首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A kinetic scheme is presented for Lactobacillus casei dihydrofolate reductase that predicts steady-state kinetic parameters. This scheme was derived from measuring association and dissociation rate constants and pre-steady-state transients by using stopped-flow fluorescence and absorbance spectroscopy. Two major features of this kinetic scheme are the following: (i) product dissociation is the rate-limiting step for steady-state turnover at low pH and follows a specific, preferred pathway in which tetrahydrofolate (H4F) dissociation occurs after NADPH replaces NADP+ in the ternary complex; (ii) the rate constant for hydride transfer from NADPH to dihydrofolate (H2F) is rapid (khyd = 430 s-1), favorable (Keq = 290), and pH dependent (pKa = 6.0), reflecting ionization of a single group. Not only is this scheme identical in form with the Escherichia coli kinetic scheme [Fierke et al. (1987) Biochemistry 26, 4085] but moreover none of the rate constants vary by more than 40-fold despite there being less than 30% amino acid homology between the two enzymes. This similarity is consistent with their overall structural congruence. The role of Trp-21 of L. casei dihydrofolate reductase in binding and catalysis was probed by amino acid substitution. Trp-21, a strictly conserved residue near both the folate and coenzyme binding sites, was replaced by leucine. Two major effects of this substitution are on (i) the rate constant for hydride transfer which decreases 100-fold, becoming the rate-limiting step in steady-state turnover, and (ii) the affinities for NADPH and NADP+ which decrease by approximately 3.5 and approximately 0.5 kcal mol-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Procollagen C-proteinase enhancers (PCPE-1 and -2) are extracellular glycoproteins that can stimulate the C-terminal processing of fibrillar procollagens by tolloid proteinases such as bone morphogenetic protein-1. They consist of two CUB domains (CUB1 and -2) that alone account for PCPE-enhancing activity and one C-terminal NTR domain. CUB domains are found in several extracellular and plasma membrane-associated proteins, many of which are proteases. We have modeled the structure of the CUB1 domain of PCPE-1 based on known three-dimensional structures of CUB-containing proteins. Sequence alignment shows conserved amino acids, notably two acidic residues (Asp-68 and Asp-109) involved in a putative surface-located calcium binding site, as well as a conserved tyrosine residue (Tyr-67). In addition, three residues (Glu-26, Thr-89, and Phe-90) are found only in PCPE CUB1 domains, in putative surface-exposed loops. Among the conserved residues, it was found that mutations of Asp-68 and Asp-109 to alanine almost completely abolished PCPE-1 stimulating activity, whereas mutation of Tyr-67 led to a smaller reduction of activity. Among residues specific to PCPEs, mutation of Glu-26 and Thr-89 had little effect, whereas mutation of Phe-90 dramatically decreased the activity. Changes in activity were paralleled by changes in binding of different PCPE-1 mutants to a mini-procollagen III substrate, as shown by surface plasmon resonance. We conclude that PCPE-stimulating activity requires a calcium binding motif in the CUB1 domain that is highly conserved among CUB-containing proteins but also that PCPEs contain specific sites that could become targets for the development of novel anti-fibrotic therapies.  相似文献   

3.
The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structures of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.  相似文献   

4.
J Thillet  J A Adams  S J Benkovic 《Biochemistry》1990,29(21):5195-5202
A kinetic mechanism is presented for mouse dihydrofolate reductase that predicts all the steady-state parameters and full time-course kinetics. This mechanism was derived from association and dissociation rate constants and pre-steady-state transients by using stopped-flow fluorescence and absorbance measurements. The major features of this kinetic mechanism are as follows: (1) the two native enzyme conformers, E1 and E2, bind ligands with varying affinities although only one conformer, E1, can support catalysis in the forward direction, (2) tetrahydrofolate dissociation is the rate-limiting step under steady-state turnover at low pH, and (3) the pH-independent rate of hydride transfer from NADPH to dihydrofolate is fast (khyd = 9000 s-1) and favorable (Keq = 100). The overall mechanism is similar in form to the Escherichia coli kinetic scheme (Fierke et al., 1987), although several differences are observed: (1) substrates and products predominantly bind the same form of the E. coli enzyme, and (2) the hydride transfer rate from NADPH to either folate or dihydrofolate is considerably faster for the mouse enzyme. The role of Glu-30 (Asp-27 in E. coli) in mouse DHFR has also been examined by using site-directed mutagenesis as a potential source of these differences. While aspartic acid is strictly conserved in all bacterial DHFRs, glutamic acid is conserved in all known eucaryotes. The two major effects of substituting Asp for Glu-30 in the mouse enzyme are (1) a decreased rate of folate reduction and (2) an increased rate of hydride transfer from NADPH to dihydrofolate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The activation of Group 1 metabotropic glutamate receptors, mGluR5 and mGluR1alpha, triggers intracellular calcium release; however, mGluR5 activation is unique in that it elicits Ca2+ oscillations. A short region of the mGluR5 C terminus is the critical determinant and differs from the analogous region of mGluR1alpha by a single amino acid residue, Thr-840, which is an aspartic acid (Asp-854) in mGluR1alpha. Previous studies show that mGluR5-elicited Ca2+ oscillations require protein kinase C (PKC)-dependent phosphorylation and identify Thr-840 as the phosphorylation site. However, direct phosphorylation of mGluR5 has not been studied in detail. We have used biochemical analyses to directly investigate the phosphorylation of the mGluR5 C terminus. We showed that Ser-839 on mGluR5 is directly phosphorylated by PKC, whereas Thr-840 plays a permissive role. Although Ser-839 is conserved in mGluR1alpha (Ser-853), it is not phosphorylated, as the adjacent residue (Asp-854) is not permissive; however, mutagenesis of Asp-854 to a permissive alanine residue allows phosphorylation of Ser-853 on mGluR1alpha. We investigated the physiological consequences of mGluR5 Ser-839 phosphorylation using Ca2+ imaging. Mutations that eliminate Ser-839 phosphorylation prevent the characteristic mGluR5-dependent Ca2+ oscillations. However, mutation of Thr-840 to alanine, which prevents potential Thr-840 phosphorylation but is still permissive for Ser-839 phosphorylation, has no effect on Ca2+ oscillations. Thus, we showed that it is phosphorylation of Ser-839, not Thr-840, that is absolutely required for the unique Ca2+ oscillations produced by mGluR5 activation. The Thr-840 residue is important only in that it is permissive for the PKC-dependent phosphorylation of Ser-839.  相似文献   

6.
The active sites of all bacterial and vertebrate dihydrofolate reductases that have been examined have a tryptophan residue near the binding sites for NADPH and dihydrofolate. In cases where the three-dimensional structure has been determined by X-ray crystallography, this conserved tryptophan residue makes hydrophobic and van der Waals interactions with the nicotinamide moiety of bound NADPH, and its indole nitrogen interacts with the C4 oxygen of bound folate through a bridge provided by a bound water molecule. We have addressed the question of why even the very conservative replacement of this tryptophan by phenylalanine does not seem to occur naturally. Human dihydrofolate reductase with this replacement of tryptophan by phenylalanine has increased rate constants for dissociation of substrates and products and a considerably decreased rate of hydride transfer. These cause some changes in steady-state kinetic behavior, including substantial increases in Michaelis constants for NADPH and dihydrofolate, but there is also a 3-fold increase in kcat. The branched mechanistic pathway for this enzyme has been completely defined and is sufficiently different from that of wild-type enzyme to cause changes in some transient-state kinetics. The most critical changes resulting from the amino acid substitution appear to be a 50% decrease in stability and a decrease in efficiency from 69% to 21% under intracellular conditions.  相似文献   

7.
There is a region exhibiting a similarity of amino acid sequence near the carboxyl-terminal segment of each FAD-containing oxidoreductase. In this region, four amino acid residues-Thr, Ala, Gly, and Asp-are highly conserved. To determine the involvement of the four amino acid residues (Thr-469, Ala-476, Gly-478, and Asp-479) in the activity of NADH dehydrogenase of an alkaliphilic Bacillus, mutations of these amino acid residues were conducted. In spite of high conservation, mutations of Thr-469 and Ala-476 to Ala and Ser, respectively, did not lead to a critical loss of enzyme activity. However, mutations of Gly-478 and Asp-479 to Ala caused a complete loss of the activity, which appears to result from the loss of binding capacity of FAD.  相似文献   

8.
There is a region exhibiting a similarity of amino acid sequence near the carboxyl-terminal segment of each FAD-containing oxidoreductase. In this region, four amino acid residues—Thr, Ala, Gly, and Asp—are highly conserved. To determine the involvement of the four amino acid residues (Thr-469, Ala-476, Gly-478, and Asp-479) in the activity of NADH dehydrogenase of an alkaliphilic Bacillus, mutations of these amino acid residues were conducted. In spite of high conservation, mutations of Thr-469 and Ala-476 to Ala and Ser, respectively, did not lead to a critical loss of enzyme activity. However, mutations of Gly-478 and Asp-479 to Ala caused a complete loss of the activity, which appears to result from the loss of binding capacity of FAD. Received: 3 July 2002 / Accepted: 29 July 2002  相似文献   

9.
SH3 domains mediate intracellular protein-protein interactions through the recognition of proline-rich sequence motifs on cellular proteins. Structural analysis of the Src SH3 domain (Src SH3) complexed with proline-rich peptide ligands revealed three binding sites involved in this interaction: two hydrophobic interactions (between aliphatic proline dipeptides in the SH3 ligand and highly conserved aromatic residues on the surface of the SH3 domain), and one salt bridge (between Asp-99 of Src and an Arg three residues upstream of the conserved Pro-X-X-Pro motif in the ligand). We examined the importance of the arginine binding site of SH3 domains by comparing the binding properties of wild-type Src SH3 and Abl SH3 with those of a Src SH3 mutant containing a mutated arginine binding site (D99N) and Abl SH3 mutant constructs engineered to contain an arginine binding site (T98D and T98D/F91Y). We found that the D99N mutation diminished binding to most Src SH3-binding proteins in whole cell extracts; however, there was only a moderate reduction in binding to a small subset of Src SH3-binding proteins (including the Src substrate p68). p68 was shown to contain two Arg-containing Asp-99-dependent binding sites and one Asp-99-independent binding site which lacks an Arg. Moreover, substitution of Asp for Thr-98 in Abl SH3 changed the binding specificity of this domain and conferred the ability to recognize Arg-containing ligands. These results indicate that Asp-99 is important for Src SH3 binding specificity and that Asp-99-dependent binding interactions play a dominant role in Src SH3 recognition of cellular binding proteins, and they suggest the existence of two Src SH3 binding mechanisms, one requiring Asp-99 and the other independent of this residue.  相似文献   

10.
Site-specific mutagenesis was used to study the function of a conserved, extracellular aspartic acid residue from the sheep Na,K-ATPase alpha subunit. This amino acid, Asp-121, is the penultimate residue of the first extracellular domain of the alpha subunit. The border residues of this particular extracellular loop of the alpha subunit have been shown to be determinants of ouabain sensitivity (Price, E. M., and Lingrel, J. B. (1988) Biochemistry 27, 8400-8408). In order to determine if Asp-121 is involved in ouabain binding, five different amino acid substitutions at this position were generated. Four of the five mutant alpha subunits, containing either Asn, Ala, Glu, or Ser in place of Asp-121, conferred ouabain resistance to HeLa cells when expressed in those cells. Cloned sublines of cells selected in ouabain were characterized in terms of ouabain-inhibitable cell growth and Na,K-ATPase activity. The cells expressing the mutant Na,K-ATPase alpha subunit containing either Asn, Ala, Glu, or Ser in place of Asp-121 contained a component of Na,K-ATPase activity that was nearly 100-times more resistant to ouabain than the endogenous HeLa (human) or sheep enzyme. Apparently, conservative (Glu for Asp), isosteric (Asn for Asp), and nonconservative (Ala or Ser for Asp) substitutions all significantly decreased ouabain sensitivity. These data suggest that Asp-121 of the sheep Na,K-ATPase alpha subunit participates in the binding interaction between the enzyme and ouabain.  相似文献   

11.
The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp-62 was substituted with alanine, asparagine, or glutamate residue. The Asp-62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp-62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site.  相似文献   

12.
Acetylcholine receptor from Narke japonica electroplax exhibits a fluorescence change upon binding of snake neurotoxins. This fluorescence change primarily arises from the conformational change of the acetylcholine receptor and reflects the binding process of the toxin with the receptor. The time dependence of the fluorescence change has been monitored for 28 short neurotoxins and 8 long neurotoxins by using a stopped-flow technique. The steady-state fluorescence change is of the same order of magnitude for the short neurotoxins but varies among the long neurotoxins. Nha 10, a short neurotoxin with weak neurotoxicity, causes no fluorescence change in the receptor but can still bind to the receptor with sufficiently high affinity. The substitution of the conserved residue Asp-31 to Gly-31 in Nha is probably responsible for the reduced neurotoxicity. The rate constants for the binding of the neurotoxins to the receptor have been obtained by analyzing the transient fluorescence change. The rate constants show surprisingly a wide range of distribution: (1.0-20.5) X 10(6) M-1 s-1 for short neurotoxins and (0.26-1.9) X 10(6) M-1 s-1 for long neurotoxins. Examination of the relationship between the rate constants of fluorescence change of the short neurotoxins and their amino acid sequences, thermal stability, hydrogen-deuterium exchange behavior, overall net charge, etc. reveals the following. Positive charges on the side chains of residues 27 and 30 and overall net charge of the neurotoxin govern the magnitude of the binding rate of the neurotoxin with the receptor.  相似文献   

13.
S M Dunn  T M Lanigan  E E Howell 《Biochemistry》1990,29(37):8569-8576
In the absence of ligands, dihydrofolate reductase from Escherichia coli exists in at least two interconvertible conformations, only one of which binds NADPH with high affinity. This equilibrium is pH dependent, involving an ionizable group of the enzyme (pK approximately 5.5), and the proportion of the NADPH-binding conformer increases from 42% at pH 5 to 65% at pH 8. The role of specific amino acids in enzyme conformation has been investigated by studying the kinetics of NADPH binding to three dihydrofolate reductase mutants: (i) a mutant in which Asp-27, a residue that is directly involved in the binding of folates and antifolates but not NADPH, has been replaced by a serine, (ii) a mutant in which Phe-137 on the exterior of the molecule and distant from the binding sites has been replaced by a serine, and (iii) a mutant in which both Asp-27 and Phe-137 have been replaced by serines. Mutation of the Asp-27 residue reduces the affinity for NADPH by approximately 7-fold. Kinetic measurements have suggested that this is due mainly to an increase in the rate of dissociation of the initial complex and a slight shift in the enzyme equilibrium to favor the nonbinding conformation. The pH dependence of the conformer equilibrium is also shifted by approximately one pH unit to higher pH (pK approximately 6.5). In addition, the pH profile suggests the involvement of a second ionizable group having a pK of about 8 since, above pH 7, the proportion of the NADPH-binding form decreases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The human rap2 gene encodes a 183 amino acid protein that shares 46% identity with the K-ras p21. Its cDNA was engineered and inserted into the bacterial expression vector ptac; this allowed the production of high levels of soluble recombinant protein in Escherichia coli that was purified to near homogeneity. The rap2 protein binds GTP and exhibits a low intrinsic GTPase activity (rate constant of 0.5 x 10(-2) min-1). It exchanges its bound GDP with a half-life of 18 min at 37 degrees C in the presence of 10 mM Mg2+. Under the same conditions, the dissociation of bound GTP was at least 25-fold slower showing that the rap2 protein has a much higher affinity for GTP than GDP. The contribution of individual domains of the protein to its biochemical activities was investigated by site-directed mutagenesis. Substitution of Val for Gly at position 12 results in a 2-fold decrease in the GDP dissociation rate constant and GTPase activity. Replacement of the Ser at position 17 by Asn severely impairs the GTP binding ability of the protein and points to an important role of this residue in the coordination of Mg2+. Mutation of Thr-35 to Ala results in a decreased affinity for GTP and a reduction (3-fold) of the GTPase activity. Finally, substitution of Thr-145 by Ile leads to an imperfect binding of guanyl nucleotides as exemplified by an increase in their dissociation rate constants and reduction of the GTPase activity of the protein. These properties of the normal and mutant rap2 proteins are compared with those of ras p21 carrying similar substitutions and are discussed in relation to the structural models proposed for ras p21.  相似文献   

15.
The binding of the CD4 receptor by the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein is important for virus entry and cytopathic effect. To investigate the CD4-binding region of the gp120 glycoprotein, we altered gp120 amino acids, excluding cysteines, that are conserved among the primate immunodeficiency viruses utilizing the CD4 receptor. Changes in two hydrophobic regions (Thr-257 in conserved region 2 and Trp-427 in conserved region 4) and two hydrophilic regions (Asp-368 and Glu-370 in conserved region 3 and Asp-457 in conserved region 4) resulted in significant reductions in CD4 binding. For most of the mutations affecting these residues, the observed effects on CD4 binding did not apparently result from global conformational disruption of the gp120 molecule, as assessed by measurements of precursor processing, subunit association, and monoclonal antibody recognition. The two hydrophilic regions exhibit a strong propensity for beta-turn formation, are predicted to act as efficient B-cell epitopes, and are located adjacent to hypervariable, glycosylated regions. This study defines a small number of gp120 residues important for CD4 binding, some of which might constitute attractive targets for immunologic intervention.  相似文献   

16.
The role of Thr-46 and Thr-89 in the bacteriorhodopsin photocycle has been investigated by Fourier transform infrared difference spectroscopy and time-resolved visible absorption spectroscopy of site-directed mutants. Substitutions of Thr-46 and Thr-89 reveal alterations in the chromophore and protein structure during the photocycle, relative to wild-type bacteriorhodopsin. The mutants T89D and to a lesser extent T89A display red shifts in the visible lambda max of the light-adapted states compared with wild type. During the photocycle, T89A exhibits an increased decay rate of the K intermediate, while a K intermediate is not detected in the photocycle of T89D at room temperature. In the carboxyl stretch region of the Fourier transform infrared difference spectra of T89D, a new band appears as early as K formation which is attributed to the deprotonation of Asp-89. Along with this band, an intensity increase occurs in the band assigned to the protonation of Asp-212. In the mutant T46V, a perturbation in the environment of Asp-96 is detected in the L and M intermediates which corresponds to a drop in its pK alpha. These data indicate that Thr-89 is located close to the chromophore, exerts steric constraints on it during all-trans to 13-cis isomerization, and is likely to participate in a hydrogen-bonding network that extends to Asp-212. In addition, a transient interaction between Thr-46 and Asp-96 occurs early in the photocycle. In order to explain these results, a previously proposed model of proton transport is extended to include the existence of a transient network of hydrogen-bonded residues. This model can account for the protonation changes of key amino acid residues during the photocycle of bacteriorhodopsin.  相似文献   

17.
The complete amino acid sequence of beta-type parvalbumin (PA) from bullfrog Rana catesbeiana (pI 4.78) was determined by tandem mass spectrometry in combination with amino acid analysis and peptide sequencing following Arg-C and V(8) protease digestion. The primary structure of the protein was compared with that of beta-type PA from R. esculenta (pI 4.50), with which it is highly homologous. Compared with R. esculenta beta-type PA4.50, R. catesbeiana beta-type parvalbumin (PA 4.78) differed in 15 out of 108 amino acid residues (14% displacement), PA4.78 had Cys at residue 64 and was acetylated at the amino terminus, but 25 residues of the carboxyl terminus were completely conserved. Several amino acid displacements were found between residues 51 and 80 (30% displacement), although the functionally important sequence of PA was completely conserved. The amino acids residues of putative calcium-binding sites were Asp-51, Asp-53, Ser-55, Phe-57, Glu-59, Glu-62, Asp-90, Asp-92, Asp-94, Lys-96, and Glu-101, which were conserved in all a and b-types of R. catesbeiana as well as other parvalbumins. In addition, Arg-75 and Glu-81, which are thought to form a salt bridge located in the interior of the molecule [Coffee, C.J. et al. (1976) Biochim. Biophys. Acta 453, 67-80], were also conserved in PA4.78.  相似文献   

18.
C-type lectin-like domains are found in many proteins, where they mediate binding to a wide diversity of compounds, including carbohydrates, lipids, and proteins. The binding of a C-type lectin-like domain to a ligand is often influenced by calcium. Recently, we have identified a site in the C-type lectin-like domain of tetranectin, involving Lys-148, Glu-150, and Asp-165, which mediates calcium-sensitive binding to plasminogen kringle 4. Here, we investigate the effect of conservative substitutions of these and a neighboring amino acid residue. Substitution of Thr-149 in tetranectin with a tyrosine residue considerably increases the affinity for plasminogen kringle 4, and, in addition, confers affinity for plasminogen kringle 2. As shown by isothermal titration calorimetry analysis, this new interaction is stronger than the binding of wild-type tetranectin to plasminogen kringle 4. This study provides further insight into molecular determinants of importance for binding selectivity and affinity of C-type lectin kringle interactions.  相似文献   

19.
The CbbRRS system is an atypical three-protein two-component system that modulates the expression of the cbb(I) CO(2) fixation operon of Rhodopseudomonas palustris, possibly in response to a redox signal. It consists of a membrane-bound hybrid sensor kinase, CbbSR, with a transmitter and receiver domain, and two response regulator proteins, CbbRR1 and CbbRR2. No detectable helix-turn-helix DNA binding domain is associated with either response regulator, but an HPt domain and a second receiver domain are predicted at the C-terminal region of CbbRR1 and CbbRR2, respectively. The abundance of conserved residues predicted to participate in a His-Asp phosphorelay raised the question of their de facto involvement. In this study, the role of the multiple receiver domains was elucidated in vitro by generating site-directed mutants of the putative conserved residues. Distinct phosphorylation patterns were obtained with two truncated versions of the hybrid sensor kinase, CbbSR(T189) and CbbSR(R96) (CbbSR beginning at residues T189 and R96, respectively). These constructs also exhibited substantially different affinities for ATP and phosphorylation stability, which was found to be dependent on a conserved Asp residue (Asp-696) within the kinase receiver domain. Asp-696 also played an important role in defining the specificity of phosphorylation for response regulators CbbRR1 or CbbRR2, and this residue appeared to act in conjunction with residues within the region from Arg-96 to Thr-189 at the N terminus of the sensor kinase. The net effect of concerted interactions at these distinct regions of CbbSR created an internal molecular switch that appears to coordinate a unique branched phosphorelay system.  相似文献   

20.
Kynureninase [E.C. 3.7.1.3] is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the hydrolytic cleavage of l-kynurenine to anthranilic acid and l-alanine. Sequence alignment with other PLP-dependent enzymes indicated that kynureninase is in subgroup IVa of the aminotransferases, along with nifS, CsdB, and serine-pyruvate aminotransferase, which suggests that kynureninase has an aminotransferase fold. Crystals of Pseudomonas fluorescens kynureninase were obtained, and the structure was solved by molecular replacement using the CsdB coordinates combined with multiple isomorphous heavy atom replacement. The coordinates were deposited in the PDB (ID code 1QZ9). The structure, refined to an R factor of 15.5% to 1.85 A resolution, is dimeric and has the aminotransferase fold. The structure also confirms the prediction from sequence alignment that Lys-227 is the PLP-binding residue in P. fluorescens kynureninase. The conserved Asp-201, expected for an aminotransferase fold, is located near the PLP nitrogen, but Asp-132 is also strictly conserved and at a similar distance from the pyridinium nitrogen. Mutagenesis of both conserved aspartic acids shows that both contribute equally to PLP binding, but Asp-201 has a greater role in catalysis. The structure shows that Tyr-226 donates a hydrogen bond to the phosphate of PLP. Unusual among PLP-dependent enzymes, Trp-256, which is also strictly conserved in kynureninases from bacteria to humans, donates a hydrogen bond to the phosphate through the indole N1-hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号