首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bcl-2 family proteins regulate the release of proteins like cytochrome c from mitochondria during apoptosis. We used cell-free systems and ultimately a vesicular reconstitution from defined molecules to show that outer membrane permeabilization by Bcl-2 family proteins requires neither the mitochondrial matrix, the inner membrane, nor other proteins. Bid, or its BH3-domain peptide, activated monomeric Bax to produce membrane openings that allowed the passage of very large (2 megadalton) dextran molecules, explaining the translocation of large mitochondrial proteins during apoptosis. This process required cardiolipin and was inhibited by antiapoptotic Bcl-x(L). We conclude that mitochondrial protein release in apoptosis can be mediated by supramolecular openings in the outer mitochondrial membrane, promoted by BH3/Bax/lipid interaction and directly inhibited by Bcl-x(L).  相似文献   

2.
Cytochrome c release from mitochondria is a key event in apoptosis signaling that is regulated by Bcl-2 family proteins. Cleavage of the BH3-only protein Bid by multiple proteases leads to the formation of truncated Bid (tBid), which, in turn, promotes the oligomerization/insertion of Bax into the mitochondrial outer membrane and the resultant release of proteins residing in the intermembrane space. Bax, a monomeric protein in the cytosol, is targeted by a yet unknown mechanism to the mitochondria. Several hypotheses have been put forward to explain this targeting specificity. Using mitochondria isolated from different mutants of the yeast Saccharomyces cerevisiae and recombinant proteins, we have now investigated components of the mitochondrial outer membrane that might be required for tBid/Bax-induced cytochrome c release. Here, we show that the protein translocase of the outer mitochondrial membrane is required for Bax insertion and cytochrome c release.  相似文献   

3.
Bid, a pro-apoptosis "BH3-only" member of the Bcl-2 family, can be cleaved by caspase-8 after Fas/TNF-R1 engagement. The p15 form of truncated Bid (tBid) translocates to mitochondria and induces cytochrome c release, leading to the activation of downstream caspases and apoptosis. In the current study, we investigated the mechanism by which tBid regulated cytochrome c release in terms of its relationship to mitochondrial permeability transition and Bax, another Bcl-2 family protein. We employed an in vitro reconstitution system as well as cell cultures and an animal model to reflect the physiological environment where Bid could be functional. We found that induction of cytochrome c release by tBid was not accompanied by a permeability transition even at high doses. Indeed, inhibition of permeability transition did not suppress the activity of tBid in vitro nor could they block Fas activation-induced, Bid-dependent hepatocyte apoptosis in cultures. Furthermore, Mg(2+), although inhibiting permeability transition, actually enhanced the ability of tBid to induce cytochrome c release. We also found that tBid did not require Bax to induce cytochrome c release in vitro. In addition, mice deficient in bax were still highly susceptible to anti-Fas-induced hepatocyte apoptosis, in which cytochrome c release was unaffected. Moreover, although Bax-induced cytochrome c release was not dependent on tBid, the two proteins could function synergistically. We conclude that Bid possesses the biochemical activity to induce cytochrome c release through a mechanism independent of mitochondrial permeability transition pore and Bax.  相似文献   

4.
Bax mediates cytochrome c release and apoptosis during neurodevelopment. Brain mitochondria that were isolated from 8-day, 17-day, and adult rats displayed decreasing levels of mitochondrial Bax. The amount of cytochrome c released from brain mitochondria by a peptide containing the BH3 cell death domain decreased with increasing age. However, approximately 60% of cytochrome c in adult brain mitochondria could be released by the BH3 peptide in the presence of exogenous human recombinant Bax. Mitochondrial Bax was downregulated in PC12S neural cells differentiated with nerve growth factor, and mitochondria isolated from these cells demonstrated decreased sensitivity to BH3-peptide-induced cytochrome c release. These results demonstrate that immature brain mitochondria and mitochondria from undifferentiated neural cells are particularly sensitive to cytochrome c release mediated by endogenous Bax and a BH3 death domain peptide. Postnatal developmental changes in mitochondrial Bax levels may contribute to the increased susceptibility of neurons to pathological apoptosis in immature animals.  相似文献   

5.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

6.
Calphostin C-mediated apoptosis in glioma cells was reported previously to be associated with down-regulation of Bcl-2 and Bcl-xL. In this study, we report that 100 nM calphostin C also induces translocation and integration of monomeric Bax into mitochondrial membrane, followed by cytochrome c release into cytosol and subsequent decrease of mitochondrial inner membrane potential (DeltaPsim) before activation of caspase-3. The integration of monomeric Bax was associated with acquirement of alkali-resistance. The translocated monomeric Bax was partly homodimerized after cytochrome c release and decrease of DeltaPsim. The translocation and homodimerization of Bax, cytochrome c release, and decrease of DeltaPsim were not blocked by 100 microM z-VAD.fmk, a pan-caspase inhibitor, but the homodimerization of Bax and decrease of DeltaPsim were inhibited by 10 microM oligomycin, a mitochondrial F0F1-ATPase inhibitor. Therefore, it would be assumed that mitochondrial release of cytochrome c results from translocation and integration of Bax and is independent of permeability transition of mitochondria and caspase activation, representing a critical step in calphostin C-induced cell death.  相似文献   

7.
HL-60 cell differentiation into neutrophil like cells is associated with their induction of apoptosis. We investigated the cellular events that occur pre and post mitochondrial permeability transition to determine the role of the mitochondria in the induction of differentiation induced apoptosis. Pro-apoptotic Bax was translocated to and cleaved at the mitochondrial membrane in addition to t-Bid activation. These processes contributed to mitochondrial membrane disruption and the release of cytochrome c and Smac/DIABLO. The release of cytochrome c was caspase independent, as the caspase inhibitor Z-VAD.fmk, which inhibited apoptosis, did not block the release of cytochrome c. In contrast, the release of Smac/DIABLO was partially inhibited by caspase inhibition indicating differential release pathways for these mitochondrial pro-apoptotic factors. In addition to caspase inhibition we assessed the effects of the Bcl-2 anti-apoptotic family on differentiation induced apoptosis. BH4-Bcl-xl-TAT recombinant protein did not delay apoptosis, but did block the release of cytochrome c and Smac/DIABLO. Bcl-2 over-expression also inhibited differentiation induced apoptosis but was associated with the inhibition of the differentiation process. Differentiation mediated mitochondrial release of cytochrome c and Smac/DIABLO, may not trigger the induction of apoptosis, as BH4-Bclxl-TAT blocks the release of pro-apoptotic factors from the mitochondria, but does not prevent apoptosis.  相似文献   

8.
Cytochrome c release is a central step in the apoptosis induced by many death stimuli. Bcl-2 plays a critical role in controlling this step. In this study, we investigated the upstream mechanism of cytochrome c release induced by ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA14-1), a recently discovered small molecule inhibitor of Bcl-2. HA14-1 was found to induce cytochrome c release from the mitochondria of intact cells but not from isolated mitochondria. Cytochrome c release from isolated mitochondria requires the presence of both HA14-1 and exogenous Ca(2+). This suggests that both mitochondrial and extramitochondrial signals are important. In intact cells, treatment with HA14-1 caused Ca(2+) spike, change in mitochondrial membrane potential (Delta psi(m)) transition, Bax translocation, and reactive oxygen species (ROS) generation prior to cytochrome c release. Pretreatment with either EGTA acetoxymethyl ester or vitamin E resulted in a significant decrease in cytochrome c release and cell death induced by HA14-1. Furthermore pretreatment with RU-360, an inhibitor of the mitochondrial Ca(2+) uniporter, or with EGTA acetoxymethyl ester, but not with vitamin E, prevented the HA14-1-induced Delta psi(m) transition and Bax translocation. This suggests that ROS generation is an event that occurs after the Delta psi(m) transition and Bax translocation. Together these data demonstrate that the Ca(2+) spike, mitochondrial Bcl-2 presensitization, and subsequent Delta psi(m) transition, Bax translocation, and ROS generation are important upstream signals for cytochrome c release upon HA14-1 stimulation. The involvement of endoplasmic reticulum and mitochondrial signals suggests both organelles are crucial for HA14-1-induced apoptosis.  相似文献   

9.
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability.  相似文献   

10.
BMAP-28, a bovine antimicrobial peptide of the cathelicidin family, induces membrane permeabilization and death in human tumor cell lines and in activated, but not resting, human lymphocytes. In addition, we found that BMAP-28 causes depolarization of the inner mitochondrial membrane in single cells and in isolated mitochondria. The effect of the peptide was synergistic with that of Ca(2+) and inhibited by cyclosporine, suggesting that depolarization depends on opening of the mitochondrial permeability transition pore. The occurrence of a permeability transition was investigated on the basis of mitochondrial permeabilization to calcein and cytochrome c release. We show that BMAP-28 permeabilizes mitochondria to entrapped calcein in a cyclosporine-sensitive manner and that it releases cytochrome c in situ. Our results demonstrate that BMAP-28 is an inducer of the mitochondrial permeability transition pore and that its cytotoxic potential depends on its effects on mitochondrial permeability.  相似文献   

11.
During initiation of apoptosis, Bcl-2 family proteins regulate the permeability of mitochondrial outer membrane. BH3-only protein, tBid, activates pro-apoptotic Bax to release cytochrome c from mitochondria. tBid also activates anti-apoptotic Bcl-2 in the mitochondrial outer membrane, changing it from a single-spanning to a multispanning conformation that binds the active Bax and inhibits cytochrome c release. However, it is not known whether other mitochondrial proteins are required to elicit the tBid-induced Bcl-2 conformational alteration. To define the minimal components that are required for the functionally important Bcl-2 conformational alteration, we reconstituted the reaction using purified proteins and liposomes. We found that purified tBid was sufficient to induce a conformational alteration in the liposome-tethered, but not cytosolic Bcl-2, resulting in a multispanning form that is similar to the one found in the mitochondrial outer membrane of drug-treated cells. Mutations that abolished tBid/Bcl-2 interaction also abolished the conformational alteration, demonstrating that a direct tBid/Bcl-2 interaction at the membrane is both required and sufficient to elicit the conformational alteration. Furthermore, active Bax also elicited the Bcl-2 conformational alteration. Bcl-2 mutants that displayed increased or decreased activity in the conformational alteration assay showed corresponding activities in inhibiting pore formation by Bax in vitro and in preventing apoptosis in vivo. Thus, there is a strong correlation between the direct interaction of membrane-bound Bcl-2 and tBid with activation of Bcl-2 in vitro and in vivo.  相似文献   

12.
Genotoxic stresses stabilize the p53 tumor suppressor protein which, in turn, transactivates target genes to cause apoptosis. Although Noxa, a "BH3-only" member of the Bcl-2 family, was shown to be a target of p53-mediated transactivation and to function as a mediator of p53-dependent apoptosis through mitochondrial dysfunction, the molecular mechanism by which Noxa causes mitochondrial dysfunction is largely unknown. Here we show that two domains (BH3 domain and mitochondrial targeting domain) in Noxa are essential for the release of cytochrome c from mitochondria. Noxa-induced cytochrome c release is inhibited by permeability transition pore inhibitors such as CsA or MgCl2, and Noxa induces an ultra-structural change of mitochondria yielding "swollen" mitochondria that are unlike changes induced by tBid. This indicates that Noxa may activate the permeability transition-related pore to release cytochrome c from mitochondria into cytosol. Moreover, Bak-oligomerization, which is an essential event for tBid-induced cytochrome c release in the extrinsic death signaling pathway, is not associated with Noxa-induced cytochrome c release. This finding suggests that the pathway of Noxa-induced mitochondrial dysfunction is distinct from the one of tBid-induced mitochondrial dysfunction. Thus, we propose that there are at least two different pathways of mitochondrial dysfunction; one mediated through Noxa in response to genotoxic stresses and the other through tBid in response to death ligands.  相似文献   

13.
Bax is a potent pro-apoptotic member of the Bcl-2 protein family that localizes to the mitochondrial membrane during apoptosis. Tauroursodeoxycholic acid (TUDCA) modulates the apoptotic threshold, in part, by preventing Bax translocation both in vitro and in vivo. The mechanisms by which Bax induces and TUDCA inhibits release of cytochrome c are unclear. We show here that recombinant Bax protein induced cytochrome c release in isolated mitochondria without detectable swelling. Co-incubation with TUDCA prevented efflux of mitochondrial factors and proteolytic processing of caspases in cytosolic extracts. Spectroscopic analyses of mitochondria exposed to Bax revealed increased polarity and fluidity of the membrane lipid core as well as altered protein order, indicative of Bax binding, together with loss of spin-label paramagnetism, characteristic of oxidative damage. TUDCA markedly abrogated the Bax-induced membrane perturbation. In conclusion, our results indicate that Bax protein directly induces cytochrome c release from mitochondria through a mechanism that does not require the permeability transition. Rather, it is accompanied by changes in the organization of membrane lipids and proteins. TUDCA is a potent inhibitor of Bax association with mitochondria. Thus, TUDCA modulates apoptosis by suppressing mitochondrial membrane perturbation through pathways that are also independent of the mitochondrial permeability transition.  相似文献   

14.
Bax, a pro-apoptotic member of the Bcl-2 family of proteins has the ability to form transmembrane pores large enough to allow cytochrome c (Cyt c) release, as well as to activate the mitochondrial permeability transition pore (mPTP); however, no differential study has been conducted to clarify which one of these mechanisms predominates over the other in the same system. In the present study, we treated isolated mitochondria from MCF7 cells with recombinant protein Bax and tested the efficacy of the mPTP inhibitor cyclosporin A (CsA) and of the Bax channel blocker (Bcb) to inhibit cytochrome c release. We also, induced apoptosis in MCF7 cell cultures with TNF-α plus cycloheximide to determine the effect of such compounds in apoptosis induction via mPTP or Bax oligomerization. Cytochrome c release was totally prevented by CsA and partially by Bcb when apoptosis was induced with recombinant Bax in isolated mitochondria from MCF7 cells. CsA increased the number of living cells in cell culture, as compared with the effect of Bax channel blocker. These results indicate that mPTP activation is the predominant pathway for Bax-induced cytochrome c release from MCF7 mitochondria and for apoptosis induction in the whole cell.  相似文献   

15.
The Bcl-2 family of proteins, consisting of anti-apoptotic and pro-apoptotic members, regulates cell death by controlling mitochondrial membrane permeability that is crucial for apoptotic signal transduction. We have recently shown that some of these proteins, such as Bcl-x(L), Bax, and Bak, directly modulate the mitochondrial voltage-dependent anion channel (VDAC) and thus regulate apoptogenic cytochrome c release and potential loss. To elucidate the molecular mechanisms of VDAC regulation by Bcl-2 family proteins, an electrophysiological study was carried out. It was found that VDAC and pro-apoptotic Bax created a large pore, with conductance levels 4- and 10-fold greater than those of the VDAC and Bax channels, respectively. Although the VDAC and Bax channels both show ion selectivity and voltage-dependent modulation of their activity, the VDAC-Bax channel had neither of their properties. Anti-apoptotic Bcl-x(L) and its BH4 oligopeptide completely closed the VDAC, in contrast to the Bax. Cytochrome c passed through a single VDAC-Bax channel but not through the VDAC or Bax channel in a planar lipid bilayer. These data provide direct evidence that VDAC forms a novel large pore together with Bax.  相似文献   

16.
During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.  相似文献   

17.
The Bcl-2 homology (BH) 3-only pro-apoptotic Bcl-2 family protein Bim plays an essential role in the mitochondrial pathway of apoptosis through activation of the BH1-3 multidomain protein Bax or Bak. To further understand how the BH3-only protein activates Bax, we provide evidence here that BimEL induces Bax conformational change and apoptosis through a Bcl-XL-suppressible but heterodimerization-independent mechanism. Substitution of the conserved leucine residue in the BH3 domain of BimEL for alanine (M1) inhibits the interaction of BimEL with Bcl-XL but does not abolish the ability of BimEL to induce Bax conformational change and apoptosis. However, removal of the C-terminal hydrophobic region from the M1 mutant (M1DeltaC) abolishes its ability to activate Bax and to induce apoptosis, although deletion of the C-terminal domain (DeltaC) alone has little if any effect on the pro-apoptotic activity of BimEL. Subcellular fractionation experiments show that the Bim mutant M1DeltaC is localized in the cytosol, indicating that both the C-terminal hydrophobic region and the BH3 domain are required for the mitochondrial targeting and pro-apoptotic activity of BimEL. Moreover, the Bcl-XL mutant (mt1), which is unable to interact with Bax and BimEL, blocks Bax conformational change and cytochrome c release induced by BimEL in intact cells and isolated mitochondria. BimEL or Bak-BH3 peptide induces Bax conformational change in vitro only under the presence of mitochondria, and the outer mitochondrial membrane fraction is sufficient for induction of Bax conformational change. Interestingly, native Bax is attached loosely on the surface of isolated mitochondria, which undergoes conformational change and insertion into mitochondrial membrane upon stimulation by BimEL, Bak-BH3 peptide, or freeze/thaw damage. Taken together, these findings indicate that BimEL may activate Bax by damaging the mitochondrial membrane structure directly, in addition to its binding and antagonizing Bcl-2/Bcl-XL function.  相似文献   

18.
Enhanced formation of reactive oxygen species (ROS), superoxide (O2*-), and hydrogen peroxide (H2O2) may result in either apoptosis or other forms of cell death. Here, we studied the mechanisms underlying activation of the apoptotic machinery by ROS. Exposure of permeabilized HepG2 cells to O2*- elicited rapid and massive cytochrome c release (CCR), whereas H2O2 failed to induce any release. Both O2*- and H2O2 promoted activation of the mitochondrial permeability transition pore by Ca2+, but Ca2+-dependent pore opening was not required for O2*--induced CCR. Furthermore, O2*- alone evoked CCR without damage of the inner mitochondrial membrane barrier, as mitochondrial membrane potential was sustained in the presence of extramitochondrial ATP. Strikingly, pretreatment of the cells with drugs or an antibody, which block the voltage-dependent anion channel (VDAC), prevented O2*--induced CCR. Furthermore, VDAC-reconstituted liposomes permeated cytochrome c after O2*- exposure, and this release was prevented by VDAC blocker. The proapoptotic protein, Bak, was not detected in HepG2 cells and O2*--induced CCR did not depend on Bax translocation to mitochondria. O2*--induced CCR was followed by caspase activation and execution of apoptosis. Thus, O2*- triggers apoptosis via VDAC-dependent permeabilization of the mitochondrial outer membrane without apparent contribution of proapoptotic Bcl-2 family proteins.  相似文献   

19.
This study tested the hypothesis that mitochondrial precursor targeting peptides can elicit the release of cytochrome c from both liver and brain mitochondria by a mechanism distinct from that mediated by the classical, Ca2+-activated permeability transition pore. Human cytochrome oxidase subunit IV signal peptide (hCOXIV1-22) at concentrations from 15 to 100 microM induced swelling, a decrease in membrane potential, and cytochrome c release in both types of mitochondria. Although cyclosporin A and bongkrekic acid were without effect, dibucaine, propanolol, dextran, and the uncoupler FCCP were each able to inhibit signal peptide-induced swelling and cytochrome c release. Adenylate kinase was coreleased with cytochrome c, arguing against a signal peptide-induced cytochrome c-specific pathway of efflux across the outer membrane. Taken together, the data indicate that a human mitochondrial signal peptide can evoke the release of cytochrome c from both liver and brain mitochondria by a unique permeability transition that differs in several characteristics from the classical mitochondrial permeability transition.  相似文献   

20.
Cytochrome c release from mitochondria is central to apoptosis, but the events leading up to it are disputed. The mitochondrial membrane potential has been reported to decrease, increase or remain unchanged during cytochrome c release. We measured mitochondrial membrane potential in Jurkat cells undergoing apoptosis by the uptake of the radiolabelled lipophilic cation TPMP, enabling small changes in potential to be determined. The ATP/ADP ratio, mitochondrial and cell volumes, plasma membrane potential and the mitochondrial membrane potential in permeabilised cells were also measured. Before cytochrome c release the mitochondrial membrane potential increased, followed by a decrease in potential associated with mitochondrial swelling and the release of cytochrome c and DDP-1, an intermembrane space house keeping protein. Mitochondrial swelling and cytochrome c release were both blocked by bongkrekic acid, an inhibitor of the permeability transition. We conclude that during apoptosis mitochondria undergo an initial priming phase associated with hyperpolarisation which leads to an effector phase, during which mitochondria swell and release cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号