首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
During cell migration, the physical link between the extracellular substrate and the actin cytoskeleton mediated by receptors of the integrin family is constantly modified. We analyzed the mechanisms that regulate the clustering and incorporation of activated alphavbeta3 integrins into focal adhesions. Manganese (Mn2+) or mutational activation of integrins induced the formation of de novo F-actin-independent integrin clusters. These clusters recruited talin, but not other focal adhesion adapters, and overexpression of the integrin-binding head domain of talin increased clustering. Integrin clustering required immobilized ligand and was prevented by the sequestration of phosphoinositole-4,5-bisphosphate (PI(4,5)P2). Fluorescence recovery after photobleaching analysis of Mn(2+)-induced integrin clusters revealed increased integrin turnover compared with mature focal contacts, whereas stabilization of the open conformation of the integrin ectodomain by mutagenesis reduced integrin turnover in focal contacts. Thus, integrin clustering requires the formation of the ternary complex consisting of activated integrins, immobilized ligands, talin, and PI(4,5)P2. The dynamic remodeling of this ternary complex controls cell motility.  相似文献   

2.
Talin is a large cytoskeletal protein that is involved in coupling the integrin family of cell adhesion molecules to the actin cytoskeleton, colocalising with the integrins in focal adhesions (FAs). However, at the leading edge of motile cells, talin colocalises with the hyaluronan receptor layilin in what are thought to be transient adhesions, some of which subsequently mature into more stable FAs. During this maturation process, layilin is replaced with integrins, which are highly clustered in FAs, where localised production of PI(4,5)P2 by type 1 phosphatidyl inositol phosphate kinase type 1γ (PIPK1γ) is thought to play a role in FA assembly. The talin FERM F3 subdomain binds both the integrin β-subunit cytoplasmic domain and PIPK1γ, and these interactions are understood in detail at the atomic level. The talin F3 domain also binds to short sequences in the layilin cytoplasmic domain, and here we report the structure of the talin/layilin complex, which shows that talin binds integrins, PIPK1γ and layilin in similar although subtly different ways. Based on structure comparisons, we designed a set of talin F3 mutations that selectively affected the affinity of talin for its targets, as determined by stopped-flow fluorescence measurements. Such mutations will help to assess the importance of the interactions between talin and its various ligands in cell adhesion and migration.  相似文献   

3.
The 90-kDa isoform of the lipid kinase PIP kinase Type I γ (PIPKIγ) localizes to focal adhesions (FAs), where it provides a local source of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Although PtdIns(4,5)P(2) regulates the function of several FA-associated molecules, the role of the FA-specific pool of PtdIns(4,5)P(2) is not known. We report that the genetic ablation of PIPKIγ specifically from FAs results in defective integrin-mediated adhesion and force coupling. Adhesion defects in cells deficient in FAPtdIns(4,5)P(2) synthesis are corrected within minutes while integrin-actin force coupling remains defective over a longer period. Talin and vinculin, but not kindlin, are less efficiently recruited to new adhesions in these cells. These data demonstrate that the specific depletion of PtdIns(4,5)P(2) from FAs temporally separates integrin-ligand binding from integrin-actin force coupling by regulating talin and vinculin recruitment. Furthermore, it suggests that force coupling relies heavily on locally generated PtdIns(4,5)P(2) rather than bulk membrane PtdIns(4,5)P(2).  相似文献   

4.
The beta subunit cytoplasmic domains of integrin adhesion receptors are necessary for the connection of these receptors to the actin cytoskeleton. The cytoplasmic protein, talin, binds to beta integrin cytoplasmic tails and actin filaments, hence forming an integrin-cytoskeletal linkage. We used recombinant structural mimics of beta(1)A, beta(1)D and beta(3) integrin cytoplasmic tails to characterize integrin-binding sites within talin. Here we report that an integrin-binding site is localized within the N-terminal talin head domain. The binding of the talin head domain to integrin beta tails is specific in that it is abrogated by a single point mutation that disrupts integrin localization to talin-rich focal adhesions. Integrin-cytoskeletal interactions regulate integrin affinity for ligands (activation). Overexpression of a fragment of talin containing the head domain led to activation of integrin alpha(IIb)beta(3); activation was dependent on the presence of both the talin head domain and the integrin beta(3) cytoplasmic tail. The head domain of talin thus binds to integrins to form a link to the actin cytoskeleton and can thus regulate integrin function.  相似文献   

5.
Talin is a cytoskeletal protein that binds to integrin β cytoplasmic tails and regulates integrin activation. Talin1 ablation in mice disrupts gastrulation and causes embryonic lethality. However, the role of talin in mammalian epithelial morphogenesis is poorly understood. Here we demonstrate that embryoid bodies (EBs) differentiated from talin1-null embryonic stem cells are defective in integrin adhesion complex assembly, epiblast elongation, and lineage differentiation. These defects are accompanied by a significant reduction in integrin β1 protein levels due to accelerated degradation through an MG-132-sensitive proteasomal pathway. Overexpression of integrin β1 or MG-132 treatment in mutant EBs largely rescues the phenotype. In addition, epiblast cells isolated from talin1-null EBs exhibit impaired cell spreading and focal adhesion formation. Transfection of the mutant cells with green fluorescent protein (GFP)-tagged wild-type but not mutant talin1 that is defective in integrin binding normalizes integrin β1 protein levels and restores focal adhesion formation. Significantly, cell adhesion and spreading are also improved by overexpression of integrin β1. All together, these results suggest that talin1 binding to integrin promotes epiblast adhesion and morphogenesis in part by preventing integrin β1 degradation.  相似文献   

6.
The cytoskeletal protein talin serves as an essential link between integrins and the actin cytoskeleton in several similar, but functionally distinct, adhesion complexes, including focal adhesions, costameres, and intercalated disks. Vertebrates contain two talin genes, TLN1 and TLN2, but the different roles of Talin1 and Talin2 in cell adhesion are unclear. In this report we have analyzed Talin1 and Talin2 in striated muscle. Using isoform-specific antibodies, we found that Talin2 is highly expressed in mature striated muscle. Using mouse C2C12 cells and primary human skeletal muscle myoblasts as models of muscle differentiation, we show that Talin1 is expressed in undifferentiated myoblasts and that Talin2 expression is upregulated during muscle differentiation at both the mRNA and protein levels. We have also identified regulatory sequences that may be responsible for the differential expression of Talin1 and Talin2. Using GFP-tagged Talin1 and Talin2 constructs, we found that GFP-Talin1 targets to focal adhesions while GFP-Talin2 targets to abnormally large adhesions in myoblasts. We also found that ectopic expression of Talin2 in myoblasts, which do not contain appreciable levels of Talin2, dysregulates the actin cytoskeleton. Finally we demonstrate that Talin2, but not Talin1, localizes to costameres and intercalated disks, which are stable adhesions required for the assembly of mature striated muscle. Our results suggest that Talin1 is the primary link between integrins and actin in dynamic focal adhesions in undifferentiated, motile cells, but that Talin2 may serve as the link between integrins and the sarcomeric cytoskeletonin stable adhesion complexes in mature striated muscle.  相似文献   

7.
A role for talin in presynaptic function   总被引:5,自引:0,他引:5  
Talin, an adaptor between integrin and the actin cytoskeleton at sites of cell adhesion, was recently found to be present at neuronal synapses, where its function remains unknown. Talin interacts with phosphatidylinositol-(4)-phosphate 5-kinase type Igamma, the major phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)]-synthesizing enzyme in brain. To gain insight into the synaptic role of talin, we microinjected into the large lamprey axons reagents that compete the talin-PIP kinase interaction and then examined their effects on synaptic structure. A dramatic decrease of synaptic actin and an impairment of clathrin-mediated synaptic vesicle endocytosis were observed. The endocytic defect included an accumulation of clathrin-coated pits with wide necks, as previously observed after perturbing actin at these synapses. Thus, the interaction of PIP kinase with talin in presynaptic compartments provides a mechanism to coordinate PI(4,5)P(2) synthesis, actin dynamics, and endocytosis, and further supports a functional link between actin and clathrin-mediated endocytosis.  相似文献   

8.
We have investigated the mechanisms by which fibroblasts release their adhesions to the extracellular matrix substrata using a permeabilized cell system in which the adhesions remain relatively stable. A large number of different molecules were assayed for their effect on focal adhesion stability using immunofluorescence with antibodies against different focal adhesion constituents. ATP uniquely stimulates a rapid breakdown of focal adhesions, and at high ATP concentrations (> 5 mM), many cells are released from the dish. The remaining cells appear contracted with talin, alpha-actinin, and vinculin localized diffusely throughout the cell. Integrin containing tracks of variable intensity outline the regions where cells had resided before they detached from the substratum. At lower ATP concentrations (0.5-5 mM) the cells remain spread; however the focal adhesion components, including integrin, show an array of phenotypes ranging from diffusely localized throughout the cell to a localization in small, thin focal adhesions. Okadaic acid, a serine, threonine phosphatase inhibitor, enhances the contracted phenotype, even at low concentrations (0.5 mM) of ATP. The localization of focal adhesion components is different in okadaic acid-treated cells. In highly contracted cells, integrin is present in tracks where the cells resided before the contraction; however focal adhesions are no longer apparent. Talin, vinculin, and alpha-actinin localize in trabecular networks toward the periphery of the cell. Interestingly, phosphotyrosine staining as well as nascent, intracellular integrin precedes the recruitment of focal adhesion constituents into the trabecular network. The ATP-stimulated focal adhesion breakdown appears to operate through two mechanisms. First, ATP stimulates the tyrosine phosphorylation of several cytoskeletally associated proteins. These tyrosine phosphorylations correlated well with focal adhesion breakdown. Furthermore, addition of a recombinant, constitutively active tyrosine phosphatase inhibits both the tyrosine phosphorylations and the breakdown of the focal adhesions. None of the major tyrosine phosphoproteins are FAK, integrin, tensin, paxillin, or other phosphoproteins implicated in focal adhesion assembly. The second mechanism is cell contraction. High ATP concentrations, or lower ATP concentrations in the presence of okadaic acid induce cell contraction. Inhibiting the contraction by addition of a heptapeptide IRICRKG, which blocks the actin-myosin interaction, also inhibits focal adhesion breakdown. Neither the peptide nor the phosphatase inhibits focal adhesion breakdown under all conditions suggesting that both tension and tyrosine phosphorylations mediate the release of adhesions.  相似文献   

9.
In this issue, Lawson et al. provide new insight into the relationship between FAK and talin during assembly of integrin adhesions on fibronectin. They show that FAK is upstream of talin, and that talin is not required for FAK recruitment or for integrin activation at nascent adhesions. However, FAK-talin binding is required for adhesion turnover and cell motility. The findings question the view that talin is always upstream of focal adhesion protein recruitment to clustered integrin sites.  相似文献   

10.
Talin is an essential component of focal adhesions that couples beta-integrin cytodomains to F-actin and provides a scaffold for signaling proteins. Recently, the integrin beta3 cytodomain and phosphatidylinositol phosphate (PIP) kinase type 1gamma (a phosphatidylinositol 4,5-bisphosphate-synthesizing enzyme) were shown to bind to the talin FERM domain (subdomain F3). We have characterized the PIP kinase-binding site by NMR using a 15N-labeled talin F2F3 polypeptide. A PIP kinase peptide containing the minimal talin-binding site formed a 1:1 complex with F2F3, causing a substantial number of chemical shift changes. In particular, two of the three Arg residues (Arg339 and Arg358), four of eight Ile residues, and one of seven Val residues in F3 were affected. Although a R339A mutation did not affect the exchange kinetics, R358A or R358K mutations markedly weakened binding. The Kd for the interaction determined by Trp fluorescence was 6 microm, and the R358A mutation increased the Kd to 35 microm. Comparison of these results with those of the crystal structure of a beta3-integrin cytodomain talin F2F3 chimera shows that both PIP kinase and integrins bind to the same surface of the talin F3 subdomain. Indeed, binding of talin present in rat brain extracts to a glutathione S-transferase integrin beta1-cytodomain polypeptide was inhibited by the PIP kinase peptide. The results suggest that ternary complex formation with a single talin FERM domain is unlikely, although both integrins and PIP kinase may bind simultaneously to the talin anti-parallel dimer.  相似文献   

11.
Talin is an integrin-binding protein located at focal adhesion site and serves as both an adapter and a force transmitter. Its integrin binding activity is regulated by the intramolecular autoinhibition interaction between its F3 and RS domains. Here, we used atomic force microscopy to measure the strength of talin autoinhibition complex. Our results suggest that the lifetime of talin autoinhibition complex shows weak catch bond behavior and does not change significantly at smaller forces, while it drops rapidly at larger forces (>10 pN). Moreover, besides the complex conformation revealed by crystal structure, our molecular dynamics (MD) simulations indicate the possible existence of another stable conformation. Further analysis indicates that forces may regulate the equilibrium of the two stable binding states and result in the non-exponential force dependence of the binding lifetime. Our findings reveal a negative regulation mechanism on talin activation and provide a new point of view on the function of talin in focal adhesion.  相似文献   

12.
Phosphoinositides regulate several actin-binding proteins but their role at intercellular adhesions has not been defined. We found that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) was generated at sites of N-cadherin-mediated intercellular adhesion and was a critical regulator of intercellular adhesion strength. Immunostaining for PI(4,5)P2 or transfection with GFP-PH-PLCdelta showed that PI(4,5)P2 was enriched at sites of N-cadherin adhesions and this enrichment required activated Rac1. Isoform-specific immunostaining for type I phosphatidylinositol 4-phosphate 5 kinase (PIP5KI) showed that PIP5KIgamma was spatially associated with N-cadherin-Fc beads. Association of PIP5KIgamma with N-cadherin adhesions was in part dependent on the activation of RhoA. Transfection with catalytically inactive PIP5KIgamma blocked the enrichment of PI(4,5)P2 around beads. Catalytically inactive PIP5KIgamma or a cell-permeant peptide that mimics and competes for the PI(4,5)P2-binding region of the actin-binding protein gelsolin inhibited incorporation of actin monomers in response to N-cadherin ligation and reduced intercellular adhesion strength by more than twofold. Gelsolin null fibroblasts transfected with a gelsolin severing mutant containing an intact PI(4,5)P2 binding region, demonstrated intercellular adhesion strength similar to wild-type transfected controls. We conclude that PIP5KIgamma-mediated generation of PI(4,5)P2 at sites of N-cadherin contacts regulates intercellular adhesion strength, an effect due in part to PI(4,5)P2-mediated regulation of gelsolin.  相似文献   

13.
Tetraspanin CD9 is associated with integrin adhesion receptors and it was reported that CD9 regulates integrin-dependent cell migration and invasion. Pro- and anti-migratory effects of CD9 have been linked to adhesion-dependent signalling pathways, including phosphorylation of FAK (focal adhesion kinase) and activation of phosphoinositide 3-kinase, p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase). In the present paper, we describe a novel mechanism whereby CD9 specifically controls localization of talin1, one of the critical regulators of integrin activation, to focal adhesions: CD9-deficiency leads to impaired localization of talin1 to focal adhesions and correlates with increased motility of breast cancer cells.  相似文献   

14.

Background  

Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential links between integrins and the actin cytoskeleton in distinct plasma membrane-associated adhesion complexes. The conserved C-terminal I/LWEQ module is important for talin function. This structural element mediates the interaction of talins with F-actin. The I/LWEQ module also targets mammalian Talin1 to focal adhesion complexes, which are dynamic multicomponent assemblies required for cell adhesion and cell motility. Although Talin1 is essential for focal adhesion function, Talin2 is not targeted to focal adhesions. The nonvertebrate chordate Ciona intestinalis has only one talin gene, but alternative splicing of the talin mRNA produces two proteins with different C-terminal I/LWEQ modules. Thus, C. intestinalis contains two talins, Talin-a and Talin-b, with potentially different activities, despite having only one talin gene.  相似文献   

15.
Cell migration is a dynamic process that involves the continuous formation, maturation, and turnover of matrix-cell adhesion sites. New (nascent) adhesions form at the protruding cell edge in a tension-independent manner and are comprised of integrin receptors, signaling, and cytoskeletal-associated proteins. Integrins recruit focal adhesion kinase (FAK) and the cytoskeletal protein talin to nascent adhesions. Canonical models support a role for talin in mediating FAK localization and activation at adhesions. Here, alternatively, we show that FAK promotes talin recruitment to nascent adhesions occurring independently of talin binding to β1 integrins. The direct binding site for talin on FAK was identified, and a point mutation in FAK (E1015A) prevented talin association and talin localization to nascent adhesions but did not alter integrin-mediated FAK recruitment and activation at adhesions. Moreover, FAK E1015A inhibited cell motility and proteolytic talin cleavage needed for efficient adhesion dynamics. These results support an alternative linkage for FAK-talin interactions within nascent adhesions essential for the control of cell migration.  相似文献   

16.
Focal adhesions are an elaborate network of interconnecting proteins linking actin stress fibers to the extracellular matrix substrate. Modulation of the focal adhesion plaque provides a mechanism for the regulation of cellular adhesive strength. Using interference reflection microscopy, we found that activation of phosphoinositide 3-kinase (PI 3-kinase) by PDGF induces the dissipation of focal adhesions. Loss of this close apposition between the cell membrane and the extracellular matrix coincided with a redistribution of alpha-actinin and vinculin from the focal adhesion complex to the Triton X-100-soluble fraction. In contrast, talin and paxillin remained localized to focal adhesions, suggesting that activation of PI 3-kinase induced a restructuring of the plaque rather than complete dispersion. Furthermore, phosphatidylinositol (3,4, 5)-trisphosphate (PtdIns (3,4,5)-P(3)), a lipid product of PI 3-kinase, was sufficient to induce restructuring of the focal adhesion plaque. We also found that PtdIns (3,4,5)-P(3) binds to alpha-actinin in PDGF-treated cells. Further evidence demonstrated that activation of PI 3-kinase by PDGF induced a decrease in the association of alpha-actinin with the integrin beta subunit, and that PtdIns (3,4,5)-P(3) could disrupt this interaction in vitro. Modification of focal adhesion structure by PI 3-kinase and its lipid product, PtdIns (3,4,5)-P(3), has important implications for the regulation of cellular adhesive strength and motility.  相似文献   

17.
Podosomes are adhesion structures in osteoclasts and are structurally related to focal adhesions mediating cell motility during bone resorption. Here we show that gelsolin coprecipitates some of the focal adhesion-associated proteins such as c-Src, phosphoinositide 3-kinase (PI3K), p130(Cas), focal adhesion kinase, integrin alpha(v)beta(3), vinculin, talin, and paxillin. These proteins were inducibly tyrosine-phosphorylated in response to integrin activation by osteopontin. Previous studies have defined unique biochemical properties of gelsolin related to phosphatidylinositol 3,4,5-trisphosphate in osteoclast podosomes, and here we demonstrate phosphatidylinositol 3,4,5-trisphosphate/gelsolin function in mediating organization of the podosome signaling complex. Overlay and GST pull-down assays demonstrated strong phosphatidylinositol 3,4,5-trisphosphate-PI3K interactions based on the Src homology 2 domains of PI3K. Furthermore, lipid extraction of lysates from activated osteoclasts eliminated interaction between gelsolin, c-Src, PI3K, and focal adhesion kinase despite equal amounts of gelsolin in both the lipid-extracted and unextracted experiment. The cytoplasmic protein tyrosine phosphatase (PTP)-proline-glutamic acid-serine-threonine amino acid sequences (PEST) was also found to be associated with gelsolin in osteoclast podosomes and with stimulation of alpha(v)beta(3)-regulated phosphorylation of PTP-PEST. We conclude that gelsolin plays a key role in recruitment of signaling proteins to the plasma membrane through phospholipid-protein interactions and by regulation of their phosphorylation status through its association with PTP-PEST. Because both gelsolin deficiency and PI3K inhibition impair bone resorption, we conclude that phosphatidylinositol 3,4,5-trisphosphate-based protein interactions are critical for osteoclast function.  相似文献   

18.
Tensin is a protein confined at those discrete and specialized regions of the plasma membrane, known as focal adhesions. It contains, at the C-terminus, a phosphotyrosine binding (PTB) domain that can interact with the cytoplasmic tail of beta-integrins and is necessary for localization of the protein to cell-matrix adhesions. Here, we present the NMR solution structure of the PTB domain of tensin1. Moreover, through NMR binding studies, we demonstrate that the PTB domain of tensin1 is able to interact with phosphatidylinositol 4, 5-diphosphate (PtIns(4,5)P2) and phosphatidylinositol 4-phosphate (PtIns(4)P), presenting higher affinity for the diphosphorylated inositide. Chemical shift mapping studies reveal a putative PtIns(4,5)P2 binding region that is distinct from the predicted integrin beta-tail recognition site. Heteronuclear NOE experiments, recorded in absence and presence of PtIns(4,5)P2, indicate that the interaction with lipids decreases the flexibility of loop regions, predicted to be important for integrin binding, and thus, proposes a possible correlation between the two distinct binding events. Therefore, our studies suggest that capture of lipids by the PTB domain of tensin1 may play a role for the protein function at focal adhesions.  相似文献   

19.
Xing B  Thuppal S  Jedsadayanmata A  Du X  Lam SC 《FEBS letters》2006,580(8):2027-2032
Talin mediates integrin signaling by binding to integrin cytoplasmic tails through its FERM domain which consists of F1, F2 and F3 subdomains. TA205, an anti-talin monoclonal antibody, disrupts actin stress fibers and focal adhesion when microinjected into fibroblasts. Here, we showed that TA205 caused an allosteric inhibition of integrin alphaIIb beta3 binding to the talin FERM domain and mapped the TA205 epitope to residues 131-150 in talin F1. Furthermore, binding of a talin rod fragment to talin head was partially inhibited by TA205. These findings suggest that talin F1 may be important in regulation of integrin binding and talin head-rod interaction.  相似文献   

20.
The cytoskeletal protein talin, which provides a direct link between integrins and actin filaments, has been shown to contain two distinct binding sites for integrin beta subunits. Here, we report the precise delimitation and a first functional analysis of the talin rod domain integrin-binding site. Partially overlapping cDNAs covering the entire human talin gene were transiently expressed as DsRed fusion proteins in Chinese hamster ovary cells expressing alpha(IIb)beta(3), linked to green fluorescent protein (GFP). Two-color fluorescence analysis of the transfected cells, spread on fibrinogen, revealed distinct subcellular staining patterns including focal adhesion, actin filament, and granular labeling for different talin fragments. The rod domain fragment G (residues 1984-2344), devoid of any known actin- or vinculin-binding sites, colocalized with beta(3)-GFP in focal adhesions. Direct in vitro interaction of fragment G with native platelet integrin alpha(IIb)beta(3) or with the recombinant wild type, but not the Y747A mutant beta(3) cytoplasmic tail, linked to glutathione S-transferase, was demonstrated by surface plasmon resonance analysis and pull-down assays, respectively. Here, we demonstrate for the first time the in vivo relevance of this interaction by fluorescence resonance energy transfer between beta(3)-GFP and DsRed-talin fragment G. Further in vitro pull-down studies allowed us to map out the integrin-binding site within fragment G to a stretch of 130 residues (fragment J, residues 1984-2113) that also localized to focal adhesions. Finally, we show by a cell biology approach that this integrin-binding site within the talin rod domain is important for beta(3)-cytoskeletal interactions but does not participate in alpha(IIb)beta(3) activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号