首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Adenine nucleotide translocator (ANT) is a mitochondrial inner membrane protein involved in the ADP/ATP exchange and is a component of the mitochondrial permeability transition pore (PTP). In mammalian apoptosis, the PTP can mediate mitochondrial outer membrane permeabilization (MOMP), which is suspected to be responsible for the release of apoptogenic factors, including cytochrome c. Although release of cytochrome c in yeast apoptosis has previously been reported, it is not known how it occurs. Herein we used yeast genetics to investigate whether depletion of proteins putatively involved in MOMP and cytochrome c release affects these processes in yeast. While deletion of POR1 (yeast voltage-dependent anion channel) enhances apoptosis triggered by acetic acid, H(2)O(2) and diamide, CPR3 (mitochondrial cyclophilin) deletion had no effect. Absence of ADP/ATP carrier (AAC) proteins, yeast orthologues of ANT, protects cells exposed to acetic acid and diamide but not to H(2)O(2). Expression of a mutated form of Aac2p (op1) exhibiting very low ADP/ATP translocase activity indicates that AAC's pro-death role does not require translocase activity. Absence of AAC proteins impairs MOMP and release of cytochrome c, which, together with other mitochondrial inner membrane proteins, is degraded. Our findings point to a crucial role of AAC in yeast apoptosis.  相似文献   

2.
Enhanced formation of reactive oxygen species (ROS), superoxide (O2*-), and hydrogen peroxide (H2O2) may result in either apoptosis or other forms of cell death. Here, we studied the mechanisms underlying activation of the apoptotic machinery by ROS. Exposure of permeabilized HepG2 cells to O2*- elicited rapid and massive cytochrome c release (CCR), whereas H2O2 failed to induce any release. Both O2*- and H2O2 promoted activation of the mitochondrial permeability transition pore by Ca2+, but Ca2+-dependent pore opening was not required for O2*--induced CCR. Furthermore, O2*- alone evoked CCR without damage of the inner mitochondrial membrane barrier, as mitochondrial membrane potential was sustained in the presence of extramitochondrial ATP. Strikingly, pretreatment of the cells with drugs or an antibody, which block the voltage-dependent anion channel (VDAC), prevented O2*--induced CCR. Furthermore, VDAC-reconstituted liposomes permeated cytochrome c after O2*- exposure, and this release was prevented by VDAC blocker. The proapoptotic protein, Bak, was not detected in HepG2 cells and O2*--induced CCR did not depend on Bax translocation to mitochondria. O2*--induced CCR was followed by caspase activation and execution of apoptosis. Thus, O2*- triggers apoptosis via VDAC-dependent permeabilization of the mitochondrial outer membrane without apparent contribution of proapoptotic Bcl-2 family proteins.  相似文献   

3.
During apoptosis, an important pathway leading to caspase activation involves the release of cytochrome c from the intermembrane space of mitochondria. Using a cell-free system based on Xenopus egg extracts, we examined changes in the outer mitochondrial membrane accompanying cytochrome c efflux. The pro-apoptotic proteins, Bid and Bax, as well as factors present in Xenopus egg cytosol, each induced cytochrome c release when incubated with isolated mitochondria. These factors caused a permeabilization of the outer membrane that allowed the corelease of multiple intermembrane space proteins: cytochrome c, adenylate kinase and sulfite oxidase. The efflux process is thus nonspecific. None of the cytochrome c-releasing factors caused detectable mitochondrial swelling, arguing that matrix swelling is not required for outer membrane permeability in this system. Bid and Bax caused complete release of cytochrome c but only a limited permeabilization of the outer membrane, as measured by the accessibility of inner membrane-associated respiratory complexes III and IV to exogenously added cytochrome c. However, outer membrane permeability was strikingly increased by a macromolecular cytosolic factor, termed PEF (permeability enhancing factor). We hypothesize that PEF activity could help determine whether cells can recover from mitochondrial cytochrome c release.  相似文献   

4.
Although previous studies demonstrated that genistein-induced apoptosis of various cell types including RPE-J cells, the involvement of mitochondrial events in such types of apoptosis has not been demonstrated to date. In this investigation of genistein-induced apoptosis of RPE-J cells, genistein induced the reduction of the mitochondrial membrane potential and the release of cytochrome c to cytosol. A mitochondrial permeability transition pore (PTP) blocker bongkrekic acid prevented the reduction of the mitochondrial membrane potential and cytochrome c release, and consequently abolished caspase-3 activation, nuclear condensation, and DNA fragmentation. On the other hand, zVAD-fmk did not inhibit the mitochondrial event such as the reduction of the mitochondrial membrane potential and cytochrome c release although it prevented caspase-3 activation, nuclear condensation, and DNA fragmentation. Taken together, genistein induces apoptosis of RPE-J cells by opening the mitochondrial PTP, and the mitochondrial event in this type of apoptosis is caused independently of caspase.  相似文献   

5.
The BH3 domain is essential for the release of cytochrome c from mitochondria by pro-apoptotic Bcl-2 family proteins during apoptosis. This study tested the hypothesis that a Bax peptide that includes the BH3 domain can permeabilize the mitochondrial outer membrane and release cytochrome c in the absence of a permeability transition at the mitochondrial inner membrane. BH3 peptide (0.1-60 microm) released cytochrome c from mitochondria in the presence of physiological concentrations of ions in a cell type-selective manner, whereas a BH3 peptide with a single amino acid substitution was ineffective. The release of cytochrome c by BH3 peptide correlated with the presence of endogenous Bax at the mitochondria and its integral membrane insertion. Cytochrome c release was accompanied by adenylate kinase release, was not associated with mitochondrial swelling or substantial loss of electrical potential across the inner membrane, and was unaffected by inhibitors of the permeability transition pore. Cytochrome c release was, however, inhibited by Bcl-2. Although energy-coupled respiration was inhibited after the release of cytochrome c, mitochondria maintained membrane potential in the presence of ATP due to the reversal of the ATP synthase. Overall, results support the hypothesis that BH3 peptide releases cytochrome c by a Bax-dependent process that is independent of the mitochondrial permeability transition pore but regulated by Bcl-2.  相似文献   

6.
A tale of two mitochondrial channels,MAC and PTP,in apoptosis   总被引:1,自引:0,他引:1  
The crucial step in the intrinsic, or mitochondrial, apoptotic pathway is permeabilization of the mitochondrial outer membrane. Permeabilization triggers release of apoptogenic factors, such as cytochrome c, from the mitochondrial intermembrane space into the cytosol where these factors ensure propagation of the apoptotic cascade and execution of cell death. However, the mechanism(s) underlying permeabilization of the outer membrane remain controversial. Two mechanisms, involving opening of two different mitochondrial channels, have been proposed to be responsible for the permeabilization; the permeability transition pore (PTP) in the inner membrane and the mitochondrial apoptosis-induced channel (MAC) in the outer membrane. Opening of PTP would lead to matrix swelling, subsequent rupture of the outer membrane, and an unspecific release of intermembrane proteins into the cytosol. However, many believe PTP opening is a consequence of apoptosis and this channel is thought to principally play a role in necrosis, not apoptosis. Activation of MAC is exquisitely regulated by Bcl-2 family proteins, which are the sentinels of apoptosis. MAC provides specific pores in the outer membrane for the passage of intermembrane proteins, in particular cytochrome c, to the cytosol. The electrophysiological characteristics of MAC are very similar to Bax channels and depletion of Bax significantly diminishes MAC activity, suggesting that Bax is an essential constituent of MAC in some systems. The characteristics of various mitochondrial channels and Bax are compared. The involvement of MAC and PTP activities in apoptosis of disease and their pharmacology are discussed.  相似文献   

7.
The voltage dependent anion channel (VDAC), located in the outer mitochondrial membrane, functions as a major channel allowing passage of small molecules and ions between the mitochondrial inter-membrane space and cytoplasm. Together with the adenine nucleotide translocator (ANT), which is located in the inner mitochondrial membrane, the VDAC is considered to form the core of a mitochondrial multiprotein complex, named the mitochondrial permeability transition pore (MPTP). Both VDAC and ANT appear to take part in activation of the mitochondrial apoptosis pathway. Other proteins also appear to be associated with the MPTP, for example, the 18 kDa mitochondrial Translocator Protein (TSPO), Bcl-2, hexokinase, cyclophylin D, and others. Interactions between VDAC and TSPO are considered to play a role in apoptotic cell death. As a consequence, due to its apoptotic functions, the TSPO has become a target for drug development directed to find treatments for neurodegenerative diseases and cancer. In this context, TSPO appears to be involved in the generation of reactive oxygen species (ROS). This generation of ROS may provide a link between activation of TSPO and of VDAC, to induce activation of the mitochondrial apoptosis pathway. ROS are known to be able to release cytochrome c from cardiolipins located at the inner mitochondrial membrane. In addition, ROS appear to be able to activate VDAC and allow VDAC mediated release of cytochrome c into the cytosol. Release of cytochrome c from the mitochondria forms the initiating step for activation of the mitochondrial apoptosis pathway. These data provide an understanding regarding the mechanisms whereby VDAC and TSPO may serve as targets to modulate apoptotic rates. This has implications for drug design to treat diseases such as neurodegeneration and cancer.  相似文献   

8.
The role of the mitochondrial permeability transition in cell death   总被引:5,自引:0,他引:5  
The mitochondrial permeability transition (MPT) is a non-selective inner membrane permeabilization that occurs in response to increased calcium load and redox stress. Currently, two models of the MPT exist including the, largely hypothetical, native proteinaceous pore model and the oxidized inner membrane protein model which may reflect the extremes in a continuum of changes that occur to the inner membrane prior to its permeabilization. Here I discuss evidence that the MPT per se leads to necrosis, but not cytochrome c release and apoptosis. However, data also suggest that signaling crosstalk between the MPT and Bcl-2 family proteins occurs indicating an important role for the MPT in apoptosis.  相似文献   

9.
Mitochondria constitute a major source of reactive oxygen species and have been proposed to integrate the cellular responses to stress. In animals, it was shown that mitochondria can trigger apoptosis from diverse stimuli through the opening of MTP, which allows the release of the apoptosis-inducing factor and translocation of cytochrome c into the cytosol. Here, we analyzed the role of the mitochondria in the generation of oxidative burst and induction of programmed cell death in response to brief or continuous oxidative stress in Arabidopsis cells. Oxidative stress increased mitochondrial electron transport, resulting in amplification of H(2)O(2) production, depletion of ATP, and cell death. The increased generation of H(2)O(2) also caused the opening of the MTP and the release of cytochrome c from mitochondria. The release of cytochrome c and cell death were prevented by a serine/cysteine protease inhibitor, Pefablock. However, addition of inhibitor only partially inhibited the H(2)O(2) amplification and the MTP opening, suggesting that protease activation is a necessary step in the cell death pathway after mitochondrial damage.  相似文献   

10.
Acute ethanol exposure induces oxidative stress and apoptosis in primary rat hepatocytes. Previous data indicate that the mitochondrial permeability transition (MPT) is essential for ethanol-induced apoptosis. However, the mechanism by which ethanol induces the MPT remains unclear. In this study, we investigated the role of Bax, a proapoptotic Bcl-2 family protein, in acute ethanol-induced hepatocyte apoptosis. We found that Bax translocates from the cytosol to mitochondria before mitochondrial cytochrome c release. Bax translocation was oxidative stress dependent. Mitochondrial Bax formed a protein complex with the mitochondrial voltage-dependent anion channel (VDAC). Prevention of Bax-VDAC interactions by a microinjection of anti-VDAC antibody effectively prevented hepatocyte apoptosis by ethanol. In conclusion, these data suggest that Bax translocation from the cytosol to mitochondria leads to the subsequent formation of a Bax-VDAC complex that plays a crucial role in acute ethanol-induced hepatocyte apoptosis.  相似文献   

11.
Calphostin C-mediated apoptosis in glioma cells was reported previously to be associated with down-regulation of Bcl-2 and Bcl-xL. In this study, we report that 100 nM calphostin C also induces translocation and integration of monomeric Bax into mitochondrial membrane, followed by cytochrome c release into cytosol and subsequent decrease of mitochondrial inner membrane potential (DeltaPsim) before activation of caspase-3. The integration of monomeric Bax was associated with acquirement of alkali-resistance. The translocated monomeric Bax was partly homodimerized after cytochrome c release and decrease of DeltaPsim. The translocation and homodimerization of Bax, cytochrome c release, and decrease of DeltaPsim were not blocked by 100 microM z-VAD.fmk, a pan-caspase inhibitor, but the homodimerization of Bax and decrease of DeltaPsim were inhibited by 10 microM oligomycin, a mitochondrial F0F1-ATPase inhibitor. Therefore, it would be assumed that mitochondrial release of cytochrome c results from translocation and integration of Bax and is independent of permeability transition of mitochondria and caspase activation, representing a critical step in calphostin C-induced cell death.  相似文献   

12.
Increase of Ca2+ concentration in the cytosol of thymocytes to 400-600 nM causes slow accumulation of Ca2+ in mitochondria. Release of Ca2+ from mitochondria into the cytosol is induced by an uncoupler (FCCP) or by a dithiol cross-linking agent (phenylarsine oxide) and is inhibited by cyclosporin A--a specific inhibitor of the permeability transition pore in the inner mitochondrial membrane. In the presence of oxidizing agents (tert-butyl hydroperoxide and diamide), sub-optimal concentrations of uncoupler induce rapid cyclosporin-sensitive release of Ca2+. 6-Ketocholestanol, a recoupler under these conditions, causes redistribution of Ca2+ from the cytosol into mitochondria. These data indicate that partial uncoupling under conditions of oxidative stress causes opening of the permeability transition pore in a fraction of the mitochondria in intact lymphocytes. This mechanism mediates rapid release of Ca2+ from mitochondria into the cytosol.  相似文献   

13.
Genotoxic stresses stabilize the p53 tumor suppressor protein which, in turn, transactivates target genes to cause apoptosis. Although Noxa, a "BH3-only" member of the Bcl-2 family, was shown to be a target of p53-mediated transactivation and to function as a mediator of p53-dependent apoptosis through mitochondrial dysfunction, the molecular mechanism by which Noxa causes mitochondrial dysfunction is largely unknown. Here we show that two domains (BH3 domain and mitochondrial targeting domain) in Noxa are essential for the release of cytochrome c from mitochondria. Noxa-induced cytochrome c release is inhibited by permeability transition pore inhibitors such as CsA or MgCl2, and Noxa induces an ultra-structural change of mitochondria yielding "swollen" mitochondria that are unlike changes induced by tBid. This indicates that Noxa may activate the permeability transition-related pore to release cytochrome c from mitochondria into cytosol. Moreover, Bak-oligomerization, which is an essential event for tBid-induced cytochrome c release in the extrinsic death signaling pathway, is not associated with Noxa-induced cytochrome c release. This finding suggests that the pathway of Noxa-induced mitochondrial dysfunction is distinct from the one of tBid-induced mitochondrial dysfunction. Thus, we propose that there are at least two different pathways of mitochondrial dysfunction; one mediated through Noxa in response to genotoxic stresses and the other through tBid in response to death ligands.  相似文献   

14.
The mitochondrial Ca(2+)-independent phospholipase A(2) is activated during energy-dependent Ca(2+) accumulation under conditions where there is a sustained depression of the membrane potential. This activation is not dependent on induction of the mitochondrial permeability transition. Bromoenol lactone, which inhibits the phospholipase, is effective as an inhibitor of the transition, and this action can be overcome by low levels of exogenous free fatty acids. Apparently, activation of the Ca(2+)-independent phospholipase is a factor in the mechanisms by which depolarization and Ca(2+) accumulation promote opening of the permeability transition pore. Sustained activity of the Ca(2+)-independent phospholipase A(2) promotes rupture of the outer mitochondrial membrane and spontaneous release of cytochrome c on a time scale similar to that of apoptosis occurring in cells. However, more swelling of the matrix space must occur to provoke release of a given cytochrome c fraction when the enzyme is active, compared with when it is inhibited. Through its effects on the permeability transition and release of intermembrane space proteins, the mitochondrial Ca(2+)-independent phospholipase A(2) may be an important factor governing cell death caused by necrosis or apoptosis.  相似文献   

15.
Irreversible mitochondrial permeability transition and the resultant cytochrome c release signify the commitment of a cell to apoptotic death. However, the role of transient MPT (tMPT) because of flickering opening of the mitochondrial permeability transition pore remains elusive. Here we show that tMPT and the associated superoxide flashes (i.e. tMPT/superoxide flashes) constitute early mitochondrial signals during oxidative stress-induced apoptosis. Selenite (a ROS-dependent insult) but not staurosporine (a ROS-independent insult) stimulated an early and persistent increase in tMPT/superoxide flash activity prior to mitochondrial fragmentation and a global ROS rise, independently of Bax translocation and cytochrome c release. Selectively targeting tMPT/superoxide flash activity by manipulating cyclophilin D expression or scavenging mitochondrial ROS markedly impacted the progression of selenite-induced apoptosis while exerting little effect on the global ROS response. Furthermore, the tMPT/superoxide flash served as a convergence point for pro- and anti-apoptotic regulation mediated by cyclophilin D and Bcl-2 proteins. These results indicate that tMPT/superoxide flashes act as early mitochondrial signals mediating the apoptotic response during oxidative stress, and provide the first demonstration of highly efficacious local mitochondrial ROS signaling in deciding cell fate.  相似文献   

16.
17.
Mitochondria as targets of apoptosis regulation by nitric oxide   总被引:1,自引:0,他引:1  
Vieira H  Kroemer G 《IUBMB life》2003,55(10-11):613-616
In addition to their vital role as the cell's power stations, mitochondria exert an important function in apoptosis. In response to most if not all apoptosis inducers, mitochondrial membranes are permeabilized, leading to the release of potentially toxic proteins, mostly from the intermembrane space to the rest of the cells. Such pro-apoptotic intermembrane proteins include the caspase-independent death effector AIF, as well as cytochrome c, which can trigger the activation of caspases, once it has reached the cytosol. The mitochondrial permeabilization process can be induced by a variety of different xenobiotics, via a direct effect on mitochondrial membranes. Alternatively, mitochondrial permeabilization can be induced by endogenous second messengers, which are elicited in response to stress. The permeabilization process is controlled by the mitochondrial permeability transition pore complex (PTPC), by proteins of the Bcl-2/Bax family, as well as by lipids and metabolites. Nitric oxide (NO) is one of the second messengers that can trigger apoptosis by inducing mitochondrial membrane permeabilization. This effect may involve a direct effect on the PTPC and/or indirect effects secondary to the NO-mediated inhibition of oxidative phosphorylation. This has far-reaching implications for the pathophysiology of NO.  相似文献   

18.
Smith DJ  Ng H  Kluck RM  Nagley P 《IUBMB life》2008,60(6):383-389
Mitochondria play a key role in death signaling. The intermembrane space of these organelles contains a number of proteins which promote cell death once they are redistributed to the cytosol. The formation of pores in the outer membrane of mitochondria defines a gateway through which the apoptogenic proteins pass during death signaling. Interactions between pro-apoptotic and pro-survival members of the Bcl-2 family of proteins are decisive in the initiation of pore opening. While the specific composition of the pore in molecular terms is still subject to debate and continuing investigation, it is recognized functionally as a passive channel which not only allows egress of proteins to cytosol but also entry in the reverse direction. A variety of constraints may restrict the release of proteins from the intermembrane space to the cytosol. These include trapping in the intercristal spaces formed by the convoluted invaginations of the inner membrane, binding of proteins to the inner membrane or to other soluble proteins of the intermembrane space, or insertion of proteins into the inner membrane. There is a corresponding variety of mechanisms that facilitate release of apoptogenic proteins from such entrapment. Morphological changes that expand the inner membrane enable proteins to be released from enclosure in intercristal spaces, allowing these proteins access to the mitochondrial gateway. Specific cases include cytochrome c molecules bound to inner membrane cardiolipin and released upon oxidation of that lipid component. Further, AIF that is embedded in the inner membrane is released by proteases (caspases or calpains), which enter from the cytosol once the outer membrane pore has opened. The facilitation (or restriction) of apoptogenic protein release through the mitochondrial gateway may provide new opportunities for regulating cell death.  相似文献   

19.
Bortezomib, a proteasome inhibitor, shows substantial anti-tumor activity in a variety of tumor cell lines, is in phase I, II, and III clinical trials and has recently been approved for the treatment of patients with multiple myeloma. The sequence of events leading to apoptosis following proteasome inhibition by bortezomib is unclear. Bortezomib effects on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration in the mitochondrial membrane potential (Delta psi m), and release of cytochrome c from mitochondria. With human H460 lung cancer cells, bortezomib exposure at 0.1 microM showed induction of apoptotic cell death starting at 24 h, with increasing effects after 48-72 h of treatment. After 3-6 h, an elevation in ROS generation, an increase in Delta psi m, and the release of cytochrome c into the cytosol, were observed in a time-dependent manner. Co-incubation with rotenone and antimycin A, inhibitors of mitochondrial electron transport chain complexes I and III, or with cyclosporine A, an inhibitor of mitochondrial permeability transition pore, resulted in inhibition of bortezomib-induced ROS generation, increase in Delta psi m, and cytochrome c release. Tiron, an antioxidant agent, blocked the bortezomib-induced ROS production, Delta psi m increase, and cytochrome c release. Tiron treatment also protected against the bortezomib-induced PARP protein cleavage and cell death. Benzyloxycarbonyl-VAD-fluoromethyl ketone, an inhibitor of pan-caspase, did not alter the bortezomib-induced ROS generation and increase in Delta psi m, although it prevented bortezomib-induced poly(ADP-ribose) polymerase cleavage and apoptotic death. In PC-3 prostate carcinoma cells (with overexpression of Bcl-2), a reduction of bortezomib-induced ROS generation, Delta psi m increase was correlated with cellular resistance to bortezomib and the attenuation of drug-induced apoptosis. The transient transfection of wild type p53 in p53 null H358 cells caused stimulation of the bortezomib-induced apoptosis but failed to enhance ROS generation and Delta psi m increase. Thus ROS generation plays a critical role in the initiation of the bortezomib-induced apoptotic cascade by mediation of the disruption of Delta psi m and the release of cytochrome c from mitochondria.  相似文献   

20.
Photodynamic therapy (PDT), a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in human epidermoid carcinoma A431 cells. However, the precise mechanism of PDT-induced apoptosis is not well characterized. To dissect the pathways of PDT-induced apoptosis, we investigated the involvement of mitochondrial damage by examining a second generation photosensitizer, the silicon phthalocyanine 4 (Pc 4). By using laser-scanning confocal microscopy, we found that Pc 4 localized to cytosolic membranes primarily, but not exclusively, in mitochondria. Formation of mitochondrial reactive oxygen species (ROS) was detected within minutes when cells were exposed to Pc 4 and 670-675 nm light. This was followed by mitochondrial inner membrane permeabilization, depolarization and swelling, cytochrome c release, and apoptotic death. Desferrioxamine prevented mitochondrial ROS production and the events thereafter. Cyclosporin A plus trifluoperazine, blockers of the mitochondrial permeability transition, inhibited mitochondrial inner membrane permeabilization and depolarization without affecting mitochondrial ROS generation. These data indicate that the mitochondrial ROS are critical in initiating mitochondrial inner membrane permeabilization, which leads to mitochondrial swelling, cytochrome c release to the cytosol, and apoptotic death during PDT with Pc 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号