals to euthermia. Because this inhibition was determined to be temporally independent of entrance and arousal, it is unlikely that active suppression of state 3 respiration causes entrance into torpor by facilitating metabolic depression. In contrast to the observed depression of state 3 respiration in torpid animals, state 4 respiration did not differ significantly among any of the five groups, suggesting that alterations in proton leak are not contributing appreciably to downregulation of respiration in hibernation.  相似文献   

10.
Ground squirrels undergo extreme body temperature fluctuations during hibernation. The effect of low body temperatures on the mammalian circadian system is still under debate. Using implanted temperature loggers, we recorded body temperature patterns in European ground squirrels kept in an enclosure under natural conditions. Although hibernation onset was delayed, hibernation end corresponded closely to that measured in a field population. Circadian body temperature fluctuations were not detected during deep torpor, but indications of circadian timing of arousal episodes at higher temperatures were found at the beginning and end of hibernation. One male exhibited synchronised arousals to a relatively constant phase of the day throughout hibernation. All animals first entered torpor in the afternoon. Daily body temperature fluctuations were decreased or distorted during the first days after hibernation. We hypothesise that hibernation may affect the circadian system by either decreasing the expression of the circadian oscillator, or by decreasing the amplitude of the circadian oscillator itself. possibly due to gradual, temperature dependent, internal desynchronisation. The latter mechanism may be beneficial because it might facilitate post-hibernation re-entrainment rates.  相似文献   

11.
A. R. French 《Oecologia》1990,82(1):93-96
Summary Age-related differences in the patterns of body temperature regulation during hibernation were found in yellow-bellied marmots. The timing of all entrances into and arousals from torpor was determined from continuous records of thermocouples mounted in each animal's nest box. Older marmots spent more time at high body temperatures following periodic arousals from torpor than did juveniles undergoing their first season of hibernation. In addition, older marmots spontaneously terminated their hibernation seasons in the spring, whereas most juveniles continued to hibernate until either they were emaciated from starvation or they were fed. These two patterns of hibernation reflect age- and size-related differences in the degree to which the animals are constrained energetically and the probability that they can successfully reproduce in spring. The patterns also are consistent with age-related differences in the timing of dormancy in nature.  相似文献   

12.
Hibernation is widely regarded as an adaptation to seasonal energy shortage, but the actual influence of energy availability on hibernation patterns is rarely considered. Here we review literature on the costs and benefits of torpor expression to examine the influence that energy may have on hibernation patterns. We first establish that the dichotomy between food- and fat-storing hibernators coincides with differences in diet rather than body size and show that small or large species pursuing either strategy have considerable potential scope in the amount of torpor needed to survive winter. Torpor expression provides substantial energy savings, which increase the chance of surviving a period of food shortage and emerging with residual energy for early spring reproduction. However, all hibernating mammals periodically arouse to normal body temperatures during hibernation. The function of these arousals has long been speculated to involve recovery from physiological costs accumulated during metabolic depression, and recent physiological studies indicate these costs may include oxidative stress, reduced immunocompetence, and perhaps neuronal tissue damage. Using an optimality approach, we suggest that trade-offs between the benefits of energy conservation and the physiological costs of metabolic depression can explain both why hibernators periodically arouse from torpor and why they should use available energy to minimize the depth and duration of their torpor bouts. On the basis of these trade-offs, we derive a series of testable predictions concerning the relationship between energy availability and torpor expression. We conclude by reviewing the empirical support for these predictions and suggesting new avenues for research on the role of energy availability in mammalian hibernation.  相似文献   

13.
In the subtropical finch, spotted munia (Lonchura punctulata) circannual rhythms (of gonads, fattening, feeding) have been demonstrated in an information-free environment of continuous illumination (LL), rendering it an ideal model for research on the physiology of the circannual clock. In an attempt to understand the involvement, if any, of the circadian system in the genesis of circannual rhythms, we studied the effect of pinealectomy (LL 15 lux) and strong continuous illumination (LL 300 lux), both known to abolish circadian rhythms, on the circadian perch-hopping rhythm and on the circannual rhythm of reproduction and fattening in the same birds. While both pinealectomy and LL 300 lux treatments abolished the circadian rhythm of motor activity, they had no effect on the circannual rhythms of gonadal size and fattening. If the endogenous circadian rhythm in perch-hopping can be taken to reflect the circadian clock mechanism associated with gonadal functioning, present results suggest that circannual rhythm of reproduction in spotted munia is independent of circadian events.  相似文献   

14.
The hibernating marsupial mountain pygmy-possum (Burramys parvus, 40 g) has to raise its slow-growing offspring during a short alpine summer. Only females provide parental care, while after mating males emigrate to marginal habitats often at lower altitudes which can sustain only low possum densities. We predicted that the hibernation strategies in mountain pygmy-possums are distinct from those of similar-sized placental hibernators, because of the developmental constraints in marsupials and because hibernation differs between the sexes. Using temperature-sensitive radio transmitters, we studied the hibernation patterns of free-living male and female mountain pygmy-possums living in a north- and a south-facing boulder field (Kosciusko National Park) for two consecutive winters. Individual possums commenced hibernation several months before the snow season. As in other hibernators, torpor in the mountain pygmy-possum was interrupted by periodic arousals which occurred most often during the late afternoon. Torpor bouts initially lasted a few days when the hibernacula temperature (T hib) ranged from 4 to 7°C. As the hibernation season progressed, torpor bouts became longer and possum body temperatures (T b) approached 2°C. The T bs of females were significantly lower and torpor bouts were longer in the second half of the hibernation season than in males. Between torpor bouts, both sexes were often active and left hibernacula for periods of up to 5 days. Especially during the first months of the hibernation season, possums also frequently changed hibernacula sites probably in an attempt to select a site with a more suitable microclimate. Emergence from hibernation was closely coupled with the disappearance of snow from the possum habitat (September 1995, October 1996) and the limited fat stores probably dictate an opportunistic spring emergence. However, in 1995, spring was early and males emerged significantly earlier than females. In 1996, when snow melt was delayed, this difference vanished. Testes are regressed in males during hibernation and the time needed for testes growth and spermatogenesis favours an earlier emergence for males which was probably achieved by their preference for the more sun exposed north-facing boulder field. A sexual dimorphism in hibernation strategies and spring emergence therefore enables mountain pygmy-possums to cope with their harsh alpine environment. Received: 22 May 1997 / Accepted: 21 August 1997  相似文献   

15.
Hibernating mammals present many unexplored opportunities for the study of muscle biology. The hindlimb muscles of a small rodent hibernator (Spermophilus lateralis) atrophy slightly during months of torpor, representing a reduction in the disuse atrophy commonly seen in other mammalian models. How torpor affects contractile protein expression is unclear; therefore, we examined the myosin heavy-chain (MHC) isoform profile of ground squirrel skeletal muscle before and after hibernation. Immunoblotting was performed first to identify the MHC isoforms expressed in this species. Relative percentages of MHC isoforms in individual muscles were then measured using SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The soleus and diaphragm did not display differences in isoforms following hibernation, but we found minor fast-to-slow isoform shifts in MHC protein in the gastrocnemius and plantaris. These subtle changes are contrary to those predicted by other models of inactivity but may reflect the requirement for shivering thermogenesis during arousals from torpor. We also measured mRNA expression of the Muscle Atrophy F-box (MAFbx), a ubiquitin ligase important in proteasome-mediated proteolysis. Expression was elevated in the hibernating gastrocnemius and the plantaris but was not associated with atrophy. Skeletal muscle from hibernators displays unusual plasticity, which may be a combined result of the intense activity during arousals and the reduction of metabolism during torpor.  相似文献   

16.
Glutathione (GSH) is the major thiol-disulfide redox buffer in cells and is a critical component of antioxidant defense. Here we examined GSH redox balance in the intestinal mucosa during the annual cycle of 13-lined ground squirrels (Spermophilus tridecemlineatus). The ratio of reduced GSH to its oxidized form (glutathione disulfide, GSSG), which is an index of oxidative stress, was five-fold lower in hibernating compared with summer-active squirrels, an effect due primarily to elevated GSSG concentration in hibernators. During hibernation the total pool of GSH equivalents was lowest in squirrels undergoing arousal and highest in squirrels during interbout arousals. Hibernation decreased intestinal GSSG reductase activity by approximately 50%, but had no effect on activities of glutathione peroxidase or glucose-6-phosphate dehydrogenase. Within the hibernation season, expression of the stress protein HSP70 in intestinal mucosa was highest in squirrels entering torpor and early in a torpor bout, and lowest in squirrels arousing from torpor and during interbout euthermia. The results suggest that hibernation in ground squirrels is associated with a shift in intestinal GSH redox balance to a more oxidized state. Higher levels of HSP70 during the early phases of torpor may reflect induction of the stress response due to aberrations in protein folding or may be a mechanism to increase enterocyte tolerance to subsequent stress imposed by extended torpor or the arousal process.  相似文献   

17.
The frequency and function of arousals during hibernation in free-living mammals are little known. We used temperature-sensitive radio transmitters to measure patterns of torpor, arousal and activity in wild Natterer’s bats Myotis nattereri during hibernation. Duration of torpor bouts ranged from 0.06 to 20.4 days with individual means ranging from 0.9 to 8.9 days. Arousals from torpor occurred most commonly coincident with the time (relative to sunset) typical for bats emerging from summer roosts to forage. Bats with lower body condition indices had a shorter average duration of their torpor bouts. We found a non-linear relationship between duration of torpor bout and ambient temperature: the longest average torpor bouts were at temperatures between 2 and 4°C with shorter bouts at lower and higher ambient temperatures. One individual was radio-tracked for ten nights, remained active for an average of 297 min each night and was active for longer on warmer nights. Our results suggest that vespertilionid bats use relatively short torpor bouts during hibernation in a location with a maritime climate. We hypothesise that Natterer’s bats time arousals to maximise opportunities for potential foraging during winter although winter feeding is not the sole determinant of arousal as bats still arouse at times when foraging is unlikely.  相似文献   

18.
Circadian rhythms have been observed in most mammals, but their importance and function remain controversial with respect to daily cycles during hibernation. We investigated the timing of arousals from and entries into hibernation for both free-living and captive mountain pygmy-possums (Burramys parvus). Under both natural and laboratory conditions most arousals and entries were entrained with the light-dark cycle. Entries occurred mainly during the night and arousals preferably around dusk, which coincides with the onset of the normal activity phase for the nocturnal pygmy-possums. This entrainment prevailed throughout the hibernation season although only the laboratory animals were constantly subjected to photoperiodic stimuli, whereas under natural conditions hibernacula are shielded from photic cues and diurnal temperature fluctuations. Nevertheless, possums left their hibernacula frequently throughout winter and were occasionally trapped close to the snow surface suggesting that during the periods of post-arousal normothermia they can be exposed to environmental stimuli. It thus appears that the synchronisation with the photocycle was governed by a temperature-compensated circadian clock which was reset periodically during short activity periods. For the mountain pygmy-possum, entrainment with the photocycle probably has two functions: 1. Entrainment ensures that foraging bouts during the hibernation season remain synchronised with the dark phase. 2. Information about the prevailing climatic conditions sampled during short activity periods enables them to time final spring emergence from hibernation when snow melt begins and ensures that the breeding season can commence as early as possible. Accepted: 26 August 1998  相似文献   

19.
20.
For temperate endotherms (i.e., mammals and birds) energy costs are highest during winter but food availability is lowest and many mammals depend on hibernation as a result. Hibernation is made up of energy-saving torpor bouts [periods of controlled reduction in body temperature (T b)], which are interrupted by brief periodic arousals to normothermic T b. What triggers these arousals in free-ranging hibernators is not well understood. Some temperate bats with intermittent access to flying insects during winter synchronize arousals with sunset, which suggests that, in some species, feeding opportunities influence arousal timing. We tested whether hibernating bats from a cold climate without access to food during winter also maintain a circadian rhythm for arousals or whether cues from conspecifics in the same cluster are more important. We used temperature telemetry to monitor skin temperature (T sk) of free-ranging little brown bats (Myotis lucifugus) hibernating in central Manitoba, Canada, where temperatures from 22 October to 22 March were too cold for flying insects. We found no evidence bats synchronized arousals with photoperiod but they did arouse synchronously with other bats in the same cluster. Thus, in the northern part of their range where flying insects are almost never available during winter, little brown bats exhibit no circadian pattern to arousals. Warming synchronously with others could reduce the energetic costs of arousal for individuals or could reflect disturbance of torpid bats by cluster-mates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号