首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
In order to elucidate the active sites of growth hormone for eliciting the differentiation of preadipose 3T3-F442A cells to adipocytes, four artificial mutant variants of human growth hormone (hGH) modified in the loop region of amino acid residues 54-74 were prepared in Escherichia coli by site-directed mutagenesis. Although the P59A (replacement of Pro59 with Ala) variant retained almost the same biological- and receptor binding-activity as hGH, the P61A (replacement of Pro61 with Ala) and the P59A-P61A (replacement of both Pro59 and Pro61 with Ala) both exhibited about half the activity, and the delta (62-67) variant (deletion of the residues 62-67) exhibited only about 0.1% the activity of those of intact hGH. The results suggest that Pro61 may be involved in formation of the active conformation of hGH, but Pro59 may not, and that the amino acid residues around 62-67 may be critical for the specific biological features of hGH.  相似文献   

2.
Ribonuclease Sa (RNase Sa) contains no tryptophan (Trp) residues. We have added single Trp residues to RNase Sa at sites where Trp is found in four other microbial ribonucleases, yielding the following variants of RNase Sa: Y52W, Y55W, T76W, and Y81W. We have determined crystal structures of T76W and Y81W at 1.1 and 1.0 A resolution, respectively. We have studied the fluorescence properties and stabilities of the four variants and compared them to wild-type RNase Sa and the other ribonucleases on which they were based. Our results should help others in selecting sites for adding Trp residues to proteins. The most interesting findings are: 1), Y52W is 2.9 kcal/mol less stable than RNase Sa and the fluorescence intensity emission maximum is blue-shifted to 309 nm. Only a Trp in azurin is blue-shifted to a greater extent (308 nm). This blue shift is considerably greater than observed for Trp71 in barnase, the Trp on which Y52W is based. 2), Y55W is 2.1 kcal/mol less stable than RNase Sa and the tryptophan fluorescence is almost completely quenched. In contrast, Trp59 in RNase T1, on which Y55W is based, has a 10-fold greater fluorescence emission intensity. 3), T76W is 0.7 kcal/mol more stable than RNase Sa, indicating that the Trp side chain has more favorable interactions with the protein than the threonine side chain. The fluorescence properties of folded Y76W are similar to those of the unfolded protein, showing that the tryptophan side chain in the folded protein is largely exposed to solvent. This is confirmed by the crystal structure of the T76W which shows that the side chain of the Trp is only approximately 7% buried. 4), Y81W is 0.4 kcal/mol less stable than RNase Sa. Based on the crystal structure of Y81W, the side chain of the Trp is 87% buried. Although all of the Trp side chains in the variants contribute to the unusual positive circular dichroism band observed near 235 nm for RNase Sa, the contribution is greatest for Y81W.  相似文献   

3.
The acute metabolic effects of 20,000-dalton human growth hormone (hGH20K) in man have not previously been tested. We compared changes in concentrations of free fatty acids (FFA), glucose, and insulin in nine growth hormone deficient children following injection of 22,000-dalton intact human growth hormone (hGH22K) and the smaller variant, hGH20K. There was a significant decline (37%) in the mean FFA concentration from baseline to 1/2 hour post-injection and from baseline to 1 hour post-injection (36%) in the children given hGH22K, but no such decline was seen after injection of hGH20K. No significant differences in mean insulin or glucose concentrations were noted between the two treatment groups, and glucose and insulin concentrations did not acutely change after injection of either hormone. The results of this study indicate that hGH20K has a diminished activity for suppression of FFA as compared to hGH22K. This suggests that GH residues 32-46, missing in hGH20K, constitute all or part of the region of hGH22K producing this response, or that the different primary structures of the two hormones result in tertiary structural differences and altered biological activity.  相似文献   

4.
Proteolytically cleaved human 22 kDa growth hormone (22K hGH) between the amino acid residues 134 and 150 by plasmin or other proteases in vitro has been reported to be most active in growth promoting activity. In this study a deleted mutant hGH lacking amino acid residues from 135 to 146 and having more sensitivity to plasmin digestion was produced using the inverse polymerase chain reaction method and the Escherichia coli expression system. The mutant, hGH delta 135-146, was folded and purified effectively and found to be more sensitive to plasmin cleavage to form the two-chain form in vitro. The biological activities of this plasmin sensitive hGH delta 135-146 were tested by in vitro cell proliferation assays and in vivo growth promoting assay. In Ba/F3-hGHR cells, which express receptors for hGH, hGH delta 135-146 showed 10-20% less growth promoting activity than 22K hGH, but expressed comparable quantities of IGF-I mRNA to that of 22K hGH. In Nb2 rat lymphoma cells, which proliferate in response to hGH via the lactogenic receptors, hGH delta 135-146 showed equivalent activities to those of 22K hGH at lower concentrations. By the body weight gain test using hypophysectomized rats, a lower dose (2.5 nmol kg-1) of hGH delta 135-146 exhibited an equivalent activity to that of wild type 22K hGH, but a higher dose (25 nmol kg-1) of the mutant showed less growth promoting activity than 22K hGH. These results indicated that the plasmin sensitive recombinant hGH delta 135-146 failed to show higher biological activity than the 22K hGH in vivo, suggesting the unsuccessful formation of the active two-chain form in vivo.  相似文献   

5.
A radioimmunoassay for the 15-amino acid fragment comprising residues 32–46 of the 22,000-dalton human growth hormone has been devised. The radioimmunoassay detects from 1 to 150 fmol of the synthetic peptide. The 12-amino acid peptide hGH (35–46) shows parallel displacement, but the sensitivity decreased 50% due to the deletion of the three amino acids. Displacement activity is lost from the synthetic peptides hGH (38–46) and hGH (43–46), and intact hGH itself shows no displacement. Disrupting the large loop of hGH by subtilisin cleavage or by reduction and alkylation of the S-S bridges imparts displacement activity parallel to that of hGH (32–46), and hGH (1–139) has similar activity. A plausible interpretation for these results is that native hGH has a tertiary structure that masks or obscures the sequence 32–46, the sequence being unmasked by release of constraints imposed by an intact large loop.  相似文献   

6.
The reactive intermediates formed in the catalase-peroxidase from Synechocystis PCC6803 upon reaction with peroxyacetic acid, and in the absence of peroxidase substrates, are the oxoferryl-porphyrin radical and two subsequent protein-based radicals that we have previously assigned to a tyrosyl (Tyr()) and tryptophanyl (Trp()) radicals by using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with deuterium labeling and site-directed mutagenesis. In this work, we have further investigated the Trp() in order to identify the site for the tryptophanyl radical formation, among the 26 Trp residues of the enzyme and to possibly understand the protein constraints that determine the selective formation of this radical. Based on our previous findings about the absence of the Trp() intermediate in four of the Synechocystis catalase-peroxidase variants on the heme distal side (W122F, W106A, H123Q, and R119A) we constructed new variants on Trp122 and Trp106 positions. Trp122 is very close to the iron on the heme distal side while Trp106 belongs to a short stretch (11 amino acid residues on the enzyme surface) that is highly conserved in catalase-peroxidases. We have used EPR spectroscopy to characterize the changes on the heme microenvironment induced by these mutations as well as the chemical nature of the radicals formed in each variant. Our findings identify Trp106 as the tryptophanyl radical site in Synechocystis catalase-peroxidase. The W122H and W106Y variants were specially designed to mimic the hydrogen-bond interactions of the naturally occurring Trp residues. These variants clearly demonstrated the important role of the extensive hydrogen-bonding network of the heme distal side, in the formation of the tryptophanyl radical. Moreover, the fact that W106Y is the only Synechocystis catalase-peroxidase variant of the distal heme side that recovers a catalase activity comparable to the WT enzyme, strongly indicates that the integrity of the extensive hydrogen-bonding network is also essential for the catalatic activity of the enzyme.  相似文献   

7.
Based on phage display optimization studies with human growth hormone (GH), it is thought that the biopotency of GH cannot be increased. This is proposed to be a result of the affinity of the first receptor for hormone far exceeding that which is required to trap the hormone long enough to allow diffusion of the second receptor to form the ternary complex, which initiates signaling. We report here that despite similar site 1 kinetics to the hGH/hGH receptor interaction, the potency of porcine GH for its receptor can be increased up to 5-fold by substituting hGH residues involved in site 1 binding into pGH. Based on extensive mutations and BIAcore studies, we show that the higher potency and site 1 affinity of hGH for the pGHR is primarily a result of a decreased off-rate associated with residues in the extended loop between helices 1 and 2 that interact with the two key tryptophans Trp104 and Trp169 in the receptor binding hot spot. Our mutagenic analysis has also identified a second determinant (Lys165), which in addition to His169, restricts the ability of non-primate hormones to activate hGH receptor. The increased biopotency of GH that we observe can be explained by a model for GH receptor activation where subunit alignment is critical for effective signaling.  相似文献   

8.
9.
人生长激素(hGH)基因大片段缺失是单纯性生长激素缺乏症原因之一,但大多数单纯性生长激素缺乏症病因不明。为探查这些病人的发病机理,用PCR技术扩增克隆了三例病人hGH基因5’端顺序,并检测了核苷酸序列。发现一例病人序列正常,但另二例病人均出现二种序列,一种是呈多态的正常顺序,另一种则有4个碱基的变异,发生在-1,+3,+16,+25位核苷酸,揭示这些变异位点可能对转录翻译有影响。但这些变异顺序与生长激素缺乏症的确切关系还有待进一步的研究。  相似文献   

10.
The lipolytic and antilipolytic effects of human growth hormone (22K-hGH), its 20-kilodalton variant (20K-hGH), a reduced and S-carboxymethylated derivative (RCM-hGH), and human placental lactogen were examined using chicken adipose tissue explants in vitro. Lipolysis, as determined by glycerol release, was stimulated by 22K-hGH (biosynthetic and pituitary derived), 20K-hGH (pituitary derived), and RCM-hGH (modified biosynthetic). These growth hormone preparations also exhibited similar antilipolytic activity (i.e., transient inhibition of glucagon-induced lipolysis). However, unlike human growth hormone, human placental lactogen neither stimulated lipolysis nor inhibited glucagon-stimulated lipolysis. Some augmentation of glucagon-stimulated lipolysis was observed in the presence of human placental lactogen. These results indicate that the disulfide bridges (Cys53----Cys165; Cys182----Cys189) and amino acid residues 32-46 of hGH are not required for lipolytic or antilipolytic activities of human growth hormone on chicken adipose tissue.  相似文献   

11.
12.
The high affinity binding site (Site1) of the human growth hormone (hGH) binds to its cognate receptor (hGHR) via a concave surface patch containing about 35 residues. Using 167 sequences from a shotgun alanine scanning analysis of Site1, we have determined that over half of these residues can be simultaneously changed to an alanine or a non-isosteric amino acid while still retaining a high affinity interaction. Among these hGH variants the distribution of the mutation is highly variable throughout the interface, although helix 4 is more conserved than the other binding elements. Kinetic and thermodynamic analyses were performed on 11 representative hGH Site1 variants that contained 14-20 mutations. Generally, the tightest binding variants showed similar associated rate constants (k(on)) as the wild-type (wt) hormone, indicating that their binding proceeds through a similar transition state intermediate. However, calorimetric analyses indicate very different thermodynamic partitioning: wt-hGH binding exhibits favorable enthalpy and entropy contributions, whereas the variants display highly favorable enthalpy and highly unfavorable entropy contributions. The heat capacities (DeltaCp) on binding measured for wt-hGH and its variants are significantly larger than normally seen for typical protein-protein interactions, suggesting large conformational or solvation effects. The multiple Site1 mutations are shown to indirectly affect binding of the second receptor at Site2 through an allosteric mechanism. We show that the stability of the ternary hormone-receptor complex reflects the affinity of the Site2 binding and is surprisingly exempt from changes in Site1 affinity, directly demonstrating that dissociation of the active signaling complex is a stepwise process.  相似文献   

13.
Cheng HL  Tsai LC  Lin SS  Yuan HS  Yang NS  Lee SH  Shyur LF 《Biochemistry》2002,41(27):8759-8766
The possible structural and catalytic functions of the nine tryptophan amino acid residues, including Trp(54), Trp(105), Trp(112), Trp(141), Trp(148), Trp(165), Trp(186), Trp(198), and Trp(203) in Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fs beta-glucanase), were characterized using site-directed mutagenesis, initial rate kinetics, fluorescence spectrometry, and structural modeling analysis. Kinetic studies showed that a 5-7-fold increase in K(m) value for lichenan was observed for W141F, W141H, and W203R mutant Fs beta-glucanases, and approximately 72-, 56-, 30-, 29.5-, 4.9-, and 4.3-fold decreases in k(cat) relative to that for the wild-type enzyme were observed for the W54F, W54Y, W141H, W203R, W141F, and W148F mutants, respectively. In contrast, W186F and W203F, unlike the other 12 mutants, exhibited a 1.4- and 4.2-fold increase in k(cat), respectively. W165F and W203R were the only two mutants that exhibited a 4-7-fold higher activity relative to the wild-type enzyme after they were incubated at pH 3.0 for 1 h. Fluorescence spectrometry indicated that all of the mutations on the nine tryptophan amino acid residues retained a folding similar to that of the wild-type enzyme. Structural modeling and kinetic studies suggest that Trp(54), Trp(141), Trp(148), and Trp(203) play important roles in maintaining structural integrity in the substrate-binding cleft and the catalytic efficiency of the enzyme.  相似文献   

14.
The affinity of 22,000-Mr human growth hormone (22 K-hGH) for GH binding proteins in rabbit liver is increased approx. 19-fold by 25 mM-Ca2+. In contrast, ovine growth hormone (oGH) binding is Ca2+-independent up to 10 mM, and decreased by greater Ca2+ concentrations. The 20,000-Mr hGH variant (20K-hGH), lacking residues 32-46, exhibits intermediate behaviour. Without Ca2+ there is a residual 40% of maximum specific binding to liver microsomes, and this increases to 65% with liver cytosolic GH binding proteins. In contrast with 22K-hGH, Scatchard analysis of 20K-hGH binding to liver microsomes produces curvilinear plots in the presence of 25 mM-Ca2+. From these results and inhibition studies with monoclonal antibodies to the GH binding proteins, it is concluded that deletion of the region 32-46 from 22K-hGH has eliminated one component of high-affinity Ca2+-potentiable binding. The Ca2+-mediated increase in Ka for the 22K-hGH-binding protein interaction is consistent with convergence of unit negative charges on the hormone and binding protein towards an intercalated Ca2+ ion. A positive charge in the critical region of nonprimate GHs would render their interactions Ca2+-independent and of lower Ka compared with 22K-hGH. A likely candidate for the negatively charged interactive residue is glutamate-33, since it is unique to human GH and is replaced by a positively charged arginine in non-primate GHs. Its absence in 20K-hGH could explain the altered calcium-dependence of 20K-hGH binding to what is probably the type 2 binding protein [Barnard & Waters (1986) Biochem. J. 237, 885-892]. The Ca2+-dependence of 20K-hGH binding to a subset of GH binding proteins provides both a verification and a mechanistic basis for the proposal [Hughes, Tokuhiro, Simpson & Friesen (1983) Endocrinology (Baltimore) 113, 1904-1906] that 20K-hGH binds with high affinity to only a subset of binding proteins in rabbit liver membranes.  相似文献   

15.
We have previously shown that a monoclonal antibody (MAb) recognizing the human growth hormone (hGH) antigenic domain left exposed after binding to lactogenic receptors enhanced hGH binding probably through allosteric effects on the hormone binding site. Since receptors displaying different specificities would not recognize exactly the same hGH region, we explored whether some of our MAb could affect hGH binding to somatogenic receptors from rabbit liver and to human liver hGH-specific receptors.The effect of MAbAE5, AC8 and F11 on hGH binding was measured by determining the formation of125I-MAb:hGH:receptor complexes using two different experimental approaches. Results from procedure A, which involved the previous binding of the hormone to microsomes before adding125I-MAb, indicated that the hGH domain defined by epitopes AE5, AC8 and F11 is uncovered in the various hormone:receptor complexes.Procedure B was devised to reveal any alteration in the hGH molecule induced by the MAb. In this case preformed125I-MAb:hGH complexes were added to microsomes. Data showed that125I-MAb AE5:hGH complexes bound better to the various receptors than125I-MAb AE5 to hGH:receptor complexes. On the contrary, hGH previously bound to125I-MAb AC8 or125I-MAb F11 was less recognized by the receptors than the free hormone. Furthermore, binding of MAb AE5 or MAb F11 to hGH 20 K (a natural hGH variant lacking residues 32–46) also enhanced its affinity to the various receptors whereas MAb AC8 did not inhibit hGH 20 K binding.Results indicated that MAb recognizing the hGH antigenic area that remains unmasked after binding to different membrane-bound receptors are able to affect hormone binding site. MAb would induce either positive or negative allosteric changes in the hormone region involved in its binding to lactogenic, somatogenic and hGH-specific receptors.  相似文献   

16.
The pituitary hormone prolactin (prl) is implicated in a number of biological functions, especially lactation, which is mediated through specific lactogenic receptors (PrlR). Human growth hormone (hGH) is also a pituitary hormone responsible for linear growth. While the growth hormone receptor (hGHR) binds only hGH, hPrlR can interact with both hGH and hPrl. Using structural information from the human growth hormone (hGH)/receptor (hGHR) complex, we modeled by homology a complex between rabbit prolactin hormone (rbPrl) and its receptor (rbPrlR). While the somatogenic hormone/somatogenic receptor (hGH/hGHR) and somatogenic hormone/lactogenic receptor (hGH/hPrlR) interactions are now known and well studied, here we propose a model for the interaction of the lactogenic hormone with its receptor (rbPrl/rbPrlR), and compare these three kinds of ligand/receptor interaction. We identified residues contributing to the active site and tested the potential dimerization of the receptor. Biochemical studies and information deduced from the modeled complex do not exclude a homodimeric form but point to a functional heterodimeric complex. Proteins 27: 459–468, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Tryptophan fluorescence was used to study GK (glucokinase), an enzyme that plays a prominent role in glucose homoeostasis which, when inactivated or activated by mutations, causes diabetes mellitus or hypoglycaemia in humans. GK has three tryptophan residues, and binding of D-glucose increases their fluorescence. To assess the contribution of individual tryptophan residues to this effect, we generated GST-GK [GK conjugated to GST (glutathione transferase)] and also pure GK with one, two or three of the tryptophan residues of GK replaced with other amino acids (i.e. W99C, W99R, W167A, W167F, W257F, W99R/W167F, W99R/W257F, W167F/W257F and W99R/W167F/W257F). Enzyme kinetics, binding constants for glucose and several other sugars and fluorescence quantum yields (varphi) were determined and compared with those of wild-type GK retaining its three tryptophan residues. Replacement of all three tryptophan residues resulted in an enzyme that retained all characteristic features of GK, thereby demonstrating the unique usefulness of tryptophan fluorescence as an indicator of GK conformation. Curves of glucose binding to wild-type and mutant GK or GST-GK were hyperbolic, whereas catalysis of wild-type and most mutants exhibited co-operativity with D-glucose. Binding studies showed the following order of affinities for the enzyme variants: N-acetyl-D-glucosamine>D-glucose>D-mannose>D-mannoheptulose>2-deoxy-D-glucose>L-glucose. GK activators increased sugar binding of most enzymes, but not of the mutants Y214A/V452A and C252Y. Contributions to the fluorescence increase from Trp(99) and Trp(167) were large compared with that from Trp(257) and are probably based on distinct mechanisms. The average quantum efficiency of tryptophan fluorescence in the basal and glucose-bound state was modified by activating (Y214A/V452A) or inactivating (C213R and C252Y) mutations and was interpreted as a manifestation of distinct conformational states.  相似文献   

18.
Selecting high-affinity binding proteins by monovalent phage display   总被引:20,自引:0,他引:20  
H B Lowman  S H Bass  N Simpson  J A Wells 《Biochemistry》1991,30(45):10832-10838
Variants of human growth hormone (hGH) with increased affinity and specificity for the hGH receptor were isolated using an improved phage display system. Nearly one million random mutants of hGH were generated at 12 sites previously shown to modulate binding to the hGH receptor or human prolactin (hPRL) receptor. The mutant hormones were displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. After three to six cycles of enrichment for hGH-phage particles that bound to hGH receptor beads, we isolated hGH mutants that exhibited consensus binding sequences for the hGH receptor. Residues previously identified as important for hGH receptor binding by alanine-scanning mutagenesis were more highly conserved by this selection method. However, other residues nearby were not optimal, and by mutating them, hormone variants having greater affinity and selectivity for the hGH receptor were isolated. This approach should be useful for those who wish to modify and understand the energetics of protein-ligand interfaces.  相似文献   

19.
W C Lam  A H Maki  T Itoh  T Hakoshima 《Biochemistry》1992,31(29):6756-6760
Phosphorescence and ODMR measurements have been made on ribonuclease T1 (RNase T1), the mutated enzyme RNase T1 (Y45W), and their complexes with 2'GMP and 2'AMP. It is not possible to observe the phosphorescence of Trp45 in RNase T1 (Y45W). Only that of the naturally occurring Trp59 is seen. The binding of 2'GMP to wild-type RNase T1 produces only a minor red shift in the phosphorescence and no change in the ODMR spectrum of Trp59. However, a new tryptophan 0,0-band is found 8.2 nm to the red of the Trp59 0,0-band in the 2'GMP complex of the mutated RNase T1 (Y45W). Wavelength-selected ODMR measurements reveal that the red-shifted emission induced by 2'GMP binding, assigned to Trp45, occurs from a residue with significantly different zero-field splittings than those of Trp59, a buried residue subject to local polar interactions. The phosphorescence red shift and the zero-field splitting parameters demonstrate that Trp45 is located in a polarizable environment in the 2'GMP complex. In contrast with 2'GMP, binding of 2'AMP to RNase T1 (Y45W) induces no observable phosphorescence emission from Trp45, but leads only to a minor red shift in the phosphorescence origin of Trp59 in both the mutated and wild-type enzyme. The lack of resolved phosphorescence emission from Trp45 in RNase T1 (Y45W) implies that the emission of this residue is quenched in the uncomplexed enzyme. We conclude that local conformational changes that occur upon binding 2'GMP remove quenching residues from the vicinity of Trp45, restoring its luminescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The structure of the ternary complex between the phage display- optimized, high-affinity Site 1 variant of human growth hormone (hGH) and two copies of the extracellular domain (ECD) of the hGH receptor (hGHR) has been determined at 2.6 A resolution. There are widespread and significant structural differences compared to the wild-type ternary hGH hGHR complex. The hGH variant (hGH(v)) contains 15 Site 1 mutations and binds>10(2) tighter to the hGHR ECD (hGH(R1)) at Site 1. It is biologically active and specific to hGHR. The hGH(v) Site 1 interface is somewhat smaller and 20% more hydrophobic compared to the wild-type (wt) counterpart. Of the ten hormone-receptor H-bonds in the site, only one is the same as in the wt complex. Additionally, several regions of hGH(v) structure move up to 9A in forming the interface. The contacts between the C-terminal domains of two receptor ECDs (hGH(R1)- hGH(R2)) are conserved; however, the large changes in Site 1 appear to cause global changes in the domains of hGH(R1) that affect the hGH(v)-hGH(R2) interface indirectly. This coupling is manifested by large changes in the conformation of groups participating in the Site 2 interaction and results in a structure for the site that is reorganized extensively. The hGH(v)- hGH(R2) interface contains seven H-bonds, only one of which is found in the wt complex. Several groups on hGH(v) and hGH(R2) undergo conformational changes of up to 8 A. Asp116 of hGH(v) plays a central role in the reorganization of Site 2 by forming two new H-bonds to the side-chains of Trp104(R2) and Trp169(R2), which are the key binding determinants of the receptor. The fact that a different binding solution is possible for Site 2, where there were no mutations or binding selection pressures, indicates that the structural elements found in these molecules possess an inherent functional plasticity that enables them to bind to a wide variety of binding surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号