首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
Thrombin-induced alterations in lung fluid balance in awake sheep   总被引:5,自引:0,他引:5  
We examined the effect of fibrinolysis depression on thrombin-induced pulmonary microembolism in awake sheep prepared with chronic lung lymph fistulas. Fibrinolysis was depressed by an intravenous infusion (100 mg) of tranexamic acid [trans-4-(Aminomethyl)cyclohexanecarboxylic acid]. Pulmonary microembolism was induced by an intravenous infusion of alpha-thrombin (80 NIH U/kg) in normal (n = 7) and in tranexamic acid-treated (n = 6) sheep. Thrombin immediately increased pulmonary lymph flow (Qlym) in both groups. The increased Qlym was not associated with a change in the lymph-to-plasma protein concentration (L/P) ratio in the control group and with a small decrease in the tranexamic acid-treated group. The increases in Qlym and pulmonary transvascular protein clearance (Qlym X L/P ratio) in the tranexamic acid-treated group were greater and sustained at four- to fivefold above base line for 10 h after the thrombin and remained elevated at twofold above base line even at 24 h. In contrast, Qlym and protein clearance were transiently increased in the control group. The mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) increased after thrombin in tranexamic acid-treated group; the increases in Ppa and PVR in the control group were transient. Protein reflection coefficient as determined by the filtration independent method decreased after thrombin in tranexamic acid-treated sheep (n = 5), indicating an increased vascular permeability to proteins. We conclude that prolongation of microthrombi retention in the pulmonary circulation results in an increased vascular permeability to proteins. Both increased vascular permeability and vascular hydrostatic pressure are important determinants of the increases in Qlym and transvascular protein clearance after thrombin-induced pulmonary microembolism.  相似文献   

2.
We examined the pulmonary vascular response to an intravenous leukotriene D4 (LTD4) injection of (1 microgram X kg-1 X min-1 for 2 min) immediately followed by infusion of 0.133 microgram X kg-1 X min-1 for 15 min in awake sheep prepared with lung lymph fistulas. LTD4 resulted in rapid generation of thromboxane A2 as measured by an increase in plasma thromboxane B2 concentration. The thromboxane B2 generation was associated with increases in pulmonary arterial and pulmonary arterial wedge pressures while left atrial pressure did not change significantly. Pulmonary lymph flow (Qlym) increased (P less than 0.05) transiently from base line 6.87 +/- 1.88 (SE) ml/h to maximum value of 9.77 +/- 1.27 at 15 min following the LTD4 infusion. The maximum increase in Qlym was associated with an increase in the estimated pulmonary capillary pressure. The increase in Qlym was not associated with a change in the lymph-to-plasma protein concentration (L/P) ratio. Thromboxane synthetase inhibition with dazoxiben (an imidazole derivative) prevented thromboxane B2 generation after LTD4 and also prevented the increases in pulmonary vascular pressures and Qlym. We conclude that LTD4 in awake sheep increases resistance of large pulmonary veins. The small transient increase in Qlym can be explained by the increase in pulmonary capillary pressure. Thromboxane appears to mediate both the pulmonary hemodynamic and lymph responses to LTD4 in sheep.  相似文献   

3.
We examined the effect of acute complement activation on lung vascular permeability to proteins in awake sheep prepared with lung lymph fistulas. Complement was activated by cobra venom factor (CVF) infusion (400 U/kg for 1 h iv). Studies were made in two groups of sheep: 1) infusion of CVF containing the endogenous phospholipase A2 (PLA2) (n = 6); and 2) infusion of CVF pretreated with bromophenacyl bromide to inhibit PLA2 activity (n = 5). Intravascular complement activation transiently increased mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) in both groups. Pulmonary lymph flow (Qlym) and lymph protein clearance (Qlym X lymph-to-plasma protein concentration ratio) were also transiently increased in both groups. Pulmonary vascular permeability to proteins was assessed by raising left atrial pressure and determining the lymph-to-plasma protein concentration ratio (L/P) at maximal Qlym. In both groups the L/P at maximal Qlym was not different from normal. In a separate group (n = 4), CVF-induced complement activation was associated with 111In-oxine granulocyte sequestration in the lungs. In vitro plasma from CVF-treated animals aggregated neutrophils but did not stimulate neutrophils to produce superoxide anion generation. Therefore, CVF-induced complement activation results in pulmonary neutrophil sequestration and in increases in PVR and lymph protein clearance. The increase in lymph protein clearance is due to increased pulmonary microvascular pressure and not increased vascular permeability to proteins.  相似文献   

4.
We examined the effect of complement depletion on lung fluid and protein exchange after thrombin-induced pulmonary thromboembolization. Sheep were prepared with lung lymph fistulas to assess pulmonary transvascular fluid and protein dynamics. Studies were made in three groups: in group I (n = 5) pulmonary thromboembolization (PT) was induced by an iv infusion of thrombin (55.0 +/- 12.9 NIH U/kg); in group II (n = 6) cobra venom factor (CVF) was given ip (94.5 +/- 18.8 U/kg/day) for 2 days to deplete complement, and then thrombin (66.4 +/- 37.0 NIH U/kg) was infused to raise pulmonary vascular resistance to the same level as in group I; in group III (n = 10) left atrial pressure (Pla) was increased by 10-15 Torr in normal animals by inflation of a Foley balloon catheter. In group I, thrombin infusion caused an increase in pulmonary lymph flow (Qlym) with a gradual increase in the lymph-to-plasma protein concentration ratio (L/P). In complement-depleted sheep, thrombin caused a transient increase in Qlym, which was associated with a decrease in L/P. In group I an increase in Pla further increased Qlym but without a change in L/P, indicating an increase in lung vascular permeability to proteins; whereas in the decomplemented-thrombin sheep raising Pla increased Qlym but decreased L/P. Results in the latter group were similar to those obtained in normal animals after left atrial hypertension (group III). Therefore the complement system participates in the increase in lung vascular permeability following thrombin-induced microembolization.  相似文献   

5.
To assess the role of intracellular adenosine 3',5'-cyclic monophosphate (cAMP), we tested the effects of dibutyryl cAMP (DBcAMP), an analogue of cAMP, on lung injury induced by pulmonary air embolism in awake sheep with chronic lung lymph fistula. We infused air (1.23 ml/min) in the pulmonary artery for 2 h in untreated control sheep. In DBcAMP-pretreated sheep DBcAMP was infused (1 mg/kg bolus and 0.02 mg.kg-1.min-1 constantly for 5 h); after 1 h from beginning of DBcAMP administration the air infusion was started. After the air infusion, pulmonary arterial pressure (Ppa) and lung lymph flow rate (Qlym) significantly increased in both groups. DBcAMP-pretreated sheep showed significantly lower responses in Qlym (2.7 X base line) compared with untreated control sheep (4.6 X base line); however, Ppa, left atrial pressure, and lung lymph-to-plasma protein concentration ratio were not significantly different between the two groups. Although plasma and lung lymph thromboxane B2 and 6-ketoprostaglandin F1 alpha concentrations increased significantly during the air infusion, DBcAMP-pretreated sheep showed significantly lower responses. Thus DBcAMP infusion attenuated pulmonary microvascular permeability induced by air embolism. We conclude that pulmonary vascular permeability is in part controlled by the intracellular cAMP level.  相似文献   

6.
Pulmonary microcirculatory responses to leukotrienes B4, C4 and D4 in sheep   总被引:1,自引:0,他引:1  
The pulmonary microvascular responses to leukotrienes B4, C4, and D4 (total dosage of 4 micrograms/kg i.v.) were examined in acutely-prepared halothane anesthetized and awake sheep prepared with lung lymph fistulas. In anesthetized as well as unanesthetized sheep, LTB4 caused a marked and transient decrease in the circulating leukocyte count. Pulmonary transvascular protein clearance (pulmonary lymph flow X lymph-to-plasma protein concentration ratio) increased transiently in awake sheep, suggesting a small increase in pulmonary vascular permeability. The mean pulmonary artery pressure (Ppa) also increased. In the acutely-prepared sheep, the LTB4-induced pulmonary hemodynamic and lymph flow responses were damped. Leukotriene C4 increased Ppa to a greater extent in awake sheep than in anesthetized sheep, but did not significantly affect the pulmonary lymph flow rate (Qlym) and lymph-to-plasma protein concentration (L/P) ratio in either group. LTD4 increased Ppa and Qlym in both acute and awake sheep; Qlym increased without a significant change in the L/P ratio. The LTD4-induced rise in Ppa occurred in association with an increase in plasma thromboxane B2 (TxB2) concentration. The relatively small increase in Qlym with LTD4 suggests that the increase in the transvascular fluid filtration rate is the result of a rise in the pulmonary capillary hydrostatic pressure. In conclusion, LTB4 induces a marked neutropenia, pulmonary hypertension, and may transiently increase lung vascular permeability. Both LTC4 and LTD4 cause a similar degree of pulmonary hypertension in awake sheep, but had different lymph flow responses which may be due to pulmonary vasoconstriction at different sites, i.e. greater precapillary constriction with LTC4 because Qlym did not change and greater postcapillary constriction with LTD4 because Qlym increased with the same rise in Ppa.  相似文献   

7.
We examined the effects of thromboxane synthetase inhibition with OKY-1581 and OKY-046 on pulmonary hemodynamics and lung fluid balance after thrombin-induced intravascular coagulation. Studies were made in anesthetized sheep prepared with lung lymph fistulas. Pulmonary intravascular coagulation was induced by i.v. infusion of alpha-thrombin over a 15 min period. Thrombin infusion in control sheep resulted in immediate increases in pulmonary artery pressure (Ppa) and pulmonary vascular resistance (PVR), which were associated with rapid 3-fold increase in pulmonary lymph flow (Qlym) and a delayed increase in lymph-to-plasma protein concentration (L/P) ratio, indicating an increase in the pulmonary microvascular permeability to proteins. Thrombin-induced intravascular coagulation also increased arterial thromboxane B2 (a metabolite of thromboxane A2) and 6-keto-PGF1 alpha concentrations (a metabolite of prostacyclin). Both OKY-1581 and OKY-046 prevented thromboxane B2 and 6-keto-PGF1 alpha generation. The initial increments in Ppa and PVR were attenuated in both treated groups. The increases in Qlym were gradual in the treated groups but attained the same levels as in control group. However, the increases in Qlym were associated with decreases in L/P ratio. In both treated groups, the leukocyte count decreased after thrombin infusion but then increased steadily above the baseline value, whereas the leukocyte count remained depressed in the control group after thrombin. These studies indicate that a part of the initial pulmonary vasoconstrictor response to thrombin-induced intravascular coagulation is mediated by thromboxane generation. In addition, thromboxane may also contribute to the increase in lung vascular permeability to proteins that occurs after intravascular coagulation and this effect may be mediated by a thromboxane-neutrophil interaction.  相似文献   

8.
Using a model to study vascular permeability under hydrostatically perfused bovine pulmonary artery endothelial cell (EC) monolayers and a software to automatically analyse cell morphological parameters in a computer image workstation, the effects of isoproterenol (IPN) on platelet-activating factor (PAF)-induced changes in EC monolayer permeability and cell morphological parameters were studied. Albumin has the fortifying effect on endothelial barrier function. After treatment of EC monolayer with 10-8mol/L PAF, trans-monolayer permeability increased, cell surface area decreased, and intercellular space enlarged. As pretreatment with 10-4mol/L IPN, PAF-induced EC permeability increment and morphological changes were blocked. The results suggest that EC contraction and intercellular gap expansion are important mechanisms for PAF-induced high vascular permeability. IPN inhibits the effects of PAF via stabilization of EC morphology and prevention of intercellular gap formation.  相似文献   

9.
To determine the fetal pulmonary vascular response to platelet-activating factor (PAF), we studied the hemodynamic effects of the infusion of PAF directly into the left pulmonary artery in 21 chronically catheterized fetal lambs. Left pulmonary arterial blood flow (Q) was measured with electromagnetic flow transducers. Ten-minute infusions of low-dose PAF (10-100 ng/min) produced increases in Q from a baseline of 71 +/- 5 to 207 +/- 20 ml/min (P less than 0.001) without changes in pulmonary arterial pressure. Pulmonary vasodilation with PAF was further confirmed through increases in Q with brief (15-s) infusions and increases in the slope of the pressure-flow relationship as assessed by rapid incremental compressions of the ductus arteriosus during PAF infusion. Infusion of Lyso-PAF had no effect on Q or pulmonary arterial pressure. Treatment with CV-3988, a selective PAF receptor antagonist, but not with meclofenamate, atropine, or diphenhydramine and cimetidine blocked the response to PAF infusion and did not affect baseline tone. Systemic infusion of high-dose PAF (300 ng/min) through the fetal inferior vena cava increased pulmonary arterial pressure (46.5 +/- 1.0 to 54.8 +/- 1.9 mmHg, P less than 0.01) and aorta pressure (44.3 +/- 1.0 to 52.7 +/- 2.2 mmHg, P less than 0.01) while also increasing Q. Neither PAF nor CV-3988 changed the gradient between pulmonary arterial and aorta pressures, suggesting that PAF does not affect ductal tone. We conclude that PAF is a potent fetal pulmonary vasodilator and that the effects are not mediated through cyclooxygenase products or by cholinergic or histaminergic effects.  相似文献   

10.
We investigated whether platelet-activating factor (PAF) increased epithelial or endothelial permeability in isolated-perfused rabbit lungs. PAF was either injected into the pulmonary artery or instilled into the airway of lungs perfused with Tyrode's solution containing 1% bovine serum albumin. The effect of adding neutrophils or platelets to the perfusate was also tested. Perfusion was maintained 20-40 min after adding PAF and then a fluid filtration coefficient (Kf) was determined to assess vascular permeability. At the end of each experiment, one lung was lavaged, and the lavagate protein concentration (BALP) was determined. Wet weight-to-dry weight ratios (W/D) were determined on the other lung. PAF added to the vascular space increased peak pulmonary arterial pressure (Ppa) from 13.5 +/- 3.1 (mean +/- SE) to 24.2 +/- 3.3 cmH2O (P less than 0.05). The effect was amplified by platelets [Ppa to 70.8 +/- 8.0 cmH2O (P less than 0.05)] but not by neutrophils [Ppa to 22.0 +/- 1.4 cmH2O (P less than 0.05)]. Minimal changes in Ppa were observed after instilling PAF into the airway. The Kf, W/D, and BALP of untreated lungs were not increased by injecting PAF into the vasculature or into the air space. The effect of PAF on Kf, W/D, and BALP was unaltered by adding platelets or neutrophils to the perfusate. PAF increases intravascular pressure (at a constant rate of perfusion) but does not increase epithelial or endothelial permeability in isolated-perfused rabbit lungs.  相似文献   

11.
Effects of hypobaria on lung fluid balance were studied in five awake sheep with chronic lung lymph fistulas using a decompression chamber. Each sheep was exposed to three conditions of 6,600-m-simulated high altitude in random order as follows: 1) 6,600-m-simulated hypoxic hypobaria (barometric pressure 326 Torr, 21% inspired O2 fraction), 2) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction), and 3) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction) after pretreatment with a 2-h pure O2 inhalation (i.e., denitrogenation) to allow elimination of dissolved gases, especially N2, from the blood and tissues. We observed that under both hypoxic hypobaria and normoxic hypobaria, lung lymph flow (Qlym) significantly increased from the base-line values of 6.4 +/- 0.3 to 13.0 +/- 1.0 ml/h and 6.0 +/- 0.2 to 9.4 +/- 0.3 ml/h, respectively (P less than 0.05) and that the lymph-to-plasma protein concentration ratio remained unchanged. Moreover, pretreatment with a 2-h denitrogenation inhibited the increase in Qlym. These results suggest that rapid exposure to hypobaria causes an increase in pulmonary vascular permeability and that intravascular air bubble formation may account for this permeability change.  相似文献   

12.
We determined the effects of infusion of prostacyclin (PGI2) and 6-alpha-carba-PGI2 (6-cPGI2), a stable PGI2 analogue, on pulmonary transvascular fluid and protein fluxes after intravascular coagulation induced by thrombin. Studies were made in control awake sheep prepared with lung lymph fistulas (n = 6) and in similarly prepared awake sheep pretreated with either 6-cPGI2 (n = 5) or PGI2 (n = 5). Both prostacyclin compounds (500 ng X kg-1 X min-1) were infused intravenously. All groups were challenged with 80 U/kg thrombin. Pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), pulmonary lymph flow (Qlym), lymph protein clearance (Qlym X lymph/plasma protein concentration ratio), and neutrophil and platelet counts were determined. In vitro tests assessed sheep neutrophil chemotaxis and chemiluminescence and platelet aggregation. In both 6-cPGI2 and PGI2 groups, the increases in Qlym after thrombin were less than those in the control group. The increase in lymph protein clearance in the 6-cPGI2 group was the same as that in control, whereas the increase in clearance in the PGI2 group was reduced. PVR and Ppa increased to a greater extent in the 6-cPGI2 group than in the control group, whereas the increases in PVR and Ppa were inhibited in the PGI2 group. Neutrophil and platelet counts decreased after thrombin in PGI2 and 6-cPGI2 groups, as they did in the control group. Neither 6-cPGI2 altered neutrophil chemotaxis induced by thrombin and chemiluminescence induced by opsonized zymosan. Both prostacyclin compounds inhibited platelet aggregation induced by ADP or thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Platelet-activating factor (PAF) infusion into sheep, as well as protamine reversal of heparin anticoagulation, causes thromboxane release into plasma, pulmonary hypertension, hypoxemia, and leukopenia. We investigated the possible role of PAF in the heparin-protamine reaction. Intravenous protamine was administered to neutralize heparin anticoagulation in five awake sheep and caused an increase of mean pulmonary arterial pressure from 16.6 +/- 1 (SE) mmHg at base-line to 47 +/- 9 mmHg at 1 min after protamine injection (P < 0.01) because of a 4.5-fold increase of pulmonary vascular resistance. This neutralization reaction induced a 25% reduction of circulating leukocyte count and arterial PO2. Undetectable blood levels of PAF were measured by bioassay and high-performance liquid chromatography during these heparin-protamine reactions. Infusion of BN 52021 (20 mg/kg), a PAF receptor antagonist, before rechallenging the same sheep with heparin and then protamine did not reduce the level of peak pulmonary hypertension or the degree of hypoxemia and leukopenia. We conclude that the leukopenia and thromboxane-mediated pulmonary vasoconstriction occurring after rapid intravascular formation of heparin-protamine complexes in sheep are not due to the release of PAF.  相似文献   

14.
Experiments were performed to determine whether activation of the coagulation cascade was required for pulmonary vascular permeability to increase during microembolization of the lung. For 30-45 min air microemboli were intravenously infused (0.05-0.10 ml X kg-1 X min-1) into awake sheep with chronic lung-lymph fistulas and anesthetized mongrel dogs. During embolization the pulmonary arterial pressure increased, and O2 partial pressure (PaO2) fell by more than 20 Torr (P less than 0.01). Subsequently lymph flow nearly tripled without a change in the lymph-to-plasma protein concentration ratio. Partial thromboplastin and prothrombin times, biological activity of antithrombin III, and circulating concentration of 125I-labeled dog or sheep fibrinogen did not change during or following air infusion. In two additional sheep an intravenous infusion of thrombin at 0.6 U X kg-1 X min-1 for 15 min resulted in a 20% decrease in 125I-labeled sheep fibrinogen concentration without a change in pulmonary arterial pressure or PaO2. We conclude that air microembolization can increase permeability to water and protein without a detectable activation of the coagulation cascade in the sheep or dog.  相似文献   

15.
In adult sheep, platelet-activating factor (PAF) effects include systemic hypotension and pulmonary hypertension. To identify developmental differences in vascular responses to PAF, we studied the effects of C18- and C16-PAF in 49 +/- 2- (SE) day-old lambs. Responses of upstream (arteries and microvessels) and venous segments of the lung to C18-PAF were determined both in vivo and in isolated lungs. In isolated lungs, the role of eicosanoids in PAF effects was also determined. In vivo, both C18- and C16-PAF caused a significant increase in systemic and pulmonary vascular resistance. The magnitude of vascular responses to C16-PAF was greater than that to C18-PAF. C18-PAF constricted both upstream and venous segments of the pulmonary circulation. Cyclooxygenase inhibition in isolated lungs attenuated arterial constriction to C18-PAF, whereas simultaneous cyclooxygenase and lipoxygenase inhibition completely blocked the effects of C18-PAF. In summary, in contrast to PAF effects in adult sheep, PAF constricts both systemic and pulmonary vessels in lambs, with significant pulmonary venous constriction. Eicosanoids, especially lipoxygenase products, play a major role in mediating PAF effects in the lung.  相似文献   

16.
We previously reported that vascular endothelial growth factor (VEGF) increases vascular permeability through the synthesis of endothelial platelet-activating factor (PAF), while others reported the contribution of nitric oxide (NO). Herein, we addressed the contribution of VEGF receptors and the role played by PAF and NO in VEGF-induced plasma protein extravasation. Using a modified Miles assay, intradermal injection in mice ears of VEGF-A(165), VEGF-A(121), and VEGF-C (1 microM) which activate VEGFR-2 (Flk-1) receptor increased vascular permeability, whereas a treatment with VEGFR-1 (Flt-1) analogs; PlGF and VEGF-B (1 microM) had no such effect. Pretreatment of mice with PAF receptor antagonist (LAU8080) or endothelial nitric oxide synthase (eNOS) inhibitor (L-NAME) abrogated protein extravasation mediated by VEGF-A(165). As opposed to PAF (0.01-1 microM), treatment with acetylcholine (ACh; up to 100 microM; inducer of NO synthesis) or sodium nitroprusside (SNP; up to 1 microM; NO donor) did not induce protein leakage. Simultaneous pretreatment of mice with eNOS and protein kinase A (PKA) inhibitors restored VEGF-A(165) vascular hyperpermeability suggesting that endogenous NO synthesis leads to PKA inhibition, which support maintenance of vascular integrity. Our data demonstrate that VEGF analogs increase vascular permeability through VEGFR-2 activation, and that both endogenous PAF and NO synthesis contribute to VEGF-A(165)-mediated vascular permeability. However, PAF but not NO directly increases vascular permeability per se, thereby, suggesting that PAF is a direct inflammatory mediator, whereas NO serves as a cofactor in VEGF-A(165) proinflammatory activities.  相似文献   

17.
Pulmonary hypertension and foreign body granulomas are recognized sequelae of chronic intravenous drug abuse. We have recently described the development of transient pulmonary hypertension and increased permeability pulmonary edema after the intravenous injection of crushed, suspended pentazocine tablets in both humans and dogs. To determine the role of vasoactive substances in the development of this transient pulmonary hypertension, we measured pulmonary hemodynamics and accumulation of arachidonic acid metabolites in dogs during the infusion of indomethacin, a cyclooxygenase inhibitor, diethylcarbamazine (DEC), a lipoxygenase inhibitor, and FPL 55712, a receptor antagonist for leukotriene C4/D4 (LTC4/D4). Following the intravenous administration of crushed, suspended pentazocine tablets (3-4 mg/kg of body weight), mean pulmonary artery pressure increased from 14 +/- 2 mmHg to 30 +/- 6 mmHg (p less than 0.05) at 60 secs with a concomitant increase in plasma concentrations of 6-keto-PGF1 alpha from 187 +/- 92 pg/ml to 732 +/- 104 pg/ml and thromboxane B2 from 206 +/- 83 pg/ml to 1362 +/- 117 pg/ml (both p less than 0.05). Indomethacin prevented the increase in both cyclooxygenase metabolites, but had no effect on the pulmonary hypertension. In contrast, DEC had no effect on the increase in cyclooxygenase products, but blocked the pulmonary hypertension. FPL 55712 did not effect either the increase in cyclooxygenase metabolites or the pulmonary hypertension. We conclude that the transient pulmonary hypertension, induced by the intravenous injection of crushed, suspended pentazocine tablets, is not mediated by cyclooxygenase products but may be mediated by lipoxygenase product(s) other than LTC4/D4.  相似文献   

18.
This study examined the hemodynamic effects of leukotriene B4 (LTB4) in chronically instrumented awake sheep, and the role of cyclooxygenase products in the sheep's response to LTB4. LTB4 (25 micrograms) was given as a bolus into the pulmonary artery. Six sheep were studied with LTB4, both before and after pretreatment with meclofenamate (5 mg/kg load, 3 mg/kg/hr maintenance infusion). LTB4 alone caused a rapid rise in pulmonary arterial pressure from 15 +/- 1 to 42 +/- 11 cm H2O. LTB4 had no effect on pulmonary arterial pressure following pretreatment with meclofenamate. LTB4 alone caused an increase in serum thromboxane B2 (TxB2) from 130 +/- 35 to 320 +/- 17 pg/ml 3 minutes after dosing but did not increase TxB2 following pre-treatment with meclofenamate. LTB4 caused a slight decrease in mean systemic arterial pressure and a transient fall in circulating white blood cells, both of which were unaffected by meclofenamate pre-treatment. The vasoactive effects of LTB4 in the pulmonary circulation appear to be mediated indirectly through the production of cyclooxygenase metabolites of arachidonic acid.  相似文献   

19.
Administration of lymphokine-activated killer (LAK) cells in combination with interleukin 2 (IL-2) has been effective in reducing tumor mass in humans, but has been accompanied by significant toxicity. We used a chronic awake sheep model to investigate the cause of the vascular leak syndrome associated with IL-2 administration. Sheep repeatedly infused with human recombinant IL-2 (hrIL-2) developed mild pulmonary hypertension, systemic hypotension, acidemia, hypoxemia, and increased flow of protein rich lung lymph. We hypothesized that LAK cells may damage lung endothelium in vivo and cause increased lung vascular permeability. Sheep peripheral blood and lung lymph lymphocytes incubated in vitro with hrIL-2 generated cytotoxic activity for human K-562 cells and sheep pulmonary microvascular endothelial cells. In addition, cytotoxic effector cells were isolated from the peripheral blood of a sheep which had received hrIL-2. These observations suggest that LAK cells possess the ability to damage endothelial cells and may contribute to an increased pulmonary vascular permeability observed following hrIL-2 infusion in sheep.  相似文献   

20.
Apocynin (4-hydroxy-3-methoxy-acetophenone) inhibits NADPH oxidase in activated polymorphonuclear (PMN) leukocytes, preventing the generation of reactive oxygen species. To determine if apocynin attenuates ischemia-reperfusion lung injury, we examined the effects of apocynin (0.03, 0.3, and 3 mM) in isolated in situ sheep lungs. In diluent-treated lungs, reperfusion with blood (180 min) after 30 min of ischemia (ventilation 28% O(2), 5% CO(2)) caused leukocyte sequestration in the lung and increased vascular permeability [reflection coefficient for albumin (sigma(alb)) 0.47 +/- 0.10, filtration coefficient (K(f)) 0.14 +/- 0.03 g. min(-1). mmHg(-1). 100 g(-1)] compared with nonreperfused lungs (sigma(alb) 0.77 +/- 0. 03, K(f) 0.03 +/- 0.01 g. min(-1). mmHg(-1). 100 g(-1); P < 0.05). Apocynin attenuated the increased protein permeability at 0.3 and 3 mM (sigma(alb) 0.69 +/- 0.05 and 0.91 +/- 0.03, respectively, P < 0. 05); K(f) was decreased by 3 mM apocynin (0.05 +/- 0.01 g. min(-1). mmHg(-1). 100 g(-1), P < 0.05). Diphenyleneiodonium (DPI, 5 microM), a structurally unrelated inhibitor of NADPH oxidase, worsened injury (K(f) 0.32 +/- 0.07 g. min(-1). mmHg(-1). 100 g(-1), P < 0.05). Neither apocynin nor DPI affected leukocyte sequestration. Apocynin and DPI inhibited whole blood chemiluminescence and isolated PMN leukocyte-induced resazurin reduction, confirming NADPH oxidase inhibition. Apocynin inhibited pulmonary artery hypertension and perfusate concentrations of cyclooxygenase metabolites, including thromboxane B(2). The cyclooxygenase inhibitor indomethacin had no effect on the increased vascular permeability, suggesting that cyclooxygenase inhibition was not the explanation for the apocynin results. Apocynin prevented ischemia-reperfusion lung injury, but the mechanism of protection remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号