首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To improve the efficiency of breeding of Miscanthus for biomass yield, there is a need to develop genomics‐assisted selection for this long‐lived perennial crop by relating genotype to phenotype and breeding value across a broad range of environments. We present the first genome‐wide association (GWA) and genomic prediction study of Miscanthus that utilizes multilocation phenotypic data. A panel of 568 Miscanthus sinensis accessions was genotyped with 46,177 single nucleotide polymorphisms (SNPs) and evaluated at one subtropical and five temperate locations over 3 years for biomass yield and 14 yield‐component traits. GWA and genomic prediction were performed separately for different years of data in order to assess reproducibility. The analyses were also performed for individual field trial locations, as well as combined phenotypic data across groups of locations. GWA analyses identified 27 significant SNPs for yield, and a total of 504 associations across 298 unique SNPs across all traits, sites, and years. For yield, the greatest number of significant SNPs was identified by combining phenotypic data across all six locations. For some of the other yield‐component traits, greater numbers of significant SNPs were obtained from single site data, although the number of significant SNPs varied greatly from site to site. Candidate genes were identified. Accounting for population structure, genomic prediction accuracies for biomass yield ranged from 0.31 to 0.35 across five northern sites and from 0.13 to 0.18 for the subtropical location, depending on the estimation method. Genomic prediction accuracies of all traits were similar for single‐location and multilocation data, suggesting that genomic selection will be useful for breeding broadly adapted M. sinensis as well as M. sinensis optimized for specific climates. All of our data, including DNA sequences flanking each SNP, are publicly available. By facilitating genomic selection in M. sinensis and Miscanthus × giganteus, our results will accelerate the breeding of these species for biomass in diverse environments.  相似文献   

2.
Accelerating biomass improvement is a major goal of Miscanthus breeding. The development and implementation of genomic-enabled breeding tools, like marker-assisted selection (MAS) and genomic selection, has the potential to improve the efficiency of Miscanthus breeding. The present study conducted genome-wide association (GWA) and genomic prediction of biomass yield and 14 yield-components traits in Miscanthus sacchariflorus. We evaluated a diversity panel with 590 accessions of M. sacchariflorus grown across 4 years in one subtropical and three temperate locations and genotyped with 268,109 single-nucleotide polymorphisms (SNPs). The GWA study identified a total of 835 significant SNPs and 674 candidate genes across all traits and locations. Of the significant SNPs identified, 280 were localized in mapped quantitative trait loci intervals and proximal to SNPs identified for similar traits in previously reported Miscanthus studies, providing additional support for the importance of these genomic regions for biomass yield. Our study gave insights into the genetic basis for yield-component traits in M. sacchariflorus that may facilitate marker-assisted breeding for biomass yield. Genomic prediction accuracy for the yield-related traits ranged from 0.15 to 0.52 across all locations and genetic groups. Prediction accuracies within the six genetic groupings of M. sacchariflorus were limited due to low sample sizes. Nevertheless, the Korea/NE China/Russia (N = 237) genetic group had the highest prediction accuracy of all genetic groups (ranging 0.26–0.71), suggesting that with adequate sample sizes, there is strong potential for genomic selection within the genetic groupings of M. sacchariflorus. This study indicated that MAS and genomic prediction will likely be beneficial for conducting population-improvement of M. sacchariflorus.  相似文献   

3.
Miscanthus × giganteus (M×g) is the primary species of Miscanthus for bioenergy feedstock production. The current leading biomass cultivar, M×g ‘1993‐1780’, is insufficiently adapted in temperate regions with cold winters such as USDA hardiness zone 5 (average annual minimum temperature of ?28.9 to ?23.3°C) or lower. Three interconnected Miscanthus F1 populations that shared a common parent were planted in a replicated field trial at Urbana, IL (hardiness zone 5b; average annual minimum temperature of ?26.1 to ?23.3°C) in spring 2011. The winter of 2013–2014 was especially cold in Urbana, with a minimum soil temperature at 10 cm of ?6.2°C and a minimum air temperature of ?25.3°C, giving us an opportunity to evaluate hardiness on established year‐3 plants. The parent in common to all three populations, M. sinensis ssp. condensatus ‘Cosmopolitan’, is native to maritime southern Japan, and in Urbana, it is winter‐damaged most years. In contrast, the three other parents, M. sacchariflorus ‘Robustus’ (MapA), M. sinensis ‘Silberturm’ (MapB), and M. sinensis ‘November Sunset’ (MapC), are typically winter hardy in Urbana. Nearly all MapA progeny plants survived and grew vigorously in spring 2014, whereas in MapB and MapC, many progeny plants did not survive the winter, and most of the survivors were severely damaged, with poor vigor. Negative correlations between overwintering ability and spring regrowth date and autumn dormancy date suggested that the genotypes most likely to survive winters were those that emerged early in spring and/or went dormant early in autumn. Using joint‐population analysis, we identified 53 quantitative trait loci (QTLs) for nine adaptation traits, including nine QTLs for overwintering ability and 11 for spring hardiness scores. Many biologically intuitive candidate genes were observed within or near the QTLs detected in this study, suggesting their validity and potential for further study.  相似文献   

4.
A growing body of evidence indicates that second‐generation energy crops can play an important role in the development of renewable energy and the mitigation of climate change. However, dedicated energy crops have yet to be domesticated in order to fully realize their productive potential under unfavorable soil and climatic conditions. To explore the possibility of domesticating Miscanthus crops in northern China where marginal and degraded land is abundant, we conducted common garden experiments at multiple locations to evaluate variation and adaptation of three Miscanthus species that are likely to serve as the wild progenitors of the energy crops. A total of 93 populations of Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus lutarioriparius were collected across their natural distributional ranges in China and grown in three locations that represent temperate grassland with cold winter, the semiarid Loess Plateau, and relatively warm and wet central China. Evaluated with growth traits such as plant height, tiller number, tiller diameter, and flowering time, the Miscanthus species showed high levels of genetic variation within and between species. There were significant site × population interactions for almost all traits of M. sacchariflorus and M. sinensis, but not M. lutarioriparius. The northern populations of M. sacchariflorus had the highest establishment rates at the most northern site owing to their strong cold tolerance. An endemic species in central China, M. lutarioriparius, produced not only the highest biomass of the three species but also higher biomass at the Loess Plateau than the southern site near its native habitats. These results demonstrated that the wild species harbored a high level of genetic variation underlying traits important for crop establishment and production at sites that are colder and drier than their native habitats. The natural variation and adaptive plasticity found in the Miscanthus species indicated that they could provide valuable resources for the development of second‐generation energy crops.  相似文献   

5.
Miscanthus ×giganteus (M×g) is an important bioenergy feedstock crop. However, biomass production of Miscanthus has been largely limited to one sterile triploid cultivar, M×g ‘1993‐1780’, which we demonstrate can have insufficient overwintering ability in temperate regions with cold winters. Key objectives for Miscanthus breeding include greater biomass yield and better adaptation to different production environments than M×g ‘1993‐1780’. In this study, we evaluated 13 M×g genotypes, including ‘1993‐1780’, in replicated field trials conducted for three years at Urbana, IL; Dixon Springs, IL; and Jonesboro, AR. Entries were phenotyped for first‐winter overwintering ability and plant hardiness (ratio of new tillers to old), yield in years 2 and 3, and first heading date, plant height, and culm number in years 1 and 2. We observed substantial variation for overwintering ability and biomass yield among the M×g genotypes tested and identified ones with better overwintering ability and/or higher biomass yield than ‘1993‐1780’. Most entries at Urbana were damaged during the first winter, whereas few or no entries were damaged at Dixon Springs or Jonesboro. However, M×g ‘Nagara’ was entirely undamaged during the first winter and produced high biomass yields at Urbana (19.7 Mg/ha in year 2 and 20.9 Mg/ha in year 3), whereas M×g ‘1993‐1780’ exhibited an overwintering loss of 29%, had severely damaged survivors (hardiness score of 25%), and reduced biomass yield (8.1 Mg/ha in year 2 and 16.2 Mg/ha in year 3), indicating that M×g ‘Nagara’ could be a better choice in hardiness zone 5 (average annual minimum air temperature of ?23.3 to ?28.9°C) or lower. In Dixon Springs, where M×g ‘1993‐1780’ was undamaged by the first winter, it yielded highest among all the entries (21.6 Mg/ha in year 3), though not significantly higher than M×g ‘Nagara’ (18.2 Mg/ha in year 3).  相似文献   

6.
To breed improved biomass cultivars of Miscanthus ×giganteus, it will be necessary to select the highest‐yielding and best‐adapted genotypes of its parental species, Miscanthus sinensis and Miscanthus sacchariflorus. We phenotyped a diverse clonally propagated panel of 569 M. sinensis and nine natural diploid M. ×giganteus at one subtropical (Zhuji, China) and five temperate locations (Sapporo, Japan; Leamington, Ontario, Canada; Fort Collins, CO; Urbana, IL; and Chuncheon, Korea) for dry biomass yield and 14 yield‐component traits, in trials grown for 3 years. Notably, dry biomass yield of four Miscanthus accessions exceeded 80 Mg/ha in Zhuji, China, approaching the highest observed for any land plant. Additionally, six M. sinensis in Sapporo, Japan and one in Leamington, Canada also yielded more than the triploid M. ×giganteus ‘1993‐1780’ control, with values exceeding 20 Mg/ha. Diploid M. ×giganteus was the best‐yielding group at the northern sites. Genotype‐by‐environment interactions were modest among the five northern trial sites but large between Zhuji, and the northern sites. M. sinensis accessions typically yielded best at trial sites with latitudes similar to collection sites, although broad adaptation was observed for accessions from southern Japan. Genotypic heritabilities for third year yields ranged from 0.71 to 0.88 within locations. Compressed circumference was the best predictor of yield. These results establish a baseline of data for initiating selection to improve biomass yield of M. sinensis and M. ×giganteus in a diverse set of relevant geographies.  相似文献   

7.
Improving biomass yield is a major goal of Miscanthus breeding. We conducted a study on one interspecific Miscanthus sinensis × Miscanthus sacchariflorus F1 population and two intraspecific M. sinensis F1 populations, each of which shared a common parent. A field trial was established at Urbana, IL during spring 2011, and phenotypic data were collected in 2012 and 2013 for fourteen yield traits. Six high‐density parental genetic maps, as well as a consensus genetic map integrating M. sinensis and M. sacchariflorus, were developed via the pseudotestcross strategy for noninbred parents with ≥1214 single‐nucleotide polymorphism markers generated from restriction site‐associated DNA sequencing. We confirmed for the first time a whole‐genome duplication in M. sacchariflorus relative to Sorghum bicolor, similar to that observed previously for M. sinensis. Four quantitative trait locus (QTL) analysis methods for detecting marker‐trait associations were compared: (1) individual parental map composite interval mapping analysis, (2) individual parental map stepwise analysis, (3) consensus map single‐population stepwise analysis and (4) consensus map joint‐population stepwise analysis. These four methods detected 288, 264, 133 and 109 total QTLs, which resolved into 157, 136, 106 and 86 meta‐QTLs based on QTL congruency, respectively, including a set of 59 meta‐QTLs common to all four analysis methods. Composite interval mapping and stepwise analysis co‐identified 118 meta‐QTLs across six parental maps, suggesting high reliability of stepwise regression in QTL detection. Joint‐population stepwise analysis yielded the highest resolution of QTLs compared to the other three methods across all meta‐QTLs. Strong, frequently advantageous transgressive segregation in the three populations indicated a promising future for breeding new higher‐yielding cultivars of Miscanthus.  相似文献   

8.
9.
Species and hybrids of Miscanthus are a promising energy crop, but their outcrossing mating systems and perennial life cycles are serious challenges for breeding programs. One approach to accelerating the domestication of Miscanthus is to harness the tremendous genetic variation that is present within this genus using phenotypic data from extensive field trials, high‐density genotyping and sequencing technologies, and rapidly developing statistical methods of relating phenotype to genotype. The success of this approach, however, hinges on detailed knowledge about the population genetic structure of the germplasm used in the breeding program. We therefore used data for 120 single‐nucleotide polymorphism and 52 simple sequence repeat markers to depict patterns of putatively neutral population structure among 244 Miscanthus genotypes grown in a field trial near Aberystwyth (UK) and delineate a population of 145 M . sinensis genotypes that will be used for association mapping and genomic selection. Comparative multivariate analyses of molecular marker and phenotypic data for 17 traits related to phenology, morphology/biomass, and cell wall composition revealed significant geographic patterns in this population. A longitudinal cline accounted for a substantial proportion of molecular marker variation (R2 = 0.60, = 3.4 × 10?15). In contrast, genetic variation for phenotypic traits tended to follow latitudinal and altitudinal gradients, with several traits appearing to have been affected by divergent selection (i.e., QST >> FST). These contrasting geographic trends are unusual relative to other plants and provide opportunities for powerful studies of phenotype–genotype associations and the evolutionary history of M. sinensis.  相似文献   

10.
11.
Miscanthus is a perennial rhizomatous C4 grass native to East Asia. Endowed with great biomass yield, high ligno-cellulose composition, efficient use of radiation, nutrient and water, as well as tolerance to stress, Miscanthus has great potential as an excellent bioenergy crop. Despite of the high potential for biomass production of the allotriploid hybrid M. ×giganteus, derived from M. sacchariflorus and M. sinensis, other options need to be explored to improve the narrow genetic base of M. ×giganteus, and also to exploit other Miscanthus species, including M. sinensis (2n = 2x = 38), as bioenergy crops. In the present study, a large number of 459 M. sinensis accessions, collected from the wide geographical distribution regions in China, were genotyped using 23 SSR markers transferable from Brachypodium distachyon. Genetic diversity and population structure were assessed. High genetic diversity and differentiation of the germplasm were observed, with 115 alleles in total, a polymorphic rate of 0.77, Nei’s genetic diversity index (He) of 0.32 and polymorphism information content (PIC) of 0.26. Clustering of germplasm accessions was primarily in agreement with the natural geographic distribution. AMOVA and genetic distance analyses confirmed the genetic differentiation in the M. sinensis germplasm and it was grouped into five clusters or subpopulations. Significant genetic variation among subpopulations indicated obvious genetic differentiation in the collections, but within-subpopulation variation (83%) was substantially greater than the between-subpopulation variation (17%). Considerable phenotypic variation was observed for multiple traits among 300 M. sinensis accessions. Nine SSR markers were found to be associated with heading date and biomass yield. The diverse Chinese M. sinensis germplasm and newly identified SSR markers were proved to be valuable for breeding Miscanthus varieties with desired bioenergy traits.  相似文献   

12.
Plants from the genus Miscanthus are potential renewable sources of lignocellulosic biomass for energy production. A potential strategy for Miscanthus crop improvement involves interspecific manipulation of ploidy levels to generate superior germplasm and to circumvent reproductive barriers for the introduction of new genetic variation into core germplasm. Synthetic autotetraploid lines of Miscanthus sacchariflorus and Miscanthus sinensis, and autoallohexaploid Miscanthus x giganteus were produced in tissue culture from oryzalin treatments to seed‐ and immature inflorescence‐derived callus lines. This is the first report of the genome doubling of diploid M. sacchariflorus. Genome doubling of diploid M. sinensis, M. sacchariflorus, and triploid M. x giganteus to generate tetraploid and hexaploid lines was confirmed by stomata size, nuclear DNA content, and chromosome counts. A putative pentaploid line was also identified among the M. x giganteus synthetic polyploid lines by nuclear DNA content and chromosome counts. Comparisons of phenotypic performance of synthetic polyploid lines with their diploid and triploid progenitors in the greenhouse found species‐specific differences in plant tiller number, height, and flowering time among the doubled lines. Stem diameter tended to increase after polyploidization but there were no significant improvements in biomass traits. Under field conditions, M. x giganteus synthetic hexaploid lines showed greater phenotypic variation, in terms of plant height, stem diameter, and tiller number, than their progenitor lines. Production of synthetic autopolyploid lines displaying significant phenotypic variation suggests that ploidy manipulation can introduce useful genetic diversity in the limited Miscanthus germplasm currently available in the United States. The role of polyploidization in the evolution and breeding of the genus Miscanthus is discussed.  相似文献   

13.
Miscanthus is a perennial C4 grass that has recently become an important bioenergy crop. The efficiency of breeding improved Miscanthus biomass cultivars could be greatly increased by marker‐assisted selection. Thus, a high‐density genetic map is critical to Miscanthus improvement. In this study, a mapping population of 261 F1 progeny was developed from a cross between two diploid M. sinensis cultivars, ‘Strictus’ and ‘Kaskade’. High‐density genetic maps for the two parents were produced with 3044 newly developed single nucleotide polymorphisms (SNPs) obtained from restriction site‐associated DNA sequencing, and 138 previously mapped GoldenGate SNPs. The female parent (‘Strictus’) map spanned 1599 cM, with 1989 SNPs on 19 linkage groups, and an average intermarker spacing of 0.8 cM. The length of the male parent (‘Kaskade’) map was 1612 cM, with 1821 SNPs, and an average intermarker spacing of 0.9 cM. The utility of the map was confirmed by locating quantitative trait loci (QTL) for the zebra‐striped trait, which was segregating in this population. Three QTL for zebra‐striped presence/absence (zb1, zb2 on LG 7, and zb3 on LG 10) and three for zebra‐striped intensity (zbi1, zbi2, zbi3 on LGs 7, 10, 3) were identified. Each allele that caused striping was recessive. Incomplete penetrance was observed for each zb QTL, but penetrance was greatest when two or more zb QTL were homozygous for the causative alleles. Similarly, the intensity of striping was greatest when two or more zbi QTL were homozygous for alleles that conferred the trait. Comparative mapping indicated putative correspondence between zb3 and/or zbi2 on LG 10 to previously sequenced genes conferring zebra stripe in maize and rice. These results demonstrate that the new map is useful for identifying marker–trait associations. The mapped markers will become a valuable community resource, facilitating comparisons among studies and the breeding of Miscanthus.  相似文献   

14.
Information on genome size, ploidy level, and genomic polymorphisms among accessions of the genus Miscanthus can assist in taxonomic studies, help understand the evolution of the genus, and provide valuable information to biomass crop improvement programs. Taxonomic investigation combining variation in plant morphology, genome size, chromosome numbers, and simple sequence repeat (SSR) marker polymorphisms were applied to characterize 101 Miscanthus accessions. A total of 258 amplicons generated from 17 informative SSR primer pairs was subjected to cluster and principal coordinate analysis and used to characterize genetic variation and relationships among 31 Miscanthus accessions, including four interspecific Miscanthus hybrids created from controlled pollinations, and four Saccharum, six Erianthus, and one Sorghum bicolor accessions. Miscanthus accessions were distinct from accessions in the genera Erianthus and Saccharum. Miscanthus accessions fell into five taxonomic groups, including the existing taxonomic section Miscanthus, diploid and tetraploid Miscanthus sacchariflorus, and a fourth (M. × giganteus) and fifth group (Miscanthus ‘purpurascens’); the last two being intermediate forms. In contrast to previous work, our findings suggest diploid and tetraploid M. sacchariflorus are taxonomically different, the latter more closely related to M. sacchariflorus var lutarioriparius. We also suggest that Miscanthus ‘purpurascens’ accessions are interspecific hybrids between Miscanthus sinensis and diploid M. sacchariflorus based on DNA content and SSR polymorphisms. The evolution of Miscanthus and related genera is discussed based on combined analysis and geographical origin.  相似文献   

15.
Miscanthus is increasingly gaining popularity as a bioenergy grass because of its extremely high biomass productivity. Many clones of this grass were introduced into United States over the past century from East Asia where it originated, and planted for ornamental and landscaping purposes. An understanding of the genetic diversity among these naturalized populations may help in the efficient selection of potential parents in the Miscanthus breeding program. Here, we report our study analyzing the genetic diversity of 228 MiscanthusDNA samples selected from seven sites in six states (Ohio, North Carolina, Washington D.C., Kentucky, Pennsylvania, and Virginia) across the eastern United States. Ten transferable DNA markers from other plant species were employed to amplify genomic DNA of Miscanthus because of the paucity of molecular markers in Miscanthus. There were significant genetic variations observed within and among US naturalized populations. The highest genetic diversity (0.3738) was found among the North Carolina genotypes taken from Biltmore Deer Park and Biltmore, Madison County, Cody Rd. The lowest genetic diversity (0.2776) was observed among Virginia genotypes that were diverged from those from other states, suggesting Virginia genotypes might be independently introduced into the United States from the different origin. By the cluster and structure analysis, 228 genotypes were categorized into two major groups that were further divided into six subgroups at the DNA level and the groups were generally consistent with geographic region.  相似文献   

16.
Perennial grasses are promising candidates for bioenergy crops, but species that can escape cultivation and establish self‐sustaining naturalized populations (feral) may have the potential to become invasive. Fertile Miscanthus × giganteus, known as “PowerCane,” is a new potential biofuel crop. Its parent species are ornamental, non‐native Miscanthus species that establish feral populations and are sometimes invasive in the USA. As a first step toward assessing the potential for “PowerCane” to become invasive, we documented its growth and fecundity relative to one of its parent species (Miscanthus sinensis) in competition with native and invasive grasses in common garden experiments located in Columbus, Ohio and Ames, Iowa, within the targeted range of biofuel cultivation. We conducted a 2‐year experiment to compare growth and reproduction among three Miscanthus biotypes—”PowerCane,” ornamental M. sinensis, and feral M. sinensis—at two locations. Single Miscanthus plants were subjected to competition with a native grass (Panicum virgatum), a weedy grass (Bromus inermis), or no competition. Response variables were aboveground biomass, number of shoots, basal area, and seed set. In Iowa, all Miscanthus plants died after the first winter, which was unusually cold, so no further results are reported from the Iowa site. In Ohio, we found significant differences among biotypes in growth and fecundity, as well as significant effects of competition. Interactions between these treatments were not significant. “PowerCane” performed as well or better than ornamental or feral M. sinensis in vegetative traits, but had much lower seed production, perhaps due to pollen limitation. In general, ornamental M. sinensis performed somewhat better than feral M. sinensis. Our findings suggest that feral populations of “PowerCane” could become established adjacent to biofuel production areas. Fertile Miscanthus × giganteus should be studied further to assess its potential to spread via seed production in large, sexually compatible populations.  相似文献   

17.
Miscanthus spp. are large perennial wetland grasses that are receiving considerable attention as bioenergy crops. In late summer 2011, leaf spot symptoms were observed in a field of Miscanthus sinensis in Jeongseon, Gangwon province, Korea. Bacterial strains that belonged to the γ‐Proteobacteria genus Pseudomonas were isolated from the affected leaves. By phylogenetic analysis and phenotypic characterization, the representative strain MDM‐03 was identified as Pseudomonas lurida. Healthy M. sinensis leaves inoculated with MDM‐03 developed leaf spots similar to those observed in field. Bacteria re‐isolated from the leaf lesions were identical to the original strain MDM‐03 based on their cultural characteristics and 16S rDNA sequencing. This is the first report of bacterial leaf spot in Miscanthus sinensis.  相似文献   

18.
Chilling temperatures (0–15°C) inhibit photosynthesis in most C4 grasses, yet photosynthesis is chilling tolerant in the ‘Illinois’ clone of the C4 grass Miscanthus x giganteus, a candidate cellulosic bioenergy crop. M. x giganteus is a hybrid between Miscanthus sacchariflorus and Miscanthus sinensis; therefore chilling‐tolerant parent lines might produce hybrids superior to the current clone. Recently a collection of M. sacchariflorus from Siberia, the apparent low temperature limit of natural distribution, became available, which may be a source for chilling tolerance. The collection was screened for chilling tolerance of photosynthesis by measuring dark‐adapted maximum quantum yield of PSII photochemistry (Fv/Fm) on plants in the field in cool weather. Superior accessions were selected for further phenotyping: plants were grown at 25°C, transferred to 10°C (chilling) for 15 days, and returned to 25°C for 7 days (recovery). Two experiments assessed: (a) light‐saturated net photosynthetic rate (Asat) and operating quantum yield of PSII photochemistry (ΦPSII), (b) response of net leaf CO2 uptake (A) to intercellular [CO2] (ci). Three accessions showed superior chilling tolerance: RU2012‐069 and RU2012‐114 achieved Asat up to double that of M. x giganteus prior to and during chilling, due to increased ci ‐ saturated photosynthesis (Vmax). RU2012‐069 and RU2012‐114 also maintained greater levels of ΦPSII during chilling, indicating reduced photodamage. Additionally, accession RU2012‐112 maintained a stable Asat throughout the 15‐day chilling period, while Asat continuously declined in other accessions; this suggests RU2012‐112 could outperform others in lengthy chilling periods. Plants were returned to 25°C after the chilling period; M. x giganteus showed the weakest recovery after 1 day, but a strong recovery after 1 week. This study has therefore identified important genetic resources for the synthesis of improved lines of M. x giganteus, which could facilitate the displacement of fossil fuels by cellulosic bioenergy.  相似文献   

19.
Efficient utilization of lignocellulosic Miscanthus biomass for the production of biochemicals, such as ethanol, is challenging due to its recalcitrance, which is influenced by the individual plant cell wall polymers and their interactions. Lignocellulosic biomass composition differs depending on several factors, such as plant age, harvest date, organ type, and genotype. Here, four selected Miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus × giganteus, Miscanthus sinensis × Miscanthus sacchariflorus hybrid) were grown and harvested, separated into stems and leaves, and characterized for their non‐starch polysaccharide composition and structures, lignin contents and structures, and hydroxycinnamate profiles (monomers and ferulic acid dehydrodimers). Polysaccharides of all genotypes are mainly composed of cellulose and low‐substituted arabinoxylans. Ratios of hemicelluloses to cellulose were comparable, with the exception of Miscanthus sinensis that showed a higher hemicellulose/cellulose ratio. Lignin contents of Miscanthus stems were higher than those of Miscanthus leaves. Considering the same organs, the four genotypes did not differ in their Klason lignin contents, but Miscanthus × giganteus showed the highest acetylbromide soluble lignin content. Lignin polymers isolated from stems varied in their S/G ratios and linkage type distributions across genotypes. p‐Coumaric acid was the most abundant ester‐bound hydroxycinnamte monomer in all samples. Ferulic acid dehydrodimers were analyzed as cell wall cross‐links, with 8‐5‐coupled diferulic acid being the main dimer, followed by 8‐O‐4‐, and 5‐5‐diferulic acid. Contents of p‐coumaric acid, ferulic acid, and ferulic acid dimers varied depending on genotype and organ type. The largest amount of cell wall cross‐links was analyzed for Miscanthus sinensis.  相似文献   

20.
In light of rising energy costs, lignocellulosic ethanol has been identified as a renewable alternative to petroleum-based transportation fuels. In an attempt to reach government mandated ethanol production levels, potential plant biofeedstock candidates have been investigated, and cold-tolerant, perennial accessions within the C4 grass genus Miscanthus have been identified as leading contenders in the Midwestern US. To facilitate the development of improved cultivars through marker-assisted breeding, a quantitative trait locus (QTL) study was conducted on a full-sib, F1 mapping population segregating for flowering time, height, leaf width, and yield using a genetic map consisting of 846 segregating SNP and SSR markers. This was a 3 year study investigating the genetic architecture underlying traits important to biomass production in a population of 221 progeny from a cross between M. sinensis ‘Grosse Fountaine’ and M. sinensis ‘Undine’ established in the spring of 2010; 72 QTLs with LOD scores above the genome-wide, permuted threshold equivalent to a P-value of 0.05 were identified across 13 traits. Of the 36 QTLs identified in 2011, 22 were detected again the following year. Both the use of spring emergence and vigor rating as a covariate to account for variation related to differences in establishment increased the power to detect QTLs in the 2 year establishment period. Finally, a dry period in the middle of the 2012 growing season suggested that yield declines were due to a decrease in tiller diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号