首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The posterior five pairs of avian ribs are composed of vertebral and sternal components, both derived from the somitic mesoderm. For the patterning of the rib cartilage, inductive signals from neighboring tissues on the somitic mesoderm have been suggested to play critical roles. The notochord and surface ectoderm overlying the somitic mesoderm are essentially required for the development of proximal and distal regions of the ribs, respectively. Involvement of the somatopleure in rib development has already been suggested but is less understood than those of the notochord and surface ectoderm. In this study, we reinvestigated the role of the somatopleure during rib development. We first identified the chicken homologue of the mouse Mesenchymal forkhead-1 (cMfh-1) gene based on sequence similarities. cMfh-1 was observed to be expressed in the nonaxial mesoderm, including the somitic mesoderm, and, subsequently, in cartilage forming the ribs, vertebrae, and appendicular skeletal system. In the interlimb region, corresponding to somites 21-25 (or 26), cMfh-1-positive somitic mesoderm was seen penetrating the somatopleure of E4 embryos, and cMfh-1 was used as a molecular marker demarcating prospective rib cartilage. A series of experiments affecting the penetration of the somitic mesoderm into the somatopleure was performed in the present study, resulting in defects in sternal rib formation. The inductive signals emanating from the somatopleure mediated by BMP family proteins were observed to be essentially involved in the ingrowth of the somitic mesoderm. BMP4 alone, however, could not completely replace inductive signals from the somatopleure, suggesting the involvement of additional signals for rib formation.  相似文献   

2.
The vertebrate body wall is regionalized into thoracic and lumbosacral/abdominal regions that differ in their morphology and developmental origin. The thoracic body wall has ribs and intercostal muscles, which develops from thoracic somites, whereas the abdominal wall has abdominal muscles, which develops from lumbosacral somites without ribs cage. To examine whether limb-genesis interferes with body wall-genesis, and to test the possibility that limb generation leads to the regional differentiation, an ectopic limb was induced in the thoracic region by transplanting prospective limb somatopleural mesoderm of Japanese quail between the ectoderm and somatopleural mesoderm of the chick prospective thoracic region. This ectopic limb generation induced the somitic cells to migrate into the ectopic limb mesenchyme to become its muscles and caused the loss of distal thoracic body wall (sterno-distal rib and distal intercostal muscle), without causing any significant effect on the more proximal region (proximal rib, vertebro-distal rib and proximal intercostal muscle). According to a new primaxial–abaxial classification, the proximal region is classified as primaxial and the distal region, as well as limb, is classified as abaxial. We demonstrated that ectopic limb development interfered with body wall development via its influence on the abaxial somite derivatives. The present study supports the idea that the somitic cells give rise to the primaxial derivatives keeping their own identity and fate, whereas they produce the abaxial derivatives responding to the lateral plate mesoderm.  相似文献   

3.
The somites of vertebrate embryos give rise to sclerotomes and dermomyotomes. The sclerotomes form the axial skeleton, whereas the dermomyotomes give rise to all trunk muscles and the dermis of the back. The ribs were thought to be ventral processes of the axial skeleton and therefore to be derived from the sclerotomes; however, recently a dermomyotomal origin of the distal rib (the costal shaft) was suggested, with only the proximal parts (head and neck of the rib) being of sclerotomal origin. We have re-investigated the development of the ribs in quail-chick chimeras and carried out three experimental series. (1) Single dermomyotomes and (2) single sclerotomes were grafted homotopically, and (3) the ectoderm overlying the unsegmented paraxial mesoderm was removed in the prospective thoracic region. We found that the cells of the dermomyotome gave rise to epaxial and hypaxial trunk muscles, dermis of the back and endothelial cells, but not to ribs. Cells of the sclerotome formed the axial skeleton and all parts of the ribs. Ablation of the ectoderm, which affects dermomyotome development, results in severe malformations of the ribs, probably due to disturbed interactions between dermomyotome and sclerotome. Our results strongly confirm the traditional view of the sclerotomal origin of the ribs.  相似文献   

4.
The traditional view that all parts of the ribs originate from the sclerotome of the thoracic somites has recently been challenged by an alternative view suggesting that only the proximal rib derives from the sclerotome, while the distal rib arises from regions of the dermomyotome. In view of this continuing controversy and to learn more about the cell interactions during rib morphogenesis, this study aimed to reveal the precise contributions made by somitic cells to the ribs and associated tissues of the thoracic cage. A replication-deficient lacZ-encoding retrovirus was utilized to label cell populations within distinct regions of somites 19-26 in stage 13-18 chick embryos. Analysis of the subsequent contributions made by these cells revealed that the thoracic somites are the sole source of cells for the ribs. More precisely, it is the sclerotome compartment of the somites that contributes cells to both the proximal and distal elements of the ribs, confirming the traditional view of the origin of the ribs. Results also indicate that the precursor cells of the ribs and intercostal muscles are intimately associated within the somite, a relationship that may be essential for proper rib morphogenesis. Finally, the data from this study also show that the distal ribs are largely subject to resegmentation, although cell mixing may occur at the most sternal extremities.  相似文献   

5.
Pax3 functions in cell survival and in pax7 regulation   总被引:11,自引:0,他引:11  
In developing vertebrate embryos, Pax3 is expressed in the neural tube and in the paraxial mesoderm that gives rise to skeletal muscles. Pax3 mutants develop muscular and neural tube defects; furthermore, Pax3 is essential for the proper activation of the myogenic determination factor gene, MyoD, during early muscle development and PAX3 chromosomal translocations result in muscle tumors, providing evidence that Pax3 has diverse functions in myogenesis. To investigate the specific functions of Pax3 in development, we have examined cell survival and gene expression in presomitic mesoderm, somites and neural tube of developing wild-type and Pax3 mutant (Splotch) mouse embryos. Disruption of Pax3 expression by antisense oligonucleotides significantly impairs MyoD activation by signals from neural tube/notochord and surface ectoderm in cultured presomitic mesoderm (PSM), and is accompanied by a marked increase in programmed cell death. In Pax3 mutant (Splotch) embryos, MyoD is activated normally in the hypaxial somite, but MyoD-expressing cells are disorganized and apoptosis is prevalent in newly formed somites, but not in the neural tube or mature somites. In neural tube and somite regions where cell survival is maintained, the closely related Pax7 gene is upregulated, and its expression becomes expanded into the dorsal neural tube and somites, where Pax3 would normally be expressed. These results establish that Pax3 has complementary functions in MyoD activation and inhibition of apoptosis in the somitic mesoderm and in repression of Pax7 during neural tube and somite development.  相似文献   

6.
Somites, along with adjacent neural tube and overlying ectoderm, were extirpated unilaterally from embryos of Chelydra serpentina. Mesoderm of three somites was removed from various levels. The operations included the last formed somite and were done on embryos with 12 to 22 pairs of somites. In practice it was found that ventromedial portions of the somites were not included in the extirpation. The animals were preserved before pigmentation became heavy. The cartilaginous skeleton was stained selectively. The extirpations resulted in depletions of ribs consonant with relating the second rib to the fourteenth somite. The somites behaved as mosaics; they did not reconstitute each other nor did they regenerate after partial extirpation. The rudiments for the ribs were separable from the rudiments of the vertebrae, the sclerotomes, and were found to arise from a more lateral portion of the somite. The scutes are ectodermal derivatives, which are held to be dependent upon underlying somitic mesoderm for their differentiation. The extirpations resulted in abnormalities and depletions of scutes.  相似文献   

7.
Somites are transient mesodermal structures giving rise to all skeletal muscles of the body, the axial skeleton and the dermis of the back. Somites arise from successive segmentation of the presomitic mesoderm (PSM). They appear first as epithelial spheres that rapidly differentiate into a ventral mesenchyme, the sclerotome, and a dorsal epithelial dermomyotome. The sclerotome gives rise to vertebrae and ribs while the dermomyotome is the source of all skeletal muscles and the dorsal dermis. Quail-chick fate mapping and diI-labeling experiments have demonstrated that the epithelial somite can be further subdivided into a medial and a lateral moiety. These two subdomains are derived from different regions of the primitive streak and give rise to different sets of muscles. The lateral somitic cells migrate to form the musculature of the limbs and body wall, known as the hypaxial muscles, while the medial somite gives rise to the vertebrae and the associated epaxial muscles. The respective contribution of the medial and lateral somitic compartments to the other somitic derivatives, namely the dermis and the ribs has not been addressed and therefore remains unknown. We have created quail-chick chimeras of either the medial or lateral part of the PSM to examine the origin of the dorsal dermis and the ribs. We demonstrate that the whole dorsal dermis and the proximal ribs exclusively originates from the medial somitic compartment, whereas the distal ribs derive from the lateral compartment.  相似文献   

8.
In the development of the somite, signals from neighboring tissues have been suggested to play critical roles. We have found that when interaction between the ectoderm and the somite is blocked by inserting a piece of polyethylene terephatalate film between them in 2-day-chicken embryo, one of the derivatives of somite, the distal rib, did not form. We examined somite development after the operation, to know the correlation between somite development and distal rib formation. In the operated embryo, the dermomyotome was medio-laterally shorter than in the normal embryo, and Pax3 and Sim1 expressions that are seen in the lateral part of normal dermomyotomes were not found, suggesting that the lateral part of the dermomyotome was missing. Although the sclerotome appeared to be normal in its histology and Pax1 expression pattern in the operated embryo, we could not detect the expression of either Scleraxis nor γ-FBP that are expressed in the cells around the boundaries between the adjacent dermomyotomes in normal embryos. Thus, under the influence of surface ectoderm, the lateral part of dermomyotome and/or the mesenchyme around rostral and caudal edges of dermomyotomes are suggested to play an important role in the distal rib development.  相似文献   

9.
The ventro-medial wall of a somite gives rise to the sclerotome and then to cartilaginous axial skeleton, while the dorso-lateral wall differentiates into the dermomyotome to form dermal mesenchyme and muscle. Although previous studies suggested pluri-potency of somite cell differentiation, apparent pluri-potency may be the result of migration of predetermined cells. To investigate whether the developmental fate of any region is determined, I isolated fragments of a region of a quail somite and transplanted them into chick embryos. When a fragment of the ventral wall of a quail somite, the prospective sclerotome, was transplanted into a chick embryo between the ectoderm and a newly formed somite, the transplanted quail cells were shown to form myotome and mesenchyme in 4-day chimera embryos and to form muscle and dermal tissue in 9-day chimeras. On the other hand, when a fragment of the dorsal wall of a quail somite, the prospective dermomyotome, was transplanted into a chick embryo between the neural tube and a newly formed somite, the graft gave rise to mesenchyme around the neural tube and notochord and then to vertebral cartilage. Thus the developmental fate of a region of a somite was shown not to be determined at the time of somite segmentation, confirming previous observations.  相似文献   

10.
Muscles of the body and bones of the axial skeleton derive from specialized regions of somites. Somite development is influenced by adjacent structures. In particular, the dorsal neural tube and the overlying ectoderm have been shown to be necessary for the induction of myogenic precursor cells in the dermomyotome. Members of the Wnt family of signaling molecules, which are expressed in the dorsal neural tube and the ectoderm, are postulated to be responsible for this process. It is shown here that ectopically implanted Wnt-1-, -3a-, and -4-expressing cells alter the process of somite compartmentalization in vivo. An enlarged dorsal compartment results from the implantation of Wnt-expressing cells ventrally between the neural tube/notochord and epithelial somites, at the expense of the ventral compartment, the sclerotome. Thus, ectopic Wnt expression is able to override the influence of ventralizing signals arising from notochord and floor plate. This shift of the border between the two compartments was identified by an increase in the domain of Pax-3 expression and a complete loss of Pax-1 expression in somites close to the ectopic Wnt signal. The expanded expression of MyoD and desmin provides evidence that it is the myotome which increases as a result of Wnt signaling. Paraxis expression is also drastically amplified after implantation of Wnt-expressing cells indicating that Wnts are involved in the formation and maintenance of somite epithelium and suggesting that Paraxis is activated through Wnt signaling pathways. Taken together these results suggest that ectopic Wnts disturb the normal balance of signaling molecules within the somite, resulting in an enhanced recruitment of somitic cells into the myogenic lineage.  相似文献   

11.
Dorsoventral polarity of the somitic mesoderm is established by competitive signals originating from adjacent tissues. The ventrally located notochord provides the ventralizing signals to specify the sclerotome, while the dorsally located surface ectoderm and dorsal neural tube provide the dorsalizing signals to specify the dermomyotome. Noggin and SHH-N have been implicated as the ventralizing signals produced by the notochord. Members of the WNT family of proteins, on the other hand, have been implicated as the dorsalizing signals derived from the ectoderm and dorsal neural tube. When presomitic explants are confronted with cells secreting SHH-N and WNT1 simultaneously, competition to specify the sclerotome and dermomyotome domains within the naive mesoderm can be observed. Here, using these explant cultures, we provide evidence that SHH-N competes with WNT1, not only by upregulating its own receptor Ptc1, but also by upregulating Sfrp2 (Secreted frizzled-related protein 2), which encodes a potential WNT antagonist. Among the four known Sfrps, Sfrp2 is the only member expressed in the sclerotome and upregulated by SHH-N recombinant protein. We further show that SFRP2-expressing cells can reduce the dermomyotome-inducing activity of WNT1 and WNT4, but not that of WNT3a. Together, our results support the model that SHH-N at least in part employs SFRP2 to reduce WNT1/4 activity in the somitic mesoderm.  相似文献   

12.
During vertebrate neural tube formation, the initially lateral borders between the neural and epidermal ectoderm fuse to form the definitive dorsal region of the embryo, while the initially dorsally located notochord-floor plate complex is being internalised. Along the definitive dorso-ventral body axis, one can distinguish an epaxial (dorsal to the notochord) and a hypaxial (ventral to the notochord) body region. The mesodermal somites on both sides of the notochord and neural tube give rise to the trunk skeleton and skeletal muscle. Muscle forms from the somite-derived dermomyotomes and myotomes that elongate dorsally and ventrally. Based on gene expression patterns and comparative embryology, it is proposed here that the epaxial (dermo)myotome region in amniote embryos is subdivided into a dorsalmost and a centrally intercalated subregion. The intercalated subregion abuts to the hypaxial (dermo)myotome region that elongates ventrally via the hypaxial somitic bud. The dorsalmost subregion elongates towards the dorsal neural tube and is proposed to derive from an epaxial somitic bud. The dorsalmost and hypaxial somite derivatives share specific gene expression patterns which are distinct from those of the intercalated somite derivatives. The intercalated somite derivatives develop adaxially, i.e. at the level of the notochord-floor plate complex. Thus, the dorsalmost and intercalated (dermo)myotome subregions may be influenced preferentially by signals from the dorsal neural tube and from the notochord-floor plate complex, respectively. These (dermo)myotome subregions are sharply delimited from each other by molecular boundary markers, including Engrailed and Wnts. It thus appears that the molecular network that polarises borders in Drosophila and vertebrate embryogenesis is redeployed during subregionalisation of the (dermo)myotome. It is proposed here that cells within the amniote (dermo)myotome establish polarised borders with organising capacity, and that the epaxial somitic bud represents a mirror-image duplication of the hypaxial somitic bud along such a border. The resulting epaxial-intercalated/adaxial-hypaxial regionalisation of somite derivatives is conserved in vertebrates although the differentiation of sclerotome and myotome starts heterochronically in embryos of different vertebrate groups.  相似文献   

13.
Somites are mesodermal structures which appear transiently in vertebrates in the course of their development. Cells situated ventromedially in a somite differentiate into the sclerotome, which gives rise to cartilage, while the other part of the somite differentiates into dermomyotome which gives rise to muscle and dermis. The sclerotome is further divided into a rostral half, where neural crest cells settle and motor nerves grow, and a caudal half. To find out when these axes are determined and how they rule later development, especially the morphogenesis of cartilage derived from the somites, we transplanted the newly formed three caudal somites of 2.5-day-old quail embryos into chick embryos of about the same age, with reversal of some axes. The results were summarized as follows. (1) When transplantation reversed only the dorsoventral axis, one day after the operation the two caudal somites gave rise to normal dermomyotomes and sclerotomes, while the most rostral somite gave rise to a sclerotome abnormally situated just beneath ectoderm. These results suggest that the dorsoventral axis was not determined when the somites were formed, but began to be determined about three hours after their formation. (2) When the transplantation reversed only the rostrocaudal axis, two days after the operation the rudiments of dorsal root ganglia were formed at the caudal (originally rostral) halves of the transplanted sclerotomes. The rostrocaudal axis of the somites had therefore been determined when the somites were formed. (3) When the transplantation reversed both the dorsoventral and the rostrocaudal axes, two days after the operation, sclerotomes derived from the prospective dermomyotomal region of the somites were shown to keep their original rostrocaudal axis, judging from the position of the rudiments of ganglia. Combined with results 1 and 2, this suggested that the fate of the sclerotomal cells along the rostrocaudal axis was determined previously and independently of the determination of somite cell differentiation into dermomyotome and sclerotome. (4) In the 9.5-day-old chimeric embryos with rostrocaudally reversed somites, the morphology of vertebrae and ribs derived from the explanted somites were reversed along the rostrocaudal axis. The morphology of cartilage derived from the somites was shown to be determined intrinsically in the somites by the time these were formed from the segmental plate. The rostrocaudal pattern of the vertebral column is therefore controlled by factors intrinsic to the somitic mesoderm, and not by interactions between this mesoderm and the notochord and/or neural tube, arising after segmentation.  相似文献   

14.
15.
Fgf-8 encodes a secreted signaling molecule mediating key roles in embryonic patterning. This study analyzes the expression pattern, regulation, and function of this growth factor in the paraxial mesoderm of the avian embryo. In the mature somite, expression of Fgf-8 is restricted to a subpopulation of myotome cells, comprising most, but not all, epaxial and hypaxial muscle precursors. Following ablation of the notochord and floor plate, Fgf-8 expression is not activated in the somites, in either the epaxial or the hypaxial domain, while ablation of the dorsal neural tube does not affect Fgf-8 expression in paraxial mesoderm. Contrary to the view that hypaxial muscle precursors are independent of regulatory influences from axial structures, these findings provide the first evidence for a regulatory influence of ventral, but not dorsal axial structures on the hypaxial muscle domain. Sonic hedgehog can substitute for the ventral neural tube and notochord in the initiation of Fgf-8 expression in the myotome. It is also shown that Fgf-8 protein leads to an increase in sclerotomal cell proliferation and enhances rib cartilage development in mature somites, whereas inhibition of Fgf signaling by SU 5402 causes deletions in developing ribs. These observations demonstrate: (1) a regulatory influence of the ventral axial organs on the hypaxial muscle compartment; (2) regulation of epaxial and hypaxial expression of Fgf-8 by Sonic hedgehog; and (3) independent regulation of Fgf-8 and MyoD in the hypaxial myotome by ventral axial organs. It is postulated that the notochord and ventral neural tube influence hypaxial expression of Fgf-8 in the myotome and that, in turn, Fgf-8 has a functional role in rib formation.  相似文献   

16.
Ectodermal Wnt6 plays an important role during development of the somites and the lateral plate mesoderm. In the course of development, Wnt6 expression shows a dynamic pattern. At the level of the segmental plate and the epithelial somites, Wnt6 is expressed in the entire ectoderm overlying the neural tube, the paraxial mesoderm and the lateral plate mesoderm. With somite maturation, expression becomes restricted to the lateral ectoderm covering the ventrolateral lip of the dermomyotome and the lateral plate mesoderm. To study the regulation of Wnt6 expression, we have interfered with neighboring signaling pathways. We show that Wnt1 and Wnt3a signaling from the neural tube inhibit Wnt6 expression in the medial surface ectoderm via dermomyotomal Wnt11. We demonstrate that Wnt11 is an epithelialization factor acting on the medial dermomyotome, and present a model suggesting Wnt11 and Wnt6 as factors maintaining the epithelial nature of the dorsomedial and ventrolateral lips of the dermomyotome, respectively, during dermomyotomal growth.  相似文献   

17.
The epaxial-hypaxial subdivision of the avian somite   总被引:1,自引:0,他引:1  
In all jaw-bearing vertebrates, three-dimensional mobility relies on segregated, separately innervated epaxial and hypaxial skeletal muscles. In amniotes, these muscles form from the morphologically continuous dermomyotome and myotome, whose epaxial-hypaxial subdivision and hence the formation of distinct epaxial-hypaxial muscles is not understood. Here we show that En1 expression labels a central subdomain of the avian dermomyotome, medially abutting the expression domain of the lead-lateral or hypaxial marker Sim1. En1 expression is maintained when cells from the En1-positive dermomyotome enter the myotome and dermatome, thereby superimposing the En1-Sim1 expression boundary onto the developing musculature and dermis. En1 cells originate from the dorsomedial edge of the somite. Their development is under positive control by notochord and floor plate (Shh), dorsal neural tube (Wnt1) and surface ectoderm (Wnt1-like signalling activity) but negatively regulated by the lateral plate mesoderm (BMP4). This dependence on epaxial signals and suppression by hypaxial signals places En1 into the epaxial somitic programme. Consequently, the En1-Sim1 expression boundary marks the epaxial-hypaxial dermomyotomal or myotomal boundary. In cell aggregation assays, En1- and Sim1-expressing cells sort out, suggesting that the En1-Sim1 expression boundary may represent a true compartment boundary, foreshadowing the epaxial-hypaxial segregation of muscle.  相似文献   

18.
The node of the mouse gastrula is the major source of the progenitor cells of the notochord, the floor plate, and the gut endoderm. The node may also play a morphogenetic role since it can induce a partial body axis following heterotopic transplantation. The impact of losing these progenitor cells and the morphogenetic activity on the development of the body axes was studied by the ablation of the node at late gastrulation. In the ablated embryo, an apparently intact anterior-posterior body axis with morphologically normal head folds, neural tube, and primitive streak developed during early organogenesis. Cell fate analysis revealed that the loss of the node elicits de novo recruitment of neural ectoderm and somitic mesoderm from the surrounding germ-layer tissues. This leads to the restoration of the neural tube and the paraxial mesoderm. However, the body axis of the embryo was foreshortened and somite formation was retarded. Histological and gene expression studies reveal that in most of the node-ablated embryos, the notochord in the trunk was either absent or interrupted, and the floor plate was absent in the ventral region of the reconstituted neural tube. The loss of the node did not affect the differentiation of the gut endoderm or the formation of the mid- and hindgut. In the node-ablated embryo, expression of the Pitx2 gene in the lateral plate mesoderm was no longer restricted to the left side but was found on both sides of the body or was completely absent from the lateral plate mesoderm. Therefore, the loss of the node results in the failure to delineate the laterality of the body axis. The node and its derivatives therefore play a critical role in the patterning of the ventral neural tube and lateral body axis but not of the anterior-posterior axis during early organogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号