首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Cargo is selectively exported from the ER in COPII vesicles. To analyze the role of COPII in selective transport from the ER, we have purified components of the mammalian COPII complex from rat liver cytosol and then analyzed their role in cargo selection and ER export. The purified mammalian Sec23–24 complex is composed of an 85-kD (Sec23) protein and a 120-kD (Sec24) protein. Although the Sec23–24 complex or the monomeric Sec23 subunit were found to be the minimal cytosolic components recruited to membranes after the activation of Sar1, the addition of the mammalian Sec13–31 complex is required to complete budding. To define possible protein interactions between cargo and coat components, we recruited either glutathione-S-transferase (GST)–tagged Sar1 or GST– Sec23 to ER microsomes. Subsequently, we solubilized and reisolated the tagged subunits using glutathione-Sepharose beads to probe for interactions with cargo. We find that activated Sar1 in combination with either Sec23 or the Sec23–24 complex is necessary and sufficient to recover with high efficiency the type 1 transmembrane cargo protein vesicular stomatitis virus glycoprotein in a detergent-soluble prebudding protein complex that excludes ER resident proteins. Supplementing these minimal cargo recruitment conditions with the mammalian Sec13–31 complex leads to export of the selected cargo into COPII vesicles. The ability of cargo to interact with a partial COPII coat demonstrates that these proteins initiate cargo sorting on the ER membrane before budding and establishes the role of GTPase-dependent coat recruitment in cargo selection.  相似文献   

2.
Lee MC  Orci L  Hamamoto S  Futai E  Ravazzola M  Schekman R 《Cell》2005,122(4):605-617
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.  相似文献   

3.
The Sar1 GTPase is an essential component of COPII vesicle coats involved in export of cargo from the ER. We report the 1.7-A structure of Sar1 and find that consistent with the sequence divergence of Sar1 from Arf family GTPases, Sar1 is structurally distinct. In particular, we show that the Sar1 NH2 terminus contains two regions: an NH2-terminal extension containing an evolutionary conserved hydrophobic motif that facilitates membrane recruitment and activation by the mammalian Sec12 guanine nucleotide exchange factor, and an alpha1' amphipathic helix that contributes to interaction with the Sec23/24 complex that is responsible for cargo selection during ER export. We propose that the hydrophobic Sar1 NH2-terminal activation/recruitment motif, in conjunction with the alpha1' helix, mediates the initial steps in COPII coat assembly for export from the ER.  相似文献   

4.
Glycolipid glycosyltransferases (GGT) are transported from the endoplasmic reticulum (ER) to the Golgi, their site of residence, via COPII vesicles. An interaction of a (R/K)X(R/K) motif at their cytoplasmic tail (CT) with Sar1 is critical for the selective concentration in the transport vesicles. In this work using computational docking, we identify three putative binding pockets in Sar1 (sites A, B, and C) involved in the interaction with the (R/K)X(R/K) motif. Sar1 mutants with alanine replacement of amino acids in site A were tested in vitro and in cells. In vitro, mutant versions showed a reduced ability to bind immobilized peptides with the CT sequence of GalT2. In cells, Sar1 mutants (Sar1D198A) specifically affect the exiting of GGT from the ER, resulting in an ER/Golgi concentration ratio favoring the ER. Neither the typical Golgi localization of GM130 nor the exiting and transport of the G protein of the vesicular stomatitis virus were affected. The protein kinase inhibitor H89 produced accumulation of Sec23, Sar1, and GalT2 at the ER exit sites; Sar1D189A also accumulated at these sites, but in this case GalT2 remained disperse along ER membranes. The results indicate that amino acids in site A of Sar1 are involved in the interaction with the CT of GGT for concentration at ER exiting sites.  相似文献   

5.
Secretory proteins are transported from the endoplasmic reticulum (ER) in vesicles coated with coat protein complex II (COPII). To investigate the molecular mechanism of protein sorting into COPII vesicles, we have developed an in vitro budding reaction comprising purified coat proteins and cargo reconstituted proteolipsomes. Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Recombinant Emp46/47p proteins and the ER resident protein Ufe1p were reconstituted into liposomes whose composition resembles yeast ER membranes. When the proteoliposomes were mixed with COPII proteins and GMP-PNP, Emp46/47p, but not Ufe1p, were concentrated into COPII vesicles. We also show here that reconstituted Emp47p accelerates the GTP hydrolysis by Sar1p as stimulated by its GTPase-activating protein, Sec23/24p, both of which are components of the COPII coat. Furthermore, this GTP hydrolysis decreases the error of cargo sorting. We suggest that GTP hydrolysis by Sar1p promotes exclusion of improper proteins from COPII vesicles.  相似文献   

6.
Mechanisms for exporting variably sized cargo from the endoplasmic reticulum (ER) using the same machinery remain poorly understood. COPII-coated vesicles, which transport secretory proteins from the ER to the Golgi apparatus, are typically 60–90 nm in diameter. However, collagen, which forms a trimeric structure that is too large to be accommodated by conventional transport vesicles, is also known to be secreted via a COPII-dependent process. In this paper, we show that Sec12, a guanine-nucleotide exchange factor for Sar1 guanosine triphosphatase, is concentrated at ER exit sites and that this concentration of Sec12 is specifically required for the secretion of collagen VII but not other proteins. Furthermore, Sec12 recruitment to ER exit sites is organized by its direct interaction with cTAGE5, a previously characterized collagen cargo receptor component, which functions together with TANGO1 at ER exit sites. These findings suggest that the export of large cargo requires high levels of guanosine triphosphate–bound Sar1 generated by Sec12 localized at ER exit sites.  相似文献   

7.
Despite the ubiquitous presence of the COPI, COPII, and clathrin vesicle budding machineries in all eukaryotes, the organization of the secretory pathway in plants differs significantly from that in yeast and mammalian cells. Mobile Golgi stacks and the lack of both transitional endoplasmic reticulum (ER) and a distinct ER-to-Golgi intermediate compartment are the most prominent distinguishing morphological features of the early secretory pathway in plants. Although the formation of COPI vesicles at periphery of Golgi cisternae has been demonstrated in plants, exit from the ER has been difficult to visualize, and the spatial relationship of this event is now a matter of controversy. Using tobacco (Nicotiana tabacum) BY-2 cells, which represent a highly active secretory system, we have used two approaches to investigate the location and dynamics of COPII binding to the ER and the relationship of these ER exit sites (ERES) to the Golgi apparatus. On the one hand, we have identified endogenous COPII using affinity purified antisera generated against selected COPII-coat proteins (Sar1, Sec13, and Sec23); on the other hand, we have prepared a BY-2 cell line expressing Sec13:green fluorescent protein (GFP) to perform live cell imaging with red fluorescent protein-labeled ER or Golgi stacks. COPII binding to the ER in BY-2 cells is visualized as fluorescent punctate structures uniformly distributed over the surface of the ER, both after antibody staining as well as by Sec13:GFP expression. These structures are smaller and greatly outnumber the Golgi stacks. They are stationary, but have an extremely short half-life (<10 s). Without correlative imaging data on the export of membrane or lumenal ER cargo it was not possible to equate unequivocally these COPII binding loci with ERES. When a GDP-fixed Sar1 mutant is expressed, ER export is blocked and the visualization of COPII binding is perturbed. On the other hand, when secretion is inhibited by brefeldin A, COPII binding sites on the ER remain visible even after the Golgi apparatus has been lost. Live cell imaging in a confocal laser scanning microscope equipped with spinning disk optics allowed us to investigate the relationship between mobile Golgi stacks and COPII binding sites. As they move, Golgi stacks temporarily associated with COPII binding sites at their rims. Golgi stacks were visualized with their peripheries partially or fully occupied with COPII. In the latter case, Golgi stacks had the appearance of a COPII halo. Slow moving Golgi stacks tended to have more peripheral COPII than faster moving ones. However, some stationary Golgi stacks entirely lacking COPII were also observed. Our results indicate that, in a cell type with highly mobile Golgi stacks like tobacco BY-2, the Golgi apparatus is not continually linked to a single ERES. By contrast, Golgi stacks associate intermittently and sometimes concurrently with several ERES as they move.  相似文献   

8.
COPII-coated vesicles, first identified in yeast and later characterized in mammalian cells, mediate protein export from the endoplasmic reticulum (ER) to the Golgi apparatus within the secretory pathway. In these organisms, the mechanism of vesicle formation is well understood, but the process of soluble cargo sorting has yet to be resolved. In plants, functional complements of the COPII-dependent protein traffic machinery were identified almost a decade ago, but the selectivity of the ER export process has been subject to considerable debate. To study the selectivity of COPII-dependent protein traffic in plants, we have developed an in vivo assay in which COPII vesicle transport is disrupted at two distinct steps in the pathway. First, overexpression of the Sar1p-specific guanosine nucleotide exchange factor Sec12p was shown to result in the titration of the GTPase Sar1p, which is essential for COPII-coated vesicle formation. A second method to disrupt COPII transport at a later step in the pathway was based on coexpression of a dominant negative mutant of Sar1p (H74L), which is thought to interfere with the uncoating and subsequent membrane fusion of the vesicles because of the lack of GTPase activity. A quantitative assay to measure ER export under these conditions was achieved using the natural secretory protein barley alpha-amylase and a modified version carrying an ER retention motif. Most importantly, the manipulation of COPII transport in vivo using either of the two approaches allowed us to demonstrate that export of the ER resident protein calreticulin or the bulk flow marker phosphinothricin acetyl transferase is COPII dependent and occurs at a much higher rate than estimated previously. We also show that the instability of these proteins in post-ER compartments prevents the detection of the true rate of bulk flow using a standard secretion assay. The differences between the data on COPII transport obtained from these in vivo experiments and in vitro experiments conducted previously using yeast components are discussed.  相似文献   

9.
Cargo selection and export from the endoplasmic reticulum is mediated by the COPII coat machinery that includes the small GTPase Sar1 and the Sec23/24 and Sec13/31 complexes. We have analyzed the sequential events regulated by purified Sar1 and COPII coat complexes during synchronized export of cargo from the ER in vitro. We find that activation of Sar1 alone, in the absence of other cytosolic components, leads to the formation of ER-derived tubular domains that resemble ER transitional elements that initiate cargo selection. These Sar1-generated tubular domains were shown to be transient, functional intermediates in ER to Golgi transport in vitro. By following cargo export in live cells, we show that ER export in vivo is also characterized by the formation of dynamic tubular structures. Our results demonstrate an unanticipated and novel role for Sar1 in linking cargo selection with ER morphogenesis through the generation of transitional tubular ER export sites.  相似文献   

10.
During mitosis the interconnected Golgi complex of animal cells breaks down to produce both finely dispersed elements and discrete vesiculotubular structures. The endoplasmic reticulum (ER) plays a controversial role in generating these partitioning intermediates and here we highlight the importance of mitotic ER export arrest in this process. We show that experimental inhibition of ER export (by microinjecting dominant negative Sar1 mutant proteins) is sufficient to induce and maintain transformation of Golgi cisternae to vesiculotubular remnants during interphase and telophase, respectively. We also show that buds on the ER, ER exit sites and COPII vesicles are markedly depleted in mitotic cells and COPII components Sec23p, Sec24p, Sec13p and Sec31p redistribute into the cytosol, indicating ER export is inhibited at an early stage. Finally, we find a markedly uneven distribution of Golgi residents over residual exit sites of metaphase cells, consistent with tubulovesicular Golgi remnants arising by fragmentation rather than redistribution via the ER. Together, these results suggest selective recycling of Golgi residents, combined with prebudding cessation of ER export, induces transformation of Golgi cisternae to vesiculotubular remnants in mitotic cells. The vesiculotubular Golgi remnants, containing populations of slow or nonrecycling Golgi components, arise by fragmentation of a depleted Golgi ribbon independently from the ER.  相似文献   

11.
Selective protein export from the endoplasmic reticulum is mediated by COPII vesicles. Here, we investigated the dynamics of fluorescently labelled cargo and non‐cargo proteins during COPII vesicle formation using single‐molecule microscopy combined with an artificial planar lipid bilayer. Single‐molecule analysis showed that the Sar1p–Sec23/24p‐cargo complex, but not the Sar1p–Sec23/24p complex, undergoes partial dimerization before Sec13/31p recruitment. On addition of a complete COPII mixture, cargo molecules start to assemble into fluorescent spots and clusters followed by vesicle release from the planar membrane. We show that continuous GTPase cycles of Sar1p facilitate cargo concentration into COPII vesicle buds, and at the same time, non‐cargo proteins are excluded from cargo clusters. We propose that the minimal set of COPII components is required not only to concentrate cargo molecules, but also to mediate exclusion of non‐cargo proteins from the COPII vesicles.  相似文献   

12.
Selective cargo capture into ER-derived vesicles is driven by the Sec24p subunit of the COPII coat, which contains at least three independent cargo-binding sites. One of these, the "A-site," interacts with a NPF motif found on the SNARE, Sed5p. We have characterized the Sec24p-Sed5p interaction through mutation of the putative ER export motifs of Sed5p and the cargo-binding A-site of Sec24p. Mutational analysis of Sed5p suggests that the NPF motif is the dominant ER export signal. Mutation of the NPF binding pocket on Sec24p led to a dramatic reduction in the capture of Sed5p into COPII vesicles, whereas packaging of other ER-Golgi SNAREs was normal. Of all the cargoes tested, only Sed5p was depleted in vesicles made with Sec24p A-site mutants. Surprisingly, vesicles generated with the mutant Sec24p were unable to fuse with the Golgi apparatus. This inability to fuse was not the result of the lack of Sed5p, because vesicles specifically depleted of Sed5p generated by antibody inhibition targeted and fused normally. We propose that the A-site of Sec24p is a multipurpose cargo-binding site that must recognize additional unidentified cargo proteins, at least one of which is essential at a late stage of vesicle fusion.  相似文献   

13.
In contrast with animals, plant cells contain multiple mobile Golgi stacks distributed over the entire cytoplasm. However, the distribution and dynamics of protein export sites on the plant endoplasmic reticulum (ER) surface have yet to be characterized. A widely accepted model for ER-to-Golgi transport is based on the sequential action of COPII and COPI coat complexes. The COPII complex assembles by the ordered recruitment of cytosolic components on the ER membrane. Here, we have visualized two early components of the COPII machinery, the small GTPase Sar1p and its GTP exchanging factor Sec12p in live tobacco (Nicotiana tabacum) leaf epidermal cells. By in vivo confocal laser scanning microscopy and fluorescence recovery after photobleaching experiments, we show that Sar1p cycles on mobile punctate structures that track with the Golgi bodies in close proximity but contain regions that are physically separated from the Golgi bodies. By contrast, Sec12p is uniformly distributed along the ER network and does not accumulate in these structures, consistent with the fact that Sec12p does not become part of a COPII vesicle. We propose that punctate accumulation of Sar1p represents ER export sites (ERES). The sites may represent a combination of Sar1p-coated ER membranes, nascent COPII membranes, and COPII vectors in transit, which have yet to lose their coats. ERES can be induced by overproducing Golgi membrane proteins but not soluble bulk-flow cargos. Few punctate Sar1p loci were observed that are independent of Golgi bodies, and these may be nascent ERES. The vast majority of ERES form secretory units that move along the surface of the ER together with the Golgi bodies, but movement does not influence the rate of cargo transport between these two organelles. Moreover, we could demonstrate using the drug brefeldin A that formation of ERES is strictly dependent on a functional retrograde transport route from the Golgi apparatus.  相似文献   

14.
The events regulating coat complex II (COPII) vesicle formation involved in the export of cargo from the endoplasmic reticulum (ER) are unknown. COPII recruitment to membranes is initiated by the activation of the small GTPase Sar1. We have utilized purified COPII components in both membrane recruitment and cargo export assays to analyze the possible role of kinase regulation in ER export. We now demonstrate that Sar1 recruitment to membranes requires ATP. We find that the serine/threonine kinase inhibitor H89 abolishes membrane recruitment of Sar1, thereby preventing COPII polymerization by interfering with the recruitment of the cytosolic Sec23/24 COPII coat complex. Inhibition of COPII recruitment prevents export of cargo from the ER. These results demonstrate that ER export and initiation of COPII vesicle formation in mammalian cells is under kinase regulation.  相似文献   

15.
The coat protein complex II (COPII) generates transport vesicles that mediate protein export from the endoplasmic reticulum (ER). The first step of COPII vesicle formation involves conversion of Sar1p-GDP to Sar1p-GTP by guanine-nucleotide-exchange factor (GEF) Sec12p. In Saccharomyces cerevisiae, Sed4p is a structural homolog of Sec12p, but no GEF activity toward Sar1p has been found. Although the role of Sed4p in COPII vesicle formation is implied by the genetic interaction with SAR1, the molecular basis by which Sed4p contributes to this process is unclear. This study showed that the cytoplasmic domain of Sed4p preferentially binds the nucleotide-free form of Sar1p and that Sed4p binding stimulates both the intrinsic and Sec23p GTPase-activating protein (GAP)-accelerated GTPase activity of Sar1p. This stimulation of Sec23p GAP activity by Sed4p leads to accelerated dissociation of coat proteins from membranes. However, Sed4p binding to Sar1p occurs only when cargo is not associated with Sar1p. On the basis of these findings, Sed4p appears to accelerate the dissociation of the Sec23/24p coat from the membrane, but the effect is limited to Sar1p molecules that do not capture cargo protein. We speculate that this restricted coat disassembly may contribute to the concentration of specific cargo molecules into the COPII vesicles.  相似文献   

16.
Recent studies have demonstrated that cargo exit from the endoplasmic reticulum (ER) may be directed by ER export motifs recognized by components of the coat protein II (COPII) vesicles. However, little is known about ER export motifs and vesicle targeting of the G protein-coupled receptor (GPCR) superfamily. Here, we have demonstrated that a triple Arg (3R) motif in the third intracellular loop functions as a novel ER export signal for α(2B)-adrenergic receptor (α(2B)-AR). The 3R motif mediates α(2B)-AR interaction with Sec24C/D and modulates ER exit, cell surface transport and function of α(2B)-AR. Furthermore, export function of the 3R motif is independent of its position within α(2B)-AR and can be conferred to CD8 glycoprotein. These data provide the first evidence implicating that export of GPCRs is controlled by code-directed interactions with selective components of the COPII transport machinery.  相似文献   

17.
In S. cerevisiae lacking SHR3, amino acid permeases specifically accumulate in membranes of the endoplasmic reticulum (ER) and fail to be transported to the plasma membrane. We examined the requirements of transport of the permeases from the ER to the Golgi in vitro. Addition of soluble COPII components (Sec23/24p, Sec13/31p, and Sar1p) to yeast membrane preparations generated vesicles containing the general amino acid permease. Gap1p, and the histidine permease, Hip1p. Shr3p was required for the packaging of Gap1p and Hip1p but was not itself incorporated into transport vesicles. In contrast, the packaging of the plasma membrane ATPase, Pma1p, and the soluble yeast pheromone precursor, glycosylated pro alpha factor, was independent of Shr3p. In addition, we show that integral membrane and soluble cargo colocalize in transport vesicles, indicating that different types of cargo are not segregated at an early step in secretion. Our data suggest that specific ancillary proteins in the ER membrane recruit subsets of integral membrane protein cargo into COPII transport vesicles.  相似文献   

18.
Molecularly distinct sets of SNARE proteins localize to specific intracellular compartments and catalyze membrane fusion events. Although their central role in membrane fusion is appreciated, little is known about the mechanisms by which individual SNARE proteins are targeted to specific organelles. Here we investigated functional domains in Sec22p that direct this SNARE protein to the endoplasmic reticulum (ER), to Golgi membranes, and into SNARE complexes with Bet1p, Bos1p, and Sed5p. A series of Sec22p deletion mutants were monitored in COPII budding assays, subcellular fractionation gradients, and SNARE complex immunoprecipitations. We found that the N-terminal "profilin-like" domain of Sec22p was required but not sufficient for COPII-dependent export of Sec22p from the ER. Interestingly, versions of Sec22p that lacked the N-terminal domain were assembled into ER/Golgi SNARE complexes. Analyses of Sec22p SNARE domain mutants revealed a second signal within the SNARE motif (between layers -4 and -1) that was required for efficient ER export. Other SNARE domain mutants that contained this signal were efficiently packaged into COPII vesicles but failed to assemble into SNARE complexes. Together these results indicated that SNARE complex formation is neither required nor sufficient for Sec22p packaging into COPII transport vesicles and subsequent targeting to the Golgi complex. We propose that the COPII budding machinery has a preference for unassembled ER/Golgi SNARE proteins.  相似文献   

19.
In eukaryotic cells, the endoplasmic reticulum (ER) is a major site of synthesis of both lipids and proteins, many of which must be transported to other organelles. The COPII coat-comprising Sar1, Sec23/24, Sec13/31-generates transport vesicles that mediate the bulk of protein/lipid export from the ER. The coat exhibits remarkable flexibility in its ability to specifically select and accommodate a large number of cargoes with diverse properties. In this review, we discuss the fundamentals of COPII vesicle production and describe recent advances that further our understanding of just how flexible COPII cargo recruitment and vesicle formation may be. Large or bulky cargo molecules (e.g. collagen rods and lipoprotein particles) exceed the canonical size for COPII vesicles and seem to rely on the additional action of recently identified accessory molecules. Although the bulk of the research has focused on the fate of protein cargo, the mechanisms and regulation of lipid transport are equally critical to cellular survival. From their site of synthesis in the ER, phospholipids, sphingolipids and sterols exit the ER, either accompanying cargo in vesicles or directly across the cytoplasm shielded by lipid-transfer proteins. Finally, we highlight the current challenges to the field in addressing the physiological regulation of COPII vesicle production and the molecular details of how diverse cargoes, both proteins and lipids, are accommodated. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

20.
The selective export of proteins and lipids from the endoplasmic reticulum (ER) is mediated by the coat protein complex II (COPII) that assembles onto the ER membrane. In higher eukaryotes, COPII proteins assemble at discrete sites on the membrane known as ER exit sites (ERES). Here, we identify Sec16 as the protein that defines ERES in mammalian cells. Sec16 localizes to ERES independent of Sec23/24 and Sec13/31. Overexpression, and to a lesser extent, small interfering RNA depletion of Sec16, both inhibit ER-to-Golgi transport suggesting that Sec16 is required in stoichiometric amounts. Sar1 activity is required to maintain the localization of Sec16 at discrete locations on the ER membrane, probably through preventing its dissociation. Our data suggest that Sar1-GTP-dependent assembly of Sec16 on the ER membrane forms an organized scaffold defining an ERES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号