首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Miscanthus ×giganteus (M×g) is an important bioenergy feedstock crop. However, biomass production of Miscanthus has been largely limited to one sterile triploid cultivar, M×g ‘1993‐1780’, which we demonstrate can have insufficient overwintering ability in temperate regions with cold winters. Key objectives for Miscanthus breeding include greater biomass yield and better adaptation to different production environments than M×g ‘1993‐1780’. In this study, we evaluated 13 M×g genotypes, including ‘1993‐1780’, in replicated field trials conducted for three years at Urbana, IL; Dixon Springs, IL; and Jonesboro, AR. Entries were phenotyped for first‐winter overwintering ability and plant hardiness (ratio of new tillers to old), yield in years 2 and 3, and first heading date, plant height, and culm number in years 1 and 2. We observed substantial variation for overwintering ability and biomass yield among the M×g genotypes tested and identified ones with better overwintering ability and/or higher biomass yield than ‘1993‐1780’. Most entries at Urbana were damaged during the first winter, whereas few or no entries were damaged at Dixon Springs or Jonesboro. However, M×g ‘Nagara’ was entirely undamaged during the first winter and produced high biomass yields at Urbana (19.7 Mg/ha in year 2 and 20.9 Mg/ha in year 3), whereas M×g ‘1993‐1780’ exhibited an overwintering loss of 29%, had severely damaged survivors (hardiness score of 25%), and reduced biomass yield (8.1 Mg/ha in year 2 and 16.2 Mg/ha in year 3), indicating that M×g ‘Nagara’ could be a better choice in hardiness zone 5 (average annual minimum air temperature of ?23.3 to ?28.9°C) or lower. In Dixon Springs, where M×g ‘1993‐1780’ was undamaged by the first winter, it yielded highest among all the entries (21.6 Mg/ha in year 3), though not significantly higher than M×g ‘Nagara’ (18.2 Mg/ha in year 3).  相似文献   

2.
3.
Improving biomass yield is a major goal of Miscanthus breeding. We conducted a study on one interspecific Miscanthus sinensis × Miscanthus sacchariflorus F1 population and two intraspecific M. sinensis F1 populations, each of which shared a common parent. A field trial was established at Urbana, IL during spring 2011, and phenotypic data were collected in 2012 and 2013 for fourteen yield traits. Six high‐density parental genetic maps, as well as a consensus genetic map integrating M. sinensis and M. sacchariflorus, were developed via the pseudotestcross strategy for noninbred parents with ≥1214 single‐nucleotide polymorphism markers generated from restriction site‐associated DNA sequencing. We confirmed for the first time a whole‐genome duplication in M. sacchariflorus relative to Sorghum bicolor, similar to that observed previously for M. sinensis. Four quantitative trait locus (QTL) analysis methods for detecting marker‐trait associations were compared: (1) individual parental map composite interval mapping analysis, (2) individual parental map stepwise analysis, (3) consensus map single‐population stepwise analysis and (4) consensus map joint‐population stepwise analysis. These four methods detected 288, 264, 133 and 109 total QTLs, which resolved into 157, 136, 106 and 86 meta‐QTLs based on QTL congruency, respectively, including a set of 59 meta‐QTLs common to all four analysis methods. Composite interval mapping and stepwise analysis co‐identified 118 meta‐QTLs across six parental maps, suggesting high reliability of stepwise regression in QTL detection. Joint‐population stepwise analysis yielded the highest resolution of QTLs compared to the other three methods across all meta‐QTLs. Strong, frequently advantageous transgressive segregation in the three populations indicated a promising future for breeding new higher‐yielding cultivars of Miscanthus.  相似文献   

4.
In light of rising energy costs, lignocellulosic ethanol has been identified as a renewable alternative to petroleum-based transportation fuels. In an attempt to reach government mandated ethanol production levels, potential plant biofeedstock candidates have been investigated, and cold-tolerant, perennial accessions within the C4 grass genus Miscanthus have been identified as leading contenders in the Midwestern US. To facilitate the development of improved cultivars through marker-assisted breeding, a quantitative trait locus (QTL) study was conducted on a full-sib, F1 mapping population segregating for flowering time, height, leaf width, and yield using a genetic map consisting of 846 segregating SNP and SSR markers. This was a 3 year study investigating the genetic architecture underlying traits important to biomass production in a population of 221 progeny from a cross between M. sinensis ‘Grosse Fountaine’ and M. sinensis ‘Undine’ established in the spring of 2010; 72 QTLs with LOD scores above the genome-wide, permuted threshold equivalent to a P-value of 0.05 were identified across 13 traits. Of the 36 QTLs identified in 2011, 22 were detected again the following year. Both the use of spring emergence and vigor rating as a covariate to account for variation related to differences in establishment increased the power to detect QTLs in the 2 year establishment period. Finally, a dry period in the middle of the 2012 growing season suggested that yield declines were due to a decrease in tiller diameter.  相似文献   

5.
To breed improved biomass cultivars of Miscanthus ×giganteus, it will be necessary to select the highest‐yielding and best‐adapted genotypes of its parental species, Miscanthus sinensis and Miscanthus sacchariflorus. We phenotyped a diverse clonally propagated panel of 569 M. sinensis and nine natural diploid M. ×giganteus at one subtropical (Zhuji, China) and five temperate locations (Sapporo, Japan; Leamington, Ontario, Canada; Fort Collins, CO; Urbana, IL; and Chuncheon, Korea) for dry biomass yield and 14 yield‐component traits, in trials grown for 3 years. Notably, dry biomass yield of four Miscanthus accessions exceeded 80 Mg/ha in Zhuji, China, approaching the highest observed for any land plant. Additionally, six M. sinensis in Sapporo, Japan and one in Leamington, Canada also yielded more than the triploid M. ×giganteus ‘1993‐1780’ control, with values exceeding 20 Mg/ha. Diploid M. ×giganteus was the best‐yielding group at the northern sites. Genotype‐by‐environment interactions were modest among the five northern trial sites but large between Zhuji, and the northern sites. M. sinensis accessions typically yielded best at trial sites with latitudes similar to collection sites, although broad adaptation was observed for accessions from southern Japan. Genotypic heritabilities for third year yields ranged from 0.71 to 0.88 within locations. Compressed circumference was the best predictor of yield. These results establish a baseline of data for initiating selection to improve biomass yield of M. sinensis and M. ×giganteus in a diverse set of relevant geographies.  相似文献   

6.
  • Miscanthus sinensis Anderss. is a good candidate for C4 bioenergy crop development for marginal lands. As one of the characteristics of marginal lands, salinization is a major limitation to agricultural production. The present work aimed to investigate the possible factors involved in the tolerance of M. sinensis C4 photosynthesis to salinity stress.
  • Seedlings of two accessions (salt‐tolerant ‘JM0119’ and salt‐sensitive ‘JM0099’) were subjected to 0 mm NaCl (control) or 250 mm NaCl (salt stress treatment) for 2 weeks. The chlorophyll content, parameters of photosynthesis and chlorophyll a fluorescence, activity of C4 enzymes and expression of C4 genes were measured.
  • The results showed that photosynthesis rate, transpiration rate, chlorophyll content, PSII operating efficiency, coefficient of photochemical quenching, activity of phosphoenolpyruvate carboxylase (PEPC) and pyruvate, orthophosphate dikinase (PPDK) and gene expression of PEPC and PPDK under salinity were higher after long‐term salinity exposure in ‘JM0119’ than in ‘JM0099’, while activity of NADP‐malate dehydrogenase (NADP‐MDH) and NADP‐malic enzyme (NADP‐ME), together with expression of NADP‐MDH and NADP‐ME, were much higher in ‘JM0099’ than in ‘JM0119’.
  • In conclusion, the increased photosynthetic capacity under long‐term salt stress in the salt‐tolerant relative to the salt‐sensitive M. sinensis accession was mainly associated with non‐stomatal factors, such as reduced chlorophyll loss, higher PSII operating efficiency, enhanced activity of PEPC and PPDK and relatively lower activity of NADP‐ME.
  相似文献   

7.
Supercooling point studies were used to investigate the factors influencing the cold hardiness of the peach-potato aphid Myzus persicae, a freezing-susceptible insect. Overwintering adults lost cold hardiness as winter progressed, with a variable proportion showing a marked reduction in supercooling ability. Cold hardiness increased in spring so that all individuals demonstrated extensive supercooling ability typical of aphids reared in the laboratory at 20°C with a long photoperiod; these levels of cold hardiness were maintained in the field during summer and early autumn. First instar nymphs demonstrated considerable cold hardiness all year. Surface moisture caused inoculative freezing in some first instar nymphs and adults when supercooled, but the majority were unaffected. In the laboratory, adults starved for 7 days at 5°C showed distinct losses of supercooling potential equivalent to those observed in the field during mid to late winter. No loss of cold hardiness was found in first instar nymphs starved under the same conditions. The results demonstrate that the cold hardiness characteristics of M. persicae are atypical of those observed in other freezing-susceptible insects and it is suggested that continued feeding during mild winter conditions allows maintenance of cold hardiness particularly in adult aphids, and provides a possible explanation for the successful anholocyclic overwintering of M. persicae during such winters.  相似文献   

8.
Chilling temperatures (0–15°C) inhibit photosynthesis in most C4 grasses, yet photosynthesis is chilling tolerant in the ‘Illinois’ clone of the C4 grass Miscanthus x giganteus, a candidate cellulosic bioenergy crop. M. x giganteus is a hybrid between Miscanthus sacchariflorus and Miscanthus sinensis; therefore chilling‐tolerant parent lines might produce hybrids superior to the current clone. Recently a collection of M. sacchariflorus from Siberia, the apparent low temperature limit of natural distribution, became available, which may be a source for chilling tolerance. The collection was screened for chilling tolerance of photosynthesis by measuring dark‐adapted maximum quantum yield of PSII photochemistry (Fv/Fm) on plants in the field in cool weather. Superior accessions were selected for further phenotyping: plants were grown at 25°C, transferred to 10°C (chilling) for 15 days, and returned to 25°C for 7 days (recovery). Two experiments assessed: (a) light‐saturated net photosynthetic rate (Asat) and operating quantum yield of PSII photochemistry (ΦPSII), (b) response of net leaf CO2 uptake (A) to intercellular [CO2] (ci). Three accessions showed superior chilling tolerance: RU2012‐069 and RU2012‐114 achieved Asat up to double that of M. x giganteus prior to and during chilling, due to increased ci ‐ saturated photosynthesis (Vmax). RU2012‐069 and RU2012‐114 also maintained greater levels of ΦPSII during chilling, indicating reduced photodamage. Additionally, accession RU2012‐112 maintained a stable Asat throughout the 15‐day chilling period, while Asat continuously declined in other accessions; this suggests RU2012‐112 could outperform others in lengthy chilling periods. Plants were returned to 25°C after the chilling period; M. x giganteus showed the weakest recovery after 1 day, but a strong recovery after 1 week. This study has therefore identified important genetic resources for the synthesis of improved lines of M. x giganteus, which could facilitate the displacement of fossil fuels by cellulosic bioenergy.  相似文献   

9.
Perennial grasses are promising candidates for bioenergy crops, but species that can escape cultivation and establish self‐sustaining naturalized populations (feral) may have the potential to become invasive. Fertile Miscanthus × giganteus, known as “PowerCane,” is a new potential biofuel crop. Its parent species are ornamental, non‐native Miscanthus species that establish feral populations and are sometimes invasive in the USA. As a first step toward assessing the potential for “PowerCane” to become invasive, we documented its growth and fecundity relative to one of its parent species (Miscanthus sinensis) in competition with native and invasive grasses in common garden experiments located in Columbus, Ohio and Ames, Iowa, within the targeted range of biofuel cultivation. We conducted a 2‐year experiment to compare growth and reproduction among three Miscanthus biotypes—”PowerCane,” ornamental M. sinensis, and feral M. sinensis—at two locations. Single Miscanthus plants were subjected to competition with a native grass (Panicum virgatum), a weedy grass (Bromus inermis), or no competition. Response variables were aboveground biomass, number of shoots, basal area, and seed set. In Iowa, all Miscanthus plants died after the first winter, which was unusually cold, so no further results are reported from the Iowa site. In Ohio, we found significant differences among biotypes in growth and fecundity, as well as significant effects of competition. Interactions between these treatments were not significant. “PowerCane” performed as well or better than ornamental or feral M. sinensis in vegetative traits, but had much lower seed production, perhaps due to pollen limitation. In general, ornamental M. sinensis performed somewhat better than feral M. sinensis. Our findings suggest that feral populations of “PowerCane” could become established adjacent to biofuel production areas. Fertile Miscanthus × giganteus should be studied further to assess its potential to spread via seed production in large, sexually compatible populations.  相似文献   

10.
Miscanthus spp. are large perennial wetland grasses that are receiving considerable attention as bioenergy crops. In late summer 2011, leaf spot symptoms were observed in a field of Miscanthus sinensis in Jeongseon, Gangwon province, Korea. Bacterial strains that belonged to the γ‐Proteobacteria genus Pseudomonas were isolated from the affected leaves. By phylogenetic analysis and phenotypic characterization, the representative strain MDM‐03 was identified as Pseudomonas lurida. Healthy M. sinensis leaves inoculated with MDM‐03 developed leaf spots similar to those observed in field. Bacteria re‐isolated from the leaf lesions were identical to the original strain MDM‐03 based on their cultural characteristics and 16S rDNA sequencing. This is the first report of bacterial leaf spot in Miscanthus sinensis.  相似文献   

11.
The demand for perennial nonfood crops, such as miscanthus, is increasing steadily, as fossil resources are replaced by biomass. However, as the establishment of miscanthus is very expensive, its cultivation area in Europe is still small. The most common propagation method for miscanthus is via rhizomes, the harvesting of which is very labour‐intensive. Seed propagation is promising, but not suitable for sterile genotypes. In this study, a new vegetative propagation method, ‘collar propagation’, was tested in field and controlled environment studies. Collars are built at the junction between rhizome and stem. They can be harvested in a less destructive way than rhizomes by pulling out the stems from winter‐dormant miscanthus plants. One genotype of each of the species M. sacchariflorus, M. × giganteus, M. sinensis in combination with three fragment types (collars, rhizomes, collars + rhizomes) were tested for establishment success and plant performance. The performance (e.g. dry matter yield) of collar‐propagated plants was either better than or not significantly different from rhizome‐propagated plants. Pregrown plantlets transplanted into the field showed no significant differences in establishment success between the fragments within a genotype. When directly planted into the field however, the fragment ‘rhizome+collar’ had a significantly better establishment success than the other two. The winter survival rate of the fragment ‘rhizome+collar’ was 70% for M. sacchariflorus and 75% for M. × giganteus. Emergence success from collar‐derived plants was not affected by harvest date (harvested monthly from November to February). This study showed that miscanthus propagation via collars is feasible and a promising alternative to rhizome propagation, as the multiplication rate of collars is comparable to that of rhizome propagation. Collar propagation is the more suitable method for the tested genotypes of the species M. sachariflorus and M. × giganteus, but not for M. sinensis genotypes, which may be better propagated by seeds.  相似文献   

12.
A field experiment with 15 Miscanthus genotypes including M. × giganteus, M. sacchariflorus, M. sinensis and M. sinensis hybrids was conducted for 14 years at the experimental Ihinger Hof station of the University of Hohenheim in southwest Germany to evaluate interannual yield performance stability over 14 years of harvests of the different genotypes. In this article, a simple formula is presented which could be used to forecast late winter yields using morphological traits in autumn. The data obtained indicated a shorter establishment period to reach a yield plateau of M. × giganteus and M. sacchariflorus than M. sinensis hybrids and M. sinensis genotypes. The best performing genotype was M. × giganteus (Gig‐2, No. 16.21) with a mean spring harvestable yield of 14.1 t DM ha?1 year?1. A correlation analysis with climatic parameters revealed precipitation during the growing period as the key factor for high yields at this site. Likewise, but to a lesser degree, heat sum during the growing period was positively correlated with yields. It could be shown that precipitation/snow during the winter correlated with yield losses, until the harvest date in February/March. Phenological measurements indicated that a high yield potential of the tested genotypes is associated with either an absence of flowering or late flowering. Also, height of the plants and shoot diameter were indicators for high yield potential. Shoot density and plant height at senescence were found to be solid parameters to estimate harvestable biomass in late winter. Yield approximations with a mean accuracy of 80.9% for M.× giganteus genotypes were obtained using the newly developed equation. Yields of M. sinensis hybrid (Sin‐H7) were projected most accurately with this simple formula, resulting in a mean accuracy of 84.5%.  相似文献   

13.
The composition and concentrations of cell wall polysaccharides and phenolic compounds were analyzed in mature stems of several Miscanthus genotypes, in comparison with switchgrass and reed (Arundo donax), and biomass characteristics were correlated with cell wall saccharification efficiency. The highest cellulose content was found in cell walls of M. sinensis‘Grosse Fontaine’ (55%) and in A. donax (47%) and lowest (about 32%) in M. sinensis‘Adagio’. There was little variation in lignin contents across M. sinensis samples (all about 22–24% of cell wall), however, Miscanthus×giganteus (M × g) cell walls contained about 28% lignin, reed – 23% and switchgrass – 26%. The highest ratios of cellulose/lignin and cellulose/xylan were in M. sinensis‘Grosse Fontaine’ across all samples tested. About the same total content of ester‐bound phenolics was found in different Miscanthus genotypes (23–27 μg/mg cell wall), while reed cell walls contained 17 μg/mg cell wall and switchgrass contained a lower amount of ester‐bound phenolics, about 15 μg/mg cell wall. Coumaric acid was a major phenolic compound ester‐bound to cell walls in plants analyzed and the ratio of coumaric acid/ferulic acid varied from 2.1 to 4.3, with the highest ratio being in M × g samples. Concentration of ether‐bound hydroxycinnamic acids varied greatly (about two‐three‐fold) within Miscanthus genotypes and was also the highest in M × g cell walls, but at a concentration lower than ester‐bound hydroxycinnamic acids. We identified four different forms of diferulic acid esters bound to Miscanthus cell walls and their concentration and proportion varied in genotypes analyzed with the 5‐5‐coupled dimer being the predominant type of diferulate in most samples tested. The contents of lignin and ether‐bound phenolics in the cell wall were the major determinants of the biomass degradation caused by enzymatic hydrolysis.  相似文献   

14.
Direct sowing of Miscanthus seed could lower crop establishment costs, and increase the rate of grower uptake and biomass supply for the emerging bio‐economy. A replicated field trial was conducted at two contrasting UK sites: Aberystwyth (ABR) in mid‐Wales and Blankney (BLK) in Lincolnshire. These sites encompass the west–east meteorological gradient in the United Kingdom where the growing season at ABR is cooler and wetter while BLK is warmer and drier. Primed and unprimed Miscanthus sinensis seeds were sown directly onto the soil surface with and without a clear biodegradable mulch film, at nine dates interspersed from May to October. Average daily mean soil surface temperatures measured over the first 2 months after sowing under the mulch film were higher than control plots (2.7°C ABR and 4.2°C BLK). At both sites, the film covering also affected soil volumetric moisture relative to uncovered control plots (?3% ABR and 8% BLK), demonstrating the negative impact of mulch film when sowing on dry soil. Over nine sowings, seed germination at ABR under film varied between ?28% and +18% of germination under control conditions. Seedlings from the first three sowings at both sites under film had sufficient physiological maturity to survive the first winter period. At BLK, mulch film significantly increased tiller count and height in both the first and second years after sowing. At ABR, where temperatures were lower, film covering significantly increased tiller height but not count. Water priming had no significant effect on seed viability or germination in the field tests. Base temperatures for germination of primed and unprimed seeds on a thermal gradient plate were 7.0°C and 5.7°C, respectively, with a ± 1.7°C confidence interval. Based on our results for M. sinensis in the United Kingdom, we recommend the sowing of unprimed seed in May under film and only when the soil is moist.  相似文献   

15.
Miscanthus is a rhizomatous C4 grass of great interest as a biofuel crop because it has the potential to produce high yields over a wide geographical area with low agricultural inputs on marginal land less suitable for food production. At the moment, a clonal interspecific hybrid Miscanthus × giganteus is the most widely cultivated and studied in Europe and the United States, but breeding programmes are developing newer more productive varieties. Here, we quantified the physiological processes relating to whole season yield in a replicated plot trial in Wales, UK. Light capture and conversion efficiency were parameterized for four carefully selected genotypes (M. sinensis, M. sacchariflorus and Miscanthus × giganteus). Differences in the canopy architecture in mature stands as measured by the extinction coefficient (k) were small (0.55–0.65). Sensitivity analysis on a mathematical model of Miscanthus was performed to quantify the accumulative intercepted photosynthetically active radiation (iPAR) in the growing season using (i) k, (ii) variation in the thermal responses of leaf expansion rate, (iii) base temperature for degree days and (iv) date start of canopy expansion. A 10% increase in k or leaf area per degree day both had a minimal effect on iPAR (3%). Decreasing base temperature from 10 to 9 °C gave an 8% increase in iPAR. If the starting date for canopy expansion was the same as shoot emergence date, then the iPAR increases by 12.5%. In M. × giganteus, the whole season above ground and total (including below ground) radiation‐use efficiency (RUE) ranged from 45% to 37% higher than the noninterspecific hybrid genotypes. The greater yields in the interspecific hybrid M. × giganteus are explained by the higher RUE and not by differences in iPAR or partitioning effects. Studying the mechanisms underlying this complex trait could have wide benefits for both fuel and food production.  相似文献   

16.
For trees, the ability to obtain and maintain sufficient levels of frost hardiness in late autumn, winter and spring is crucial. We report that temperatures during dormancy induction influence bud set, frost hardiness, tolerance to cold storage, timing of bud burst and spring frost hardiness in seedlings of Norway spruce (Picea abies (L.) Karst.). Bud set occurred later in 12°C than in 21°C, and later in cool nights (7°C) than in constant temperature. One weekly frost night (−2.5°C) improved frost hardiness. Cool nights reduced frost hardiness early, but improved hardiness later during cold acclimation. Buds and stems were slightly hardier in 21°C than in 12°C, while needles were clearly hardier in 12°C. Cold daytime temperature, cool nights and one weekly frost night improved cold storability (0.7°C). Seedlings receiving high daytime temperatures burst buds later, and were less injured by light frost some days after bud burst.  相似文献   

17.
18.
Miscanthus is a C4 bioenergy perennial crop characterized by its high potential yield. Our study aimed to compare the carbon storage capacities of Miscanthus sinensis (M. sinensis) with that of Miscanthus × giganteus (M. × giganteus) in field conditions in different types of soils in France. We set up a multi‐environment experimental network. On each trial, we tested two treatments: M. × giganteus established from rhizomes (Gr) and M. sinensis transplanted seedlings (Sp). We quantified the soil organic carbon (SOC) stock at equivalent soil mass for both genotypes in 2014 and 2019 and for two sampling depths: L1 (ca. 0–5 cm) and L1‐2 (ca. 0–30 cm). We also calculated the total and annual variation of the SOC stock and investigated factors that could explain the variation and the initial state of the SOC stock. ANOVAs were performed to compare the SOC stock, as well as the SOC stock variation rates across treatments and soil layers. Results showed that the soil bulk density did not vary significantly between 2014 and 2019 for both treatments (Gr and Sp). The SOC concentration (i.e. SOC expressed in g/kg) increased significantly between 2014 and 2019 in L1, whereas no significant evolution was found in L2 (ca. 5–30 cm). The SOC stock (i.e. SOC expressed in t/ha) increased significantly in the superficial layer L1 for M. × giganteus and M. sinensis, by 0.48 ± 0.41 and 0.54 ± 0.25 t ha?1 year?1 on average, respectively, although no significant change was detected in the layer L1‐2 for both genotypes. Moreover, SOC stocks in 2019 did not differ significantly between M. × giganteus and M. sinensis in the soil layers L1 and L1‐2. Lastly, our results showed that the initial SOC stock was significantly higher when miscanthus was grown after set‐aside than after annual crops.  相似文献   

19.
To improve the efficiency of breeding of Miscanthus for biomass yield, there is a need to develop genomics‐assisted selection for this long‐lived perennial crop by relating genotype to phenotype and breeding value across a broad range of environments. We present the first genome‐wide association (GWA) and genomic prediction study of Miscanthus that utilizes multilocation phenotypic data. A panel of 568 Miscanthus sinensis accessions was genotyped with 46,177 single nucleotide polymorphisms (SNPs) and evaluated at one subtropical and five temperate locations over 3 years for biomass yield and 14 yield‐component traits. GWA and genomic prediction were performed separately for different years of data in order to assess reproducibility. The analyses were also performed for individual field trial locations, as well as combined phenotypic data across groups of locations. GWA analyses identified 27 significant SNPs for yield, and a total of 504 associations across 298 unique SNPs across all traits, sites, and years. For yield, the greatest number of significant SNPs was identified by combining phenotypic data across all six locations. For some of the other yield‐component traits, greater numbers of significant SNPs were obtained from single site data, although the number of significant SNPs varied greatly from site to site. Candidate genes were identified. Accounting for population structure, genomic prediction accuracies for biomass yield ranged from 0.31 to 0.35 across five northern sites and from 0.13 to 0.18 for the subtropical location, depending on the estimation method. Genomic prediction accuracies of all traits were similar for single‐location and multilocation data, suggesting that genomic selection will be useful for breeding broadly adapted M. sinensis as well as M. sinensis optimized for specific climates. All of our data, including DNA sequences flanking each SNP, are publicly available. By facilitating genomic selection in M. sinensis and Miscanthus × giganteus, our results will accelerate the breeding of these species for biomass in diverse environments.  相似文献   

20.
A long growing season, mediated by the ability to grow at low temperatures early in the season, can result in higher yields in biomass of crop Miscanthus. In this paper, the chilling tolerance of two highly productive Miscanthus genotypes, the widely planted Miscanthus × giganteus and the Miscanthus sinensis genotype ‘Goliath’, was studied. Measurements in the field as well as under controlled conditions were combined with the main purpose to create basic comparison tools in order to investigate chilling tolerance in Miscanthus in relation to its field performance. Under field conditions, M. × giganteus was higher yielding and had a faster growth rate early in the growing season. Correspondingly, M. × giganteus displayed a less drastic reduction of the leaf elongation rate and of net photosynthesis under continuous chilling stress conditions in the growth chamber. This was accompanied by higher photochemical quenching and lower nonphotochemical quenching in M. × giganteus than that in M. sinensis ‘Goliath’ when exposed to chilling temperatures. No evidence of impaired stomatal conductance or increased use of alternative electron sinks was observed under chilling stress. Soluble sugar content markedly increased in both genotypes when grown at 12°C compared to 20°C. The concentration of raffinose showed the largest relative increase at 12°C, possibly serving as a protection against chilling stress. Overall, both genotypes showed high chilling tolerance for C4 plants, but M. × giganteus performed better than M. sinensis ‘Goliath’. This was not due to its capacity to resume growth earlier in the season but rather due to a higher growth rate and higher photosynthetic efficiency at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号