首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The literature data on the role of IRS1/IRS2 proteins, endogenous substrates for insulin receptor tyrosine kinase, in transduction of signals generated by insulin superfamily peptides (insulin, insulin-like growth factor) were analyzed. The molecular mechanisms of the functional coupling of IRS proteins with peptide receptors possessing a tyrosine kinase activity and SH2 domain-containing proteins (phosphatidylinositol 3-kinase, Grb2 adaptor protein, protein phosphotyrosine phosphatase) were discussed. The structural and functional properties of IRS proteins (distribution of functional domains and sites for tyrosine phosphorylation; conservatism of amino acid sequences) were characterized. The data on the alternative pathways of transduction of signals which are generated by insulin and related peptides and do not involve IRS proteins were analyzed. These pathways are realized through Shc proteins or via direct interaction between receptors and SH2 proteins. Amino acid sequences of IRS proteins and insulin superfamily tyrosine kinase receptors were compared. The homologous regions in IRS proteins and receptors, which can be responsible for their coupling with phosphatidylinositol 3-kinase and protein phosphotyrosine phosphatases, were identified.  相似文献   

2.
Insulin resistance associated to obesity: the link TNF-alpha   总被引:2,自引:0,他引:2  
Adipose tissue secretes proteins which may influence insulin sensitivity. Among them, tumour necrosis factor (TNF)-alpha has been proposed as a link between obesity and insulin resistance because TNF-alpha is overexpressed in adipose tissue from obese animals and humans, and obese mice lacking either TNF-alpha or its receptor show protection against developing insulin resistance. The activation of proinflammatory pathways after exposure to TNF-alpha induces a state of insulin resistance in terms of glucose uptake in myocytes and adipocytes that impair insulin signalling at the level of the insulin receptor substrate (IRS) proteins. The mechanism found in brown adipocytes involves Ser phosphorylation of IRS-2 mediated by TNF-alpha activation of MAPKs. The Ser307 residue in IRS-1 has been identified as a site for the inhibitory effects of TNF-alpha in myotubes, with p38 mitogen-activated protein kinase (MAPK) and inhibitor kB kinase being involved in the phosphorylation of this residue. Moreover, up-regulation of protein-tyrosine phosphatase (PTP)1B expression was recently found in cells and animals treated with TNF-alpha. PTP1B acts as a physiological negative regulator of insulin signalling by dephosphorylating the phosphotyrosine residues of the insulin receptor and IRS-1, and PTP1B expression is increased in peripheral tissues from obese and diabetic humans and rodents. Accordingly, down-regulation of PTP1B activity by treatment with pharmacological agonists of nuclear receptors restores insulin sensitivity in the presence of TNF-alpha. Furthermore, mice and cells deficient in PTP1B are protected against insulin resistance induced by this cytokine. In conclusion, the absence or inhibition of PTP1B in insulin-target tissues could confer protection against insulin resistance induced by cytokines.  相似文献   

3.
Scaffold proteins have been established as important mediators of signal transduction specificity. The insulin receptor substrate (IRS) proteins represent a critical group of scaffold proteins that are required for signal transduction by the insulin receptor, including the activation of phosphatidylinositol 3 kinase. The c-Jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) represent a different group of scaffold molecules that are implicated in the regulation of the JNK. These two signaling pathways are functionally linked because JNK can phosphorylate IRS1 on the negative regulatory site Ser-307. Here we demonstrate the physical association of these signaling pathways using a proteomic approach that identified insulin-regulated complexes of JIPs together with IRS scaffold proteins. Studies using mice with JIP scaffold protein defects confirm that the JIP1 and JIP2 proteins are required for normal glucose homeostasis. Together, these observations demonstrate that JIP proteins can influence insulin-stimulated signal transduction mediated by IRS proteins.The c-Jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) are implicated in the regulation of the JNK signal transduction pathway (8, 28). The JIP1 and JIP2 proteins are structurally related with similar modular domains (SH3 and PTB) and binding sites for the mixed-lineage protein kinase (MLK) group of mitogen-activated protein kinase (MAPK) kinase kinases, the MAPK kinase MKK7, and JNK (19). These JIP proteins also interact with the microtubule motor protein kinesin, several guanine nucleotide exchange factors, the phosphatase MKP7, Src-related protein kinases, and AKT to form multifunctional protein complexes (19).One potential physiological role of JIP scaffold proteins is the response to metabolic stress, insulin resistance, and diabetes. Several lines of evidence support this hypothesis. First, JIP1 is required for metabolic stress-induced activation of JNK in white adipose tissue (12). Second, MLKs that interact with JIP proteins are implicated as essential components of a signaling pathway that mediates the effects of metabolic stress on JNK activation (13). Third, studies have demonstrated that the human Jip1 gene may contribute to the development of type 2 diabetes, because a Jip1 missense mutation was found to segregate with type 2 diabetes (26). Collectively, these data suggest that JIP proteins play a role in the cellular response to metabolic stress and the regulation of insulin resistance.It is established that the insulin receptor substrate (IRS) group of scaffold proteins plays a central role in insulin signaling (27). Treatment of cells with insulin causes tyrosine phosphorylation of the insulin receptor, the recruitment of IRS proteins to the insulin receptor, and the subsequent tyrosine phosphorylation of IRS proteins on multiple residues that act as docking sites for insulin-regulated signaling molecules, including phosphatidylinositol 3 kinase (27). Negative regulation of IRS proteins is implicated as a mechanism of insulin resistance and can be mediated by multiple pathways, including IRS protein phosphorylation and degradation. Thus, the mTOR/p70S6K (21, 22, 24) and the SOCS-1/3 (20) signaling pathways can regulate IRS protein degradation. Multisite phosphorylation on Ser/Thr residues can also regulate IRS protein function, including JNK phosphorylation of IRS1 on the inhibitory site Ser-307 that prevents recruitment of IRS1 to the activated insulin receptor (2).The IRS and JIP groups of scaffold proteins may function independently to regulate JNK-dependent and insulin-dependent signal transduction. However, functional connections between these scaffold proteins have been identified. Thus, studies using Jip1/ mice demonstrate that JIP1 is required for high-fat-diet-induced JNK activation in white adipose tissue, IRS1 phosphorylation on the inhibitory site Ser-307, and insulin resistance (12). These data suggest that JIP scaffold proteins function cooperatively with IRS proteins to regulate signal transduction by the insulin receptor. The purpose of this study was to examine cross talk between the JIP and IRS scaffold complexes. We demonstrate that the JIP and IRS scaffold complexes physically interact in an insulin-dependent manner and confirm that JIP proteins influence normal glucose homeostasis.  相似文献   

4.
Diabetes mellitus is a complex polygenic pathology, which is characterized by numerous metabolic disorders. Progressive hyperglycemia developing during this disease causes clinically significant tissue damage and is considered as a main risk factor of micro- and macrovascular complications leading to retinopathy, nephropathy, and neuropathy. Hyperglycemia-depended oxidative stress and impairments in nitric oxide bioavailability play an essential role in the pathogenesis of diabetes and its complications. Homeostasis of glucose maintained by metabolic effects of insulin includes an increase of glucose uptake by skeletal muscles and suppression of glucose production by the liver. M. Brownlee (2005) put forward a hypothesis assuming that oxidative stress is the main mechanism of diabetic tissue damages. According to this hypothesis, mitochondrial dysfunction and superoxide anion radical hyperproduction by mitochondria is the principal mechanism of activation of four pathways of hyperglycemia-induced impairments under diabetes. Two cell signaling cascades regulate the glucose homeostasis: insulin-mediated glucose uptake (IMGU) in skeletal muscles, liver, and heart and glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. In addition to nonspecific irreversible oxidative damage of DNA, protein and lipid molecules reactive oxygen and nitrogen species induce cell and tissue damage, activating a number of cell stress-sensitive signaling cascades. Stress-dependent serine phosphorylation of insulin receptor substrate (IRS) proteins decreases its capacity for tyrosine phosphorylation and may accelerate degradation of IRS. This process underlies the molecular mechanism of oxidative stress-induced insulin resistance.  相似文献   

5.
Resveratrol (Res) has attracted great interest regarding its effects related to metabolic syndrome, especially for lipid metabolic disorder or insulin resistance; however, the underlying mechanisms remain elusive. To explore the effects of Res on insulin sensitivity and the underlying mechanism, insulin-resistant KKA(y) mice were treated with 2?and 4?g/kg diets of Res for 12?weeks. After the treatment, blood glucose, serum insulin, glucose tolerance, and insulin tolerance, as well as other indices such as adiponectin mRNA in epididymal adipose tissues, silent information regulator 1 (Sirt1), AMP-activated protein kinase (AMPK), insulin receptor substrate 1 (IRS1), and phosphorylated protein kinase B (PKB/AKT) proteins in liver and soleus muscles, were investigated. The results indicate that Res intervention reduces blood glucose and serum insulin levels, improves insulin and glucose tolerance, increases serum adiponectin and adiponectin mRNA levels in epididymal adipose tissues, and more importantly, elevates Sirt1, p-AMPK, p-IRS1, and p-AKT levels in liver and soleus muscles. In conclusion, Res could improve insulin sensitivity and ameliorate insulin resistance in KKA(y) mice, which may be associated with the upregulation of Sirt1 protein in liver and soleus muscles and consequent AMPK activation, as well as insulin-signaling related proteins.  相似文献   

6.
The insulin receptor is a transmembrane tyrosine kinase that is essential for mediating multiple intracellular signalling cascades that lead ultimately to the biological actions of insulin Tyrosine phosphorylation o f the cytosolic proteins insulin receptor substrate 1 and 2 (IRS1 and IRS2) produces protein 'scaffolding' for the assembly of effector proteins containing Src homology 2 (SH2) domains, thereby generating multisubunit signalling complexes. Although IRS1 was originally isolated as a specific insulin receptor substrate, both IRS1 and IRS2 appear to play a broader role, functioning also as proximal substrates in growth hormone and cytokine receptor signalling. Current data establish IRS1 and IRS2 as critical effectors integrating various cell-type-specific signals into distinct, but overlapping, biological responses.  相似文献   

7.
The cellular pathways involved in the impairment of insulin signaling by cellular stress, triggered by the inflammatory cytokine tumor necrosis factor-alpha (TNF) or by translational inhibitors like cycloheximide and anisomycin were studied. Similar to TNF, cycloheximide and anisomycin stimulated serine phosphorylation of IRS-1 and IRS-2, reduced their ability to interact with the insulin receptor, inhibited the insulin-induced tyrosine phosphorylation of IRS proteins, and diminished their association with phosphatidylinositol 3-kinase (PI3K). These defects were partially reversed by wortmannin and LY294002, indicating that a PI3K-regulated step is critical for the impairment of insulin signaling by cellular stress. Induction of cellular stress resulted in complex formation between PI3K and ErbB2/ErbB3 and enhanced PI3K activity, implicating ErbB proteins as downstream effectors of stress-induced insulin resistance. Indeed, stimulation of ErbB2/ErbB3 by NDFbeta1, the ErbB3 ligand, inhibited IRS protein tyrosine phosphorylation and recruitment of downstream effectors. Specific inhibitors of the ErbB2 tyrosine kinase abrogated the activation of ErbB2/ErbB3 and in parallel prevented the reduction in IRS protein functions. Taken together, our results suggest a novel mechanism by which cellular stress induces cross-talk between two different signaling pathways. Stress-dependent transactivation of ErbB2/ErbB3 receptors triggers a PI3K cascade that induces serine phosphorylation of IRS proteins culminating in insulin resistance.  相似文献   

8.
In order to identify novel substrates involved in insulin receptor signaling, a yeast two-hybrid 3T3-L1 adipocyte cDNA library was screened with the cytoplasmic domain of the human insulin receptor as bait. Here we describe the isolation and characterization of an interacting protein, APS, which contains pleckstrin homology and Src homology 2 domains and several potential tyrosine phosphorylation sites. APS mRNA and protein are expressed primarily in skeletal muscle, heart, and adipose tissue, and in differentiated 3T3-L1 adipocytes. We show that APS associates with phosphotyrosines situated within the activation loop of the insulin receptor via the APS Src homology 2 domain. Insulin stimulation of 3T3-L1 adipocytes resulted in rapid tyrosine phosphorylation of endogenous APS on tyrosine 618, whereas platelet-derived growth factor treatment resulted in no APS phosphorylation. In summary, we have identified a new insulin receptor substrate that is primarily expressed in insulin-responsive tissues and in 3T3-L1 adipocytes whose phosphorylation shows insulin receptor specificity. These findings suggest a potential role for APS in insulin-regulated metabolic signaling pathways.  相似文献   

9.
Insulin resistance is a cardinal feature of type 2 diabetes and also a consequence of trauma such as surgery. Directly after surgery and cell isolation, adipocytes were insulin resistant, but this was reversed after overnight incubation in 10% CO(2) at 37 degrees C. Tyrosine phosphorylation of the insulin receptor and insulin receptor substrate (IRS)1 was insulin sensitive, but protein kinase B (PKB) and downstream metabolic effects exhibited insulin resistance that was reversed by overnight incubation. MAP-kinases ERK1/2 and p38 were strongly phosphorylated after surgery, but was dephosphorylated during reversal of insulin resistance. Phosphorylation of MAP-kinase was not caused by collagenase treatment during cell isolation and was present also in tissue pieces that were not subjected to cell isolation procedures. The insulin resistance directly after surgery and cell isolation was different from insulin resistance of type 2 diabetes; adipocytes from patients with type 2 diabetes remained insulin resistant after overnight incubation. IRS1, PKB, and downstream metabolic effects, but not insulin-stimulated tyrosine phosphorylation of insulin receptor, exhibited insulin resistance. These findings suggest a new approach in the study of surgery-induced insulin resistance and indicate that human adipocytes should recover after surgical procedures for analysis of insulin signalling. Moreover, we pinpoint the signalling dysregulation in type 2 diabetes to be the insulin-stimulated phosphorylation of IRS1 in human adipocytes.  相似文献   

10.
The insulin receptor (IR) belongs to the receptor tyrosine kinase super family and plays an important role in glucose homeostasis. The receptor interacts with several large docking proteins that mediate signaling from the receptor, including the insulin receptor substrate (IRS) family and Src homology-2-containing proteins (Src). Here, we applied the bioluminescence resonance energy transfer 2 (BRET2) technique to study the IR signaling pathways. The interaction between the IR and the substrates IRS1, IRS4 and Shc was examined in response to ligands with different signaling properties. The association between IR and the interacting partners could successfully be monitored when co-expressing green fluorescent protein 2 (GFP2) tagged substrates with Renilla reniformis luciferase 8 (Rluc8) tagged IR. Through additional optimization steps, we developed a stable and flexible BRET2 assay for monitoring the interactions between the IR and its substrates. Furthermore, the insulin analogue X10 was characterized in the BRET2 assay and was found to be 10 times more potent with respect to IRS1, IRS4 and Shc recruitment compared to human insulin. This study demonstrates that the BRET2 technique can be applied to study IR signaling pathways, and that this assay can be used as a platform for screening and characterization of IR ligands.  相似文献   

11.
Insulin receptor signal transduction depends on the precise intracellular localization of signalling molecules. This study examines the compartmentalization and the insulin-induced translocation and tyrosine phosphorylation of insulin receptor substrates (IRS-1 and IRS-3) in epididymal white adipose tissue from adult and insulin-resistant old rats. We found that insulin induces the translocation of IRS-1 from plasma membrane (PM) and light microsomes (LM) to cytosol, whereas IRS-3 translocates from PM to LM and cytosol upon insulin stimulation. Old rat adipocytes are characterized by higher relative levels of IRS proteins, under basal conditions, in those fractions where they are intended to translocate in response to insulin and exhibit a higher phosphotyrosine content of IRS-1 and -3 in basal conditions and a lower maximal phosphorylation in response to insulin. Furthermore, old rat adipocytes are also characterized by a reduced ability of insulin to stimulate both, Akt/PKB activity and translocation of GLUT4 to the PM. We conclude that the lower stimulation of downstream insulin signalling involved in glucose metabolism in old rat adipocytes may be explained, at least in part, by the altered subcellular distribution of IRS-1 and -3 proteins. In addition, our data suggest that the mechanism of turning on/off insulin receptor-mediated signal is impaired with aging.  相似文献   

12.
Insulin signaling and the regulation of glucose transport   总被引:11,自引:0,他引:11  
Gaps remain in our understanding of the precise molecular mechanisms by which insulin regulates glucose uptake in fat and muscle cells. Recent evidence suggests that insulin action involves multiple pathways, each compartmentalized in discrete domains. Upon activation, the receptor catalyzes the tyrosine phosphorylation of a number of substrates. One family of these, the insulin receptor substrate (IRS) proteins, initiates activation of the phosphatidylinositol 3-kinase pathway, resulting in stimulation of protein kinases such as Akt and atypical protein kinase C. The receptor also phosphorylates the adapter protein APS, resulting in the activation of the G protein TC10, which resides in lipid rafts. TC10 can influence a number of cellular processes, including changes in the actin cytoskeleton, recruitment of effectors such as the adapter protein CIP4, and assembly of the exocyst complex. These pathways converge to control the recycling of the facilitative glucose transporter Glut4.  相似文献   

13.
The insulin receptor initiates insulin action by phosphorylating multiple intracellular substrates. Previously, we have demonstrated that insulin receptor substrates (IRS)-1 and -2 can mediate insulin's action to promote translocation of GLUT4 glucose transporters to the cell surface in rat adipose cells. Although IRS-1, -2, and -4 are similar in overall structure, IRS-3 is approximately 50% shorter and differs with respect to sites of tyrosine phosphorylation. Nevertheless, as demonstrated in this study, both IRS-3 and IRS-4 can also stimulate translocation of GLUT4. Rat adipose cells were cotransfected with expression vectors for hemagglutinin (HA) epitope-tagged GLUT4 (GLUT4-HA) and human IRS-1, murine IRS-3, or human IRS-4. Overexpression of IRS-1 led to a 2-fold increase in cell surface GLUT4-HA in cells incubated in the absence of insulin; overexpression of either IRS-3 or IRS-4 elicited a larger increase in cell surface GLUT4-HA. Indeed, the effect of IRS-3 in the absence of insulin was approximately 40% greater than the effect of a maximally stimulating concentration of insulin in cells not overexpressing IRS proteins. Because phosphatidylinositol (PI) 3-kinase is essential for insulin-stimulated translocation of GLUT4, we also studied a mutant IRS-3 molecule (IRS-3-F4) in which Phe was substituted for Tyr in all four YXXM motifs (the phosphorylation sites predicted to bind to and activate PI 3-kinase). Interestingly, overexpression of IRS-3-F4 did not promote translocation of GLUT4-HA, but actually inhibited the ability of insulin to stimulate translocation of GLUT4-HA to the cell surface. Our data suggest that IRS-3 and IRS-4 are capable of mediating PI 3-kinase-dependent metabolic actions of insulin in adipose cells, and that IRS proteins play a physiological role in mediating translocation of GLUT4.  相似文献   

14.
Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the beta-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission.  相似文献   

15.
Evodiamine, an alkaloid extracted from the dried unripe fruit of the tree Evodia rutaecarpa Bentham (Rutaceae), reduces obesity and insulin resistance in obese/diabetic mice; however, the mechanism underlying the effect of evodiamine on insulin resistance is unknown. This study investigated the effect of evodiamine on signal transduction relating to insulin resistance using obese/diabetic KK-Ay mice and an in vitro adipocyte culture. There is a significant decrease in the mammalian target of rapamycin (mTOR) and ribosomal S6 protein kinase (S6K) signaling in white adipose tissue (WAT) in KK-Ay mice treated with evodiamine, in which glucose tolerance is improved. In addition, reduction of insulin receptor substrate 1 (IRS1) serine phosphorylation, an indicator of insulin resistance, was detected in their WAT, suggesting suppression of the negative feedback loop from S6K to IRS1. As well as the stimulation of IRS1 and Akt serine phosphorylation, insulin-stimulated phosphorylation of mTOR and S6K is time-dependent in 3T3-L1 adipocytes, whereas evodiamine does not affect their phosphorylation except for an inhibitory effect on mTOR phosphorylation. Moreover, evodiamine inhibits the insulin-stimulated phosphorylation of mTOR and S6K, leading to down-regulation of IRS1 serine phosphorylation in the adipocytes. Evodiamine also stimulates phosphorylation of AMP-activated protein kinase (AMPK), an important regulator of energy metabolism, which may cause down-regulation of mTOR signaling in adipocytes. A similar effect on AMPK, mTOR and IRS1 phosphorylation was found in adipocytes treated with rosiglitazone. These results suggest evodiamine improves glucose tolerance and prevents the progress of insulin resistance associated with obese/diabetic states, at least in part, through inhibition of mTOR-S6K signaling and IRS1 serine phosphorylation in adipocytes.  相似文献   

16.
Signaling from the activated insulin receptor is initiated by its tyrosine phosphorylation of the insulin receptor substrates (IRSs). The IRSs then act as docking/effector proteins for various signaling proteins containing src homology 2 domains. Four members of the IRS family, designated IRS-1 through IRS-4, have been identified. Although these IRSs show considerable structural homology, the extent to which they overlap in functions has not been explored in detail. The 32D hematopoietic cell line, which contains no detectable amounts of any IRS, provides a system in which to determine whether an IRS supports cell proliferation. Previous studies have shown that introduction of IRS-1 or -2 into 32D cells overexpressing the insulin and IL-4 receptors (32D-R cells) enables the cells to undergo mitogenesis in response to insulin and IL-4. In the present study, we have examined IRS-4, a member of the IRS family that we recently discovered, in this system. Expression of IRS-4 in 32D-R cells permitted the cells to undergo mitogenesis and continuous proliferation in response to insulin and IL-4. Immunoblotting of phosphotyrosine proteins showed that insulin and IL-4 elicited the tyrosine phosphorylation of IRS-4 in these cells. Thus, IRS-4, like IRS-1 and -2, can function in the signal transduction pathways linking insulin and IL-4 receptors to cell proliferation.  相似文献   

17.
Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14(-/-) mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.  相似文献   

18.
Insulin rapidly stimulates the tyrosine kinase activity of its receptor, resulting in the phosphorylation of insulin receptor substrates (IRS), which in turn associates and activates PI 3-kinase, leading to an increase in glucose uptake. Phosphorylation of IRS proteins and activation of downstream kinases by insulin are transient and the mechanisms for the subsequent downregulation of their activity are largely unknown. We report here that the insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase association to IRS-1 were strongly sustained by the proteasome inhibitors, MG132 and lactacystin. In contrast, no effect was detected on the insulin receptor and IRS-2 tyrosine phosphorylation. Interestingly, lactacystin also preserved PKB activation and insulin-induced glucose uptake. In contrast, calpeptin, a calpain inhibitor, was ineffective. Tyrosine phosphatase assays were also performed, showing that lactacystin was not functioning directly as a tyrosine phosphatase inhibitor "in vitro." In conclusion, proteasome inhibitors can regulate the tyrosine phosphorylation of IRS-1 and the downstream insulin signaling pathway, leading to glucose transport.  相似文献   

19.
The insulin receptor is a ligand-activated tyrosine kinase that phosphorylates its major substrate protein, insulin receptor substrate 1 (IRS1), at multiple sites. Tyrosine-phosphorylated IRS1 then serves as a docking/effector protein for at least four Src homology 2 (SH2)-domain proteins involved in signal transduction. This initial step in signalling distinguishes the insulin receptor from other receptor tyrosine kinases, which directly bind several SH2-domain proteins, and establishes IRS1 as a founding member of a group of proteins whose function is to link activated tyrosine kinases to SH2-domain proteins.  相似文献   

20.
Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues is an important posttranslational modification that is linked to insulin resistance. Several phosphoserine sites on IRS1 have been identified; the majority are located proximal to the phosphotryosine-binding domain or near key receptor tyrosine kinase substrate- and/or Src-homology 2 domain-binding sites. Here we report on the characterization of a serine phosphorylation site in the N-terminal pleckstrin homology (PH) domain of IRS1. Bioinformatic tools identify serine 24 (Ser24) as a putative substrate site for the protein kinase C (PKC) family of serine kinases. We demonstrate that this site is indeed a bona fide substrate for conventional PKC. In vivo, IRS-1 is also phosphorylated on Ser24 after phorbol 12-myristate 13-acetate treatment of cells, and isoform-selective inhibitor studies suggest the involvement of PKCalpha. By comparing the pharmacological characteristics of phorbol 12-myristate 13-acetate-stimulated Ser24 phosphorylation with phosphorylation at two other sites previously linked to PKC activity (Ser307 and Ser612), we show that PKCalpha is likely to be directly involved in Ser24 phosphorylation, but indirectly involved in Ser307 and Ser612 phosphorylation. Using Ser24Asp IRS-1 mutants to mimic the phosphorylated residue, we demonstrate that the phosphorylation status of Ser24 does play an important role in regulating phosphoinositide binding to, and the intracellular localization of, the IRS1-PH domain, which can ultimately impinge on insulin-stimulated glucose uptake. Hence we provide evidence that IRS1-PH domain function is important for normal insulin signaling and is regulated by serine phosphorylation in a manner that could contribute to insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号