首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1-(4-Methylsulfonyl)-2-thione-4-aryl-5-Z-6-methyl and oxyalkyl-imidazoles were synthesized from different tetrahydropyrimidinethiones and aryl sulfonyl chloride. These compunds were tested for metal chelating effects and to determine the phrase in which inhibition occured between two physiologically pertinent compunds and carbonic anhydrase (CA) isozymes I and II (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). AChE was detected in high concentrations in the brain and red blood cells. BChE is another enzymes that is abundant available in the liver and released into the blood in a soluble form. Newly synthesized hetaryl sulfonamides exhibited impressive inhibition profiles with Ki values in the range of 1.42–6.58?nM against hCA I, 1.72–7.41?nM against hCA II, 0.20–1.14?nM against AChE and 1.55–5.92?nM against BChE. Moreover, acetazolamide showed Ki values of 43.69?±?6.44?nM against hCA I and 31.67?±?8.39?nM against hCA II. Additionally, tacrine showed Ki values of 25.75?±?3.39?nM and 37.82?±?2.08 against AChE and BChE, respectively.  相似文献   

2.
Natural products from food and plant sources have been used for medicinal usage for ages. Also, natural products with therapeutic significance are compounds derived from animals, plants, or any microorganism. In this study, chrysin, carvacrol, hesperidin, zingerone, and naringin as natural phenols showed excellent inhibitory effects against human (h) carbonic anhydrase (CA) isoforms I and II (hCA I and II), α‐glucosidase (α‐Gly), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). These phenolic compounds were tested for the inhibition of α‐glycosidase, hCA I, hCA II, AChE, and BChE enzymes and demonstrated efficient inhibition profiles with Ki values in the range of 3.70 ± 0.92–79.66 ± 20.81 nM against hCA I, 2.98 ± 0.33–84.88 ± 40.32 nM against hCA II, 4.93 ± 2.01–593.60 ± 134.74 nM against α‐Gly, 0.52 ± 0.18–46.80 ± 17.15 nM against AChE, and 1.25 ± 0.22–32.08 ± 2.68 against BChE.  相似文献   

3.
A series of carbamate derivatives were synthesized and their carbonic anhydrase I and II isoenzymes and acetylcholinesterase enzyme (AChE) inhibitory effects were investigated. All carbamates were synthesized from the corresponding carboxylic acids via the Curtius reactions of the acids with diphenyl phosphoryl azide followed by addition of benzyl alcohol. The carbamates were determined to be very good inhibitors against for AChE and hCA I, and II isoenzymes. AChE inhibition was determined in the range 0.209–0.291?nM. On the other hand, tacrine, which is used in the treatment of Alzheimer’s disease possessed lower inhibition effect (Ki: 0.398?nM). Also, hCA I and II isoenzymes were effectively inhibited by the carbamates, with inhibition constants (Ki) in the range of 4.49–5.61?nM for hCA I, and 4.94–7.66?nM for hCA II, respectively. Acetazolamide, which was clinically used carbonic anhydrase (CA) inhibitor demonstrated Ki values of 281.33?nM for hCA I and 9.07?nM for hCA II. The results clearly showed that AChE and both CA isoenzymes were effectively inhibited by carbamates at the low nanomolar levels.  相似文献   

4.
Compounds containing nitrogen and sulfur atoms can be widely used in various fields, including industry, medicine, biotechnology, and chemical technology. Among them, amides of acids and heterocyclic compounds have an important place. These amides and thiazolidine‐4‐ones showed good inhibitory action against butyrylcholinesterase (BChE), acetylcholinesterase (AChE), and human carbonic anhydrase isoforms. AChE exists at high concentrations in the brain and red blood cells. BChE is an important enzyme that is plentiful in the liver, and it is released into the blood in a soluble form. They were demonstrated to have effective inhibition profiles with Ki values of 23.76–102.75 nM against hCA I, 58.92–136.64 nM against hCA II, 1.40–12.86 nM against AChE, and 9.82–52.77 nM against BChE. On the other hand, acetazolamide showed Ki value of 482.63 ± 56.20 nM against hCA I, and 1019.60 ± 163.70 nM against hCA II. Additionally, Tacrine inhibited AChE and BChE, showing Ki values of 397.03 ± 31.66 and 210.21 ± 15.98 nM, respectively.  相似文献   

5.
Compounds containing nitrogen and sulfur atoms can be widely used in various fields such as industry, medicine, biotechnology and chemical technology. Therefore, the reactions of aminomethylation and alkoxymethylation of mercaptobenzothiazole, mercaptobenzoxazole and 2-aminothiazole were developed. Additionally, the alkoxymethyl derivatives of mercaptobenzoxazole and 2-aminothiazole were synthesized by a reaction with hemiformals, which are prepared by the reaction of alcohols and formaldehyde. In this study, the inhibitory effects of these molecules were investigated against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) enzymes and carbonic anhydrase I, and II isoenzymes (hCA I and II). Both hCA isoenzymes were significantly inhibited by the recently synthesized molecules, with Ki values in the range of 58–157?nM for hCA I, and 81–215?nM for hCA II. Additionally, the Ki parameters of these molecules for BChE and AChE were calculated in the ranges 23–88 and 18–78?nM, respectively.  相似文献   

6.
Starting from vanillin, known four benzyl bromides with Br were synthesized. The first synthesis of natural product 3,4-dibromo-5-((methylsulfonyl)methyl)benzene-1,2-diol (2) and 3,4,6-tribromo-5-((methylsulfonyl)methyl)benzene-1,2-diol (3) and derivatives were carried out by demethylation, acetylatilation, oxidation and hydrolysis reactions of the benzyl bromides. Also, these compounds were tested against some important enzymes like acetylcholinesterase and butyrylcholinesterase enzymes, carbonic anhydrase I, and II isoenzymes. The novel bromophenols showed Ki values of in range of 53.75 ± 12.54–234.68 ± 46.76 nM against hCA I, 42.84 ± 9.36 and 200.54 ± 57.25 nM against hCA II, 0.84 ± 0.12–14.63 ± 3.06 nM against AChE and 0.93 ± 0.20–18.53 ± 5.06 nM against BChE. Induced fit docking process performed on the compounds inhibiting hCA I, hCA II, AChE, and BChE receptors. Hydroxyl group should exist at the aromatic ring of the compounds for inhibition of the enzymes. The moieties reported in this study will be useful for design of more potent and selective inhibitors against the enzymes.  相似文献   

7.
Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66–4.14?nM) and hCA II inhibitors (Kis of 1.37–3.12?nM) and perfect AChE inhibitors (Kis in the range of 1.87–7.53?nM) compared to acetazolamide as CA inhibitor (Ki: 6.76?nM for hCA I and Ki: 5.85?nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64?nM).  相似文献   

8.
In the present study a series of urea and sulfamide compounds incorporating the tetralin scaffolds were synthesized and evaluated for their acetylcholinesterase (AChE), human carbonic anhydrase (CA, EC 4.2.1.1) isoenzyme I, and II (hCA I and hCA II) inhibitory properties. The urea and their sulfamide analogs were synthesized from the reactions of 2-aminotetralins with N,N-dimethylcarbamoyl chloride and N,N-dimethylsulfamoyl chloride, followed by conversion to the corresponding phenols via O-demethylation with BBr3. The novel urea and sulfamide derivatives were tested for inhibition of hCA I, II and AChE enzymes. These derivatives exhibited excellent inhibitory effects, in the low nanomolar range, with Ki values of 2.61–3.69 nM against hCA I, 1.64–2.80 nM against hCA II, and in the range of 0.45–1.74 nM against AChE. In silico techniques such as, atomistic molecular dynamics (MD) and molecular docking simulations, were used to understand the scenario of the inhibition mechanism upon approaching of the ligands into the active site of the target enzymes. In light of the experimental and computational results, crucial amino acids playing a role in the stabilization of the enzyme–inhibitor adducts were identified.  相似文献   

9.
Quinazolinones, which represent an important part of nitrogen-containing six-membered heterocyclic compounds, are frequently used in drug design due to their wide biological activity properties. Therefore, the novel quinazolinones were synthesized from the reaction of acylated derivatives of 4-hydroxy benzaldehyde with 3-amino-2-alkylquinazolin-4(3H)-ones with good yields (85–94 %) and their structures were characterized using Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1H-NMR, 13C-NMR), and High-Resolution Mass Spectroscopy (HR-MS). As the application of the synthesized compounds, their inhibition properties of the synthesized compounds on α-Glucosidase (α-Glu), Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE), and Carbonic anhydrase I–II (hCA I–II) metabolic enzymes were investigated. All compounds showed inhibition at nanomolar level with the Ki values in the range of 12.73±1.26–93.42±9.44 nM for AChE, 8.48±0.92–25.84±2.59 nM for BChE, 66.17±5.16–818.06±44.41 for α-Glu, 2.56±0.26–88.23±9.72 nM for hCA I, and 1.68±0.14–85.43±7.41 nM for hCA II. Molecular docking study was performed to understand the interactions of the most potent compounds with corresponding enzymes. Also, absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties of the compounds were investigated.  相似文献   

10.
The thiolation reaction was carried out in a benzene solution at 80°C and p‐substituted ketones and mercaptoacetic acid in a molar ratio (1:4) of in the presence of a catalytic amount of toluene sulfonic acids. The enzyme inhibition activities of the novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives were investigated. These novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives showed good inhibitory action against acetylcholinesterase (AChE) butyrylcholinesterase (BChE), and human carbonic anhydrase I and II isoforms (hCA I and II). AChE inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. Many clinically established drugs are carbonic anhydrase inhibitors, and it is highly anticipated that many more will eventually find their way into the market. The novel synthesized compounds inhibited AChE and BChE with Ki values in the range of 0.64–1.47 nM and 9.11–48.12 nM, respectively. On the other hand, hCA I and II were effectively inhibited by these compounds, with Ki values between 63.27–132.34 and of 29.63–127.31 nM, respectively.  相似文献   

11.
A series of vinyl functionalized 5,6-dimethylbenzimidazolium salts are synthesized. All compounds were fully characterized by elemental analyses, MS, 1H-NMR, 13C-NMR, and IR spectroscopy techniques. Enzyme inhibition is a very active area of research in drug design and development. In this study, the synthesized novel benzimidazolium salts were evaluated toward the human erythrocyte carbonic anhydrase I (hCA I), and II (hCA II) isoenzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. They demonstrated highly potent inhibition ability against hCA I with Ki values of 484.8 ± 62.6–1389.7 ± 243.2 nM, hCA II with Ki values of 298.9 ± 55.7–926.1 ± 330.0 nM, α-glycosidase with Ki values of 170.3 ± 27–760.1 ± 269 μM, AChE with Ki values of 27.1 ± 3–77.6 ± 1.7 nM, and BChE with Ki values of 21.0 ± 5–61.3 ± 15 nM. As a result, novel vinyl functionalized 5,6-dimethylbenzimidazolium salts (1a–g) exhibited effective inhibition profiles toward studied metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly to treat some global disorders including glaucoma, Alzheimer's disease, and diabetes.  相似文献   

12.
The novel N‐propylphthalimide‐substituted and 4‐vinylbenzyl‐substituted N‐heterocyclic carbene (NHC) precursors were synthesized by N‐substituted benzimidazolium with aryl halides. The novel N‐propylphthalimide‐substituted and 4‐vinylbenzyl‐substituted NHC precursors have been characterized by using 1H NMR, 13C NMR, FTIR spectroscopy, and elemental analysis techniques. They were tested for the inhibition of AChE and hCA enzymes and demonstrated efficient inhibition profiles with Ki values in the range of 351.0–1269.9 nM against hCA I, 346.6–1193.1 nM against hCA II, and 19.0–76.3 nM against AChE. On the other hand, acetazolamide, a clinically used molecule, utilized as CA inhibitor, obtained a Ki value of 1246.7 nM against hCA I and 1407.6 nM against hCA II. Additionally, tacrine inhibited AChE and obtained a Ki value of 174.6 nM.  相似文献   

13.
Abstract

Carbonic anhydrases (CAs) are widespread and the most studied members of a great family of metalloenzymes in higher vertebrates including humans. CAs were investigated for their inhibition of all of the catalytically active mammalian isozymes of the Zn2+-containing CA, (CA, EC 4.2.1.1). On the other hand, acetylcholinesterase (AChE. EC 3.1.1.7), a serine protease, is responsible for ACh hydrolysis and plays a fundamental role in impulse transmission by terminating the action of the neurotransmitter ACh at the cholinergic synapses and neuromuscular junction. In the present study, the inhibition effect of the hydroquinone (benzene-1,4-diol) on AChE activity was evaluated and effectively inhibited AChE with Ki of 1.22?nM. Also, hydroquinone strongly inhibited some human cytosolic CA isoenzymes (hCA I and II) and tumour-associated transmembrane isoforms (hCA IX, and XII), with Kis in the range between micromolar (415.81?μM) and nanomolar (706.79?nM). The best inhibition was observed in cytosolic CA II.  相似文献   

14.
Human carbonic anhydrase I and II isoenzymes (hCA I and II) and acetylcholinesterase (AChE) are important metabolic enzymes that are closely associated with various physiological and pathological processes. In this study, we investigated the inhibition effects of some sulfonamides on hCA I, hCA II, and AChE enzymes. Both hCA isoenzymes were purified by Sepharose‐4B‐L‐Tyrosine‐5‐amino‐2‐methylbenzenesulfonamide affinity column chromatography with 1393.44 and 1223.09‐folds, respectively. Also, some inhibition parameters including IC50 and Ki values were determined. Sulfonamide compounds showed IC 50 values of in the range of 55.14 to 562.62 nM against hCA I, 55.99 to 261.96 nM against hCA II, and 98.65 to 283.31 nM against AChE. Ki values were in the range of 23.40 ± 9.10 to 365.35 ± 24.42 nM against hCA I, 45.87 ± 5.04 to 230.08 ± 92.23 nM against hCA II, and 16.00 ± 45.53 to 157.00 ± 4.02 nM against AChE. As a result, sulfonamides had potent inhibition effects on these enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly in the treatment of some disorders.  相似文献   

15.
During this investigation, N,N′‐bis‐azidomethylamines, N,N′‐bis‐cyanomethylamine, new alkoxymethylamine and chiral derivatives, which are considered to be a new generation of multifunctional compounds, were synthesized, functional properties were investigated, and anticholinergic and antidiabetic properties of those compounds were studied through the laboratory tests, and it was approved that they contain physiologically active compounds rather than analogues. Novel N‐bis‐cyanomethylamine and alkoxymethylamine derivatives were effective inhibitors of the α‐glycosidase, cytosolic carbonic anhydrase I and II isoforms, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) with Ki values in the range of 0.15–13.31 nM for α‐glycosidase, 2.77–15.30 nM for human carbonic anhydrase isoenzymes I (hCA I), 3.12–21.90 nM for human carbonic anhydrase isoenzymes II (hCA II), 23.33–73.23 nM for AChE, and 3.84–48.41 nM for BChE, respectively. Indeed, the inhibition of these metabolic enzymes has been considered as a promising factor for pharmacologic intervention in a diversity of disturbances.  相似文献   

16.
The carbonic anhydrases (CAs, EC 4.2.1.1) represent a superfamily of widespread enzymes, which catalyze a crucial biochemical reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. In this study, a series of hydroperoxides, alcohols, and acetates were tested for the inhibition of the cytosolic hCA I and II isoenzymes. These compounds inhibited both hCA isozymes in the low nanomolar ranges. These compounds were good hCA I inhibitors (Kis in the range of 24.93–97.99?nM) and hCA II inhibitors (Kis in the range of 26.04–68.56?nM) compared to acetazolamide as CA inhibitor (Ki: 34.50?nM for hCA I and Ki: 28.93?nM for hCA II).  相似文献   

17.
The conversion reactions of pyrimidine‐thiones with nucleophilic reagent were studied during this scientific research. For this purpose, new compounds were synthesized by the interaction between 1,2‐epoxy propane, 1,2‐epoxy butane, and 4‐chlor‐1‐butanol and pyrimidine‐thiones. These pyrimidine‐thiones derivatives ( A–K ) showed good inhibitory action against acetylcholinesterase (AChE), and human carbonic anhydrase (hCA) isoforms I and II. AChE inhibition was in the range of 93.1 ± 33.7–467.5 ± 126.9 nM. The hCA I and II were effectively inhibited by these compounds, with Ki values in the range of 4.3 ± 1.1–9.1 ± 2.7 nM for hCA I and 4.2 ± 1.1–14.1 ± 4.4 nM for hCA II. On the other hand, acetazolamide clinically used as CA inhibitor showed Ki value of 13.9 ± 5.1 nM against hCA I and 18.1 ± 8.5 nM against hCA II. The antioxidant activity of the pyrimidine‐thiones derivatives ( A–K ) was investigated by using different in vitro antioxidant assays, including Cu2+ and Fe3+ reducing, 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH?) radical scavenging, and Fe2+ chelating activities.  相似文献   

18.
A series of novel sulphonamide derivatives was obtained from sulphanilamide which was N4-alkylated with ethyl bromoacetate followed by reaction with hydrazine hydrate. The hydrazide obtained was further reacted with various aromatic aldehydes. The novel sulphonamides were characterised by infrared, mass spectrometry, 1H- and 13C-NMR and purity was determined by high-performance liquid chromatography (HPLC). Human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and II and Mycobacterium tuberculosis β-CA encoded by the gene Rv3273 (mtCA 3) inhibition activity was investigated with the synthesised compounds which showed promising inhibition. The KIs were in the range of 54.6?nM–1.8?µM against hCA I, in the range of 32.1?nM–5.5?µM against hCA II and of 127?nM–2.12?µM against mtCA 3.  相似文献   

19.
[Ni(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 1 ) and [Co(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 2 ) are synthesized and characterized by elemental analysis, FT‐IR spectra, magnetic susceptibility, and thermal analysis. In addition, the crystal structure of Ni(II) complex is presented. Both complexes show distorted octahedral geometry. In 1 and 2, metal ions are coordinated by two oxygen atoms of salicylic residue and two nitrogen atoms of maleic amide residue from two ligands, and two oxygen atoms from two water molecules. In this paper, both compounds showed excellent inhibitory effects against human carbonic anhydrase (hCA) isoforms I, and II, α‐glycosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Compounds 1 and 2 had Ki values of 18.36 ± 4.38 and 26.61 ± 7.54 nM against hCA I and 13.81 ± 3.02 and 29.56 ± 6.52 nM against hCA II, respectively. On the other hand, their Ki values were found to be 487.45 ± 54.18 and 453.81 ± 118.61 nM against AChE and 199.21 ± 50.35 and 409.41 ± 6.86 nM against BChE, respectively.  相似文献   

20.
In this work, the synthesis, crystal structure, characterization, and enzyme inhibition effects of the novel a series of 2-aminopyridine liganded Pd(II) N-heterocyclic carbene (NHC) complexes were examined. These complexes of the Pd-based were synthesized from PEPPSI complexes and 2-aminopyridine. The novel complexes were characterized by using 13C NMR, 1H NMR, elemental analysis, and FTIR spectroscopy techniques. Also, crystal structures of the two compounds were recorded by using single-crystal X-ray diffraction assay. Also, these complexes were tested toward some metabolic enzymes like α-glycosidase, aldose reductase, butyrylcholinesterase, acetylcholinesterase enzymes, and carbonic anhydrase I, and II isoforms. The novel 2-aminopyridine liganded (NHC)PdI2(2-aminopyridine) complexes (1a-i) showed Ki values of in range of 5.78 ± 0.33–22.51 ± 8.59 nM against hCA I, 13.77 ± 2.21–30.81 ± 4.87 nM against hCA II, 0.44 ± 0.08–1.87 ± 0.11 nM against AChE and 3.25 ± 0.34–12.89 ± 4.77 nM against BChE. Additionally, we studied the inhibition effect of these derivatives on aldose reductase and α-glycosidase enzymes. For these compounds, compound 1d showed maximum inhibition effect against AR with a Ki value of 360.37 ± 55.82 nM. Finally, all compounds were tested for the inhibition of α-glycosidase enzyme, which recorded efficient inhibition profiles with Ki values in the range of 4.44 ± 0.65–12.67 ± 2.50 nM against α-glycosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号