首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exemestane is an aromatase enzyme complex inhibitor. Its metabolism in humans is not fully described and there is only one known metabolite: 17β-hydroxyexemestane. In this work, excretion studies were performed with four volunteers aiming at the detection of new exemestane metabolites in human urine by gas chromatography coupled to mass spectrometry (GC-MS) after enzymatic hydrolysis and liquid-liquid extraction. Urine samples collected from four volunteers were analyzed separately. The targets of the study were mainly the 6-exomethylene oxidized metabolites. Two unreported metabolites were identified in both free and glucuconjugated urine fractions from all four volunteers, both of them were the result of the 6-exomethylene moiety oxidation: 6ξ-hydroxy-6ξ-hydroxymethylandrosta-1,4-diene-3,17-dione (metabolite 1) and 6ξ-hydroxyandrosta-1,4-diene-3,17-dione (metabolite 2). Furthermore, only in glucoconjugated fractions from all volunteers, one metabolite arising from the A-ring reduction was identified as well, 3ξ-hydroxy-5ξ-androst-1-ene-6-methylene-17-one (metabolite 3). The molecular formulae of all these metabolites were ascertained by the determination of exact masses using gas chromatography coupled to high resolution mass spectrometry (GC-HRMS). Moreover, all metabolites were confirmed using an alternative derivatization with methoxyamine and MSTFA/TMS-imidazole.  相似文献   

2.
Torrado S  Segura J  Farré M  Ventura R 《Steroids》2008,73(7):751-759
19-Nor-4-androstenediol is a prohormone of nandrolone. Both substances are included in the WADA list of prohibited classes of substances. The aim of this study is to determine the plasma levels of 19-nor-4-androstenediol and its metabolites after oral administration of a nutritional supplement containing the drug. Two capsules of Norandrodiol Select 300 were orally administered to six healthy male volunteers. Plasma samples were collected up to 24h. Samples were extracted to obtain free and glucuronoconjugated metabolic fractions. Trimethylsilyl derivatives of both fractions were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The method was validated to determine linearity, extraction recovery, limit of detection and quantification, intra- and inter-day precision and accuracy. After administration of 19-nor-4-androstenediol, the main metabolites detected were norandrosterone and noretiocholanolone, mainly in the glucuronide fraction. Nandrolone, norandrostenedione and 19-nor-4-androstenediol were also detected at lower concentrations.  相似文献   

3.
A rapid, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed for identification of potassium dehydroandrographolidi succinas and its metabolites in rat urine. Five male rats were administrated a single dose (100 mg/kg) of potassium dehydroandrographolidi succinas by i.v. injection. The urine were sampled from 0 to 24 h and purified by using Oasis? HLB extraction cartridge, then the purified urine samples were separated on a reversed-phase C18 column with a linear gradient and detected by an on-line MS detector. Identification and structural elucidation of the metabolites were performed by comparing their changes in molecular mass (Δm) and MS/MS spectra with those of the parent drug. Seven metabolites and the parent drug were found in rat urine. All these metabolites were reported for the first time.  相似文献   

4.
The intracellular analysis of the phosphorylated metabolites of some anti-HIV nucleosides by liquid chromatography or capillary electrophoresis coupled with tandem mass spectrometry (LC-MS/MS or CE-MS/MS) has been realized on human peripheral blood mononuclear cells (PBMC), with limit of quantitation (LOQ) that allow them to be quantitated intracellularly. We described also the analysis of modified urinary nucleosides as potential tumor biomarkers.  相似文献   

5.
The intracellular analysis of the phosphorylated metabolites of some anti-HIV nucleosides by liquid chromatography or capillary electrophoresis coupled with tandem mass spectrometry (LC-MS/MS or CE-MS/MS) has been realized on human peripheral blood mononuclear cells (PBMC), with limit of quantitation (LOQ) that allow them to be quantitated intracellularly. We described also the analysis of modified urinary nucleosides as potential tumor biomarkers.  相似文献   

6.
不同的微生物都可以引起腹腔感染,文中尝试利用尿液来区分不同的微生物感染.通过在大鼠腹腔内分别注射大肠杆菌、金黄色葡萄球菌和白色念球菌建立3种模型,收集感染后0、12、36、72h的尿液,并使用液相色谱串联质谱技术(LC-MS/MS)对尿蛋白进行分析.与感染前相比,在大肠杆菌腹腔注射模型中共鉴定到69个差异蛋白,在金黄色...  相似文献   

7.

Background  

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has become one of the most used tools in mass spectrometry based proteomics. Various algorithms have since been developed to automate the process for modern high-throughput LC-MS/MS experiments.  相似文献   

8.
Morphine is present in varying amounts as an endogenous product in human urine. Derivatization of morphine contained in urine with dansyl chloride yields a known product, which can be quantified by liquid chromatography mass spectrometry with high selectivity and sensitivity. Urine samples of 51 healthy individuals were spiked with stable-isotope labeled morphine, hydrolyzed and subjected to solid phase extraction followed by derivatization of morphine with dansyl chloride. The dansyl derivatives of naturally occurring morphine and deuterated internal standard were then detected by liquid chromatography-triple quadrupole mass spectrometry. Using the [N-CD(3)]-labeled internal standard and solid-phase extraction, a limit of detection of 35 fmol/ml (10 pg/ml) and a limit of quantification of 87.5 fmol/ml (25 pg/ml) was determined for morphine in human urine. This new LC-MS/MS method allowed the detection of endogenous morphine in human urine of 51 volunteers with an average value of 156.4 fmol/ml (44.7 ng/ml).  相似文献   

9.
Methods based on matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS), liquid chromatography coupled to an LTQ-Orbitrap mass spectrometer (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to investigate changes in the small molecule profiles of mouse liver in response to administration of an LXR agonist. Mice were treated with either 0.3 mg/kg, 1 mg/kg, 10 mg/kg, 30 mg/kg or 60 mg/kg of an LXR test compound or saline (control) once daily, over a 5 day period, to investigate the effects of the drug on metabolism in the liver. It was possible to detect triacylglycerol accumulation in the livers of animals treated with the drug, even at the lowest concentrations using, in the first instance, MALDI MS. There was also an increase in the relative degree of triacylglycerol saturation in the drug-treated samples. Changes in the profiles of phosphatidylcholine lipids were also observed. The changes in lipid profiles were also confirmed by LC-MS and GC-MS, the latter revealing a large increase in the level of the free fatty acid oleic acid (C18:1) in the treated samples. All of the changes were dose-related. Polar metabolites in the samples were analysed by hydrophilic interaction (HILIC) chromatography in combination with an LTQ-Orbitrap mass spectrometer. There were many changes in the metabolite profiles, some of which might simply be related to generalised toxicity. The clearest marker compounds, which showed very marked changes with dose, were methylglutaryl carnitine (MGC) and hydroxymethylglutaryl carnitine (HMGC). Another marker of some interest was uridine diphosphate N-acetylglucosamine (UNGA).  相似文献   

10.
C. Gómez  O.J. Pozo  L. Garrostas  J. Segura  R. Ventura 《Steroids》2013,78(12-13):1245-1253
Metandienone is one of the most frequently detected anabolic androgenic steroids in sports drug testing. Metandienone misuse is commonly detected by monitoring different metabolites excreted free or conjugated with glucuronic acid using gas chromatography mass spectrometry (GC–MS) and liquid chromatography tandem mass spectrometry (LC–MS/MS) after hydrolysis with β-glucuronidase and liquid–liquid extraction. It is known that several metabolites are the result of the formation of sulphate conjugates in C17, which are converted to their 17-epimers in urine. Therefore, sulphation is an important phase II metabolic pathway of metandienone that has not been comprehensively studied. The aim of this work was to evaluate the sulphate fraction of metandienone metabolism by LC–MS/MS. Seven sulphate metabolites were detected after the analysis of excretion study samples by applying different neutral loss scan, precursor ion scan and SRM methods. One of the metabolites (M1) was identified and characterised by GC–MS/MS and LC–MS/MS as 18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one sulphate. M1 could be detected up to 26 days after the administration of a single dose of metandienone (5 mg), thus improving the period in which the misuse can be reported with respect to the last long-term metandienone metabolite described (18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one excreted in the glucuronide fraction).  相似文献   

11.
After intragastric administration of 100 mumol kg-1 [14C]felodipine to rats eight urinary metabolites were isolated. Batch extraction at pH 2.2 and semipreparative reversed-phase liquid chromatography were used for trace enrichment of the metabolites. Trimethylsilylation followed by transesterification with diazomethane blocked the carboxylic acid and alcohol groups selectively before gas chromatography/mass spectrometry (GC/MS) in the electron impact (EI) mode. Deuterated derivatives of the metabolites and chemical ionization measurements added complementary structural information. All metabolites reported in this study were formed from oxidized felodipine by ester hydrolysis. Hydroxylation of the pyridine methyl group represented an important metabolic pathway and metabolites oxidized to the corresponding carboxylic acids were detected as well. Lactone formation from hydroxy acid metabolites in urine as a possible analytical artefact is discussed.  相似文献   

12.
A method is described for the determination of metabolites of mesocarb in human urine by combining gradient liquid chromatography and electrospray ionization (ESI)-ion trap mass spectrometry. Seven metabolites (two isomers of hydroxymesocarb, p-hydroxymesocarb, two isomers of dihydroxymesocarb and two isomers of trihydroxymesocarb) and parent drug were detected in human urine after the administration of a single oral dose 10 mg of mesocarb (Sydnocarb, two tablets of 5 mg). Various extraction techniques (free fraction, enzyme hydrolyses and acid hydrolyses) and their comparison were carried out for investigation of the metabolism of mesocarb. After extraction procedure the residue was dissolved in methanol and injected into the column HPLC (Zorbax SB-C18 (Narrow-Bore 2.1 x 150 mm i.d., 5 microm particles)) with mobile phase (0.2 ml/min) of methanol/0.2 mM ammonium acetate. Conformation of the results and identification of all metabolites are performed by LC-MS and LC-MS/MS. The major metabolites of mesocarb in urine of the human were p-hydroxylated derivative of the phenylcarbamoyl group of the parent drug (p-hydrohymesocarb) and dihydroxylated derivative of mesocarb (two isomers of dihydroxymesocarb). This analytical method for dihydrohymesocarb was very sensitive for discriminating the ingestion of mesocarb longer than the parent drug or other metabolites in human urine. The dihydroxymesocarb was detected in urine until 168-192 h after administration of the drug.  相似文献   

13.
A sensitive and specific method for the analysis of anisodamine and its metabolites in rat urine by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) was developed. Various extraction techniques (free fraction, acid hydrolyses and enzyme hydrolyses) and their comparison were carried out for investigation of the metabolism of anisodamine. After extraction procedure the pretreated samples were injected on a reversed-phase C18 column with mobile phase (0.2 ml/min) of methanol/0.01% triethylamine solution (adjusted to pH 3.5 with formic acid) (60:40, v/v) and detected by MS/MS. Identification and structural elucidation of the metabolites were performed by comparing their changes in molecular masses (DeltaM), retention-times and full scan MS(n) spectra with those of the parent drug. At least 11 metabolites (N-demethyl-6beta-hydroxytropine, 6beta-hydroxytropine, tropic acid, N-demethylanisodamine, hydroxyanisodamine, anisodamine N-oxide, hydroxyanisodamine N-oxide, glucuronide conjugated N-demethylanisodamine, sulfate conjugated and glucuronide conjugated anisodamine, sulfate conjugated hydroxyanisodamine) and the parent drug were found in rat urine after the administration of a single oral dose 25mg/kg of anisodamine. Hydroxyanisodamine, anisodamine N-oxide and the parent drug were detected in rat urine for up 95 h after ingestion of anisodamine.  相似文献   

14.
15.
MOTIVATION: Liquid chromatography coupled to mass spectrometry (LC-MS) and combined with tandem mass spectrometry (LC-MS/MS) have become a prominent tool for the analysis of complex proteomic samples. An important step in a typical workflow is the combination of results from multiple LC-MS experiments to improve confidence in the obtained measurements or to compare results from different samples. To do so, a suitable mapping or alignment between the data sets needs to be estimated. The alignment has to correct for variations in mass and elution time which are present in all mass spectrometry experiments. RESULTS: We propose a novel algorithm to align LC-MS samples and to match corresponding ion species across samples. Our algorithm matches landmark signals between two data sets using a geometric technique based on pose clustering. Variations in mass and retention time are corrected by an affine dewarping function estimated from matched landmarks. We use the pairwise dewarping in an algorithm for aligning multiple samples. We show that our pose clustering approach is fast and reliable as compared to previous approaches. It is robust in the presence of noise and able to accurately align samples with only few common ion species. In addition, we can easily handle different kinds of LC-MS data and adopt our algorithm to new mass spectrometry technologies. AVAILABILITY: This algorithm is implemented as part of the OpenMS software library for shotgun proteomics and available under the Lesser GNU Public License (LGPL) at www.openms.de.  相似文献   

16.
Compared to the arachidonic acid (C20:4) cascade, the oleic acid (C18:1) family comprises a handful known metabolites. The pathophysiology of oleic acid and its oxidized and nitrated metabolites, i.e., cis-9,10-epoxyoctadecanoic acid (cis-EpOA) and the two vinylic nitro-oleic acids cis-9-nitro-oleic acid (9-NO(2)-OA) and cis-10-nitro-oleic acid (10-NO(2)-OA), is only little investigated and little understood. cis-EpOA, 9-NO(2)-OA and 10-NO(2)-OA have been detected in plasma of healthy and ill human subjects by means of gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques in their acid and esterified forms. cis-EpOA is formed from oleic acid by the catalytic action of various cytochrome P450 isozymes. In end-stage liver disease, cis-EpOA plasma concentration is lower than in healthy subjects suggesting liver as the main organ responsible for cis-EpOA synthesis. The origin of 9-NO(2)-OA and 10-NO(2)-OA and of other nitrated oleic acid metabolites is unknown. In vitro models, nitro-oleic acid species can be formed non-enzymatically from oleic acid and nitrogen dioxide. Thus, endogenous nitro-oleic acids could serve as biomarkers of fatty acid nitration by reactive nitrogen species. Synthetic 9-NO(2)-OA and 10-NO(2)-OA at concentrations of three orders of magnitude higher than their endogenous counterparts have interesting pharmacological features and are currently intensely investigated. The present article reviews and discusses currently available analytical methods for the quantitative determination of cis-EpOA, 9-NO(2)-OA and 10-NO(2)-OA in biological samples, notably in human plasma, and the potential biological significance of these oleic acid metabolites. Special emphasis is given to GC-MS/MS and LC-MS/MS methods utilizing the stable-isotope dilution technique. The sensitivity and specificity of the MS/MS approach make electron-capture negative ion chemical ionization (ECNICI) GC-MS/MS and negative electrospray ionization (NESI) LC-MS/MS methodologies indispensable in experimental and clinical settings on oxidative and nitrative oleic acid metabolism. These techniques are particularly suited to delineate the oleic acid cascade.  相似文献   

17.
Biotransformation of chemically stable compounds to reactive metabolites which can bind covalently to macromolecules, such as proteins and DNA, is considered as an undesirable feature of drug candidates. As part of an overall assessment of absorption, distribution, metabolism and excretion (ADME) properties, many pharmaceutical companies have put methods in place to screen drug candidates for their tendency to generate reactive metabolites and as well characterize the nature of the reactive metabolites through in vitro and in vivo studies. After identification of the problematic compounds, steps can be taken to minimize the potential of bioactivation through appropriate structural modifications. For these reasons, detection, structural characterization and quantification of reactive metabolites by mass spectrometry have become an important task in the drug discovery process. Triple quadrupole mass spectrometry is traditionally employed for the analysis of reactive metabolites. In the past 3 years, a number of new mass spectrometry methodologies have been developed to improve the sensitivity, selectivity and throughput of the analysis. This review focuses on the recent advances in the detection and characterization of reactive metabolites by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in drug discovery and development, especially through the use of linear ion trap (LTQ), hybrid triple quadrupole-linear ion trap (Q-trap) and the high resolution LTQ-Orbitrap instruments.  相似文献   

18.
We have developed a proteomics technology featuring on-line three-dimensional liquid chromatography coupled to tandem mass spectrometry (3D LC-MS/MS). Using 3D LC-MS/MS, the yeast-soluble, urea-solubilized peripheral membrane and SDS-solubilized membrane protein samples collectively yielded 3019 unique yeast protein identifications with an average of 5.5 peptides per protein from the 6300-gene Saccharomyces Genome Database searched with SEQUEST. A single run of the urea-solubilized sample yielded 2255 unique protein identifications, suggesting high peak capacity and resolving power of 3D LC-MS/MS. After precipitation of SDS from the digested membrane protein sample, 3D LC-MS/MS allowed the analysis of membrane proteins. Among 1221 proteins containing two or more predicted transmembrane domains, 495 such proteins were identified. The improved yeast proteome data allowed the mapping of many metabolic pathways and functional categories. The 3D LC-MS/MS technology provides a suitable tool for global proteome discovery.  相似文献   

19.
Direct plasma injection technology coupled with a LC-MS/MS assay provides fast and straightforward method development and greatly reduces the time for the tedious sample preparation procedures. In this work, a simple and sensitive bioanalytical method based on direct plasma injection using a single column high-performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS) was developed for direct cocktail analysis of double-pooled mouse plasma samples for the quantitative determination of small molecules. The overall goal was to improve the throughput of the rapid pharmacokinetic (PK) screening process for early drug discovery candidates. Each pooled plasma sample was diluted with working solution containing internal standard and then directly injected into a polymer-coated mixed-function column for sample clean-up, enrichment and chromatographic separation. The apparent on-column recovery of six drug candidates in mouse plasma samples was greater than 90%. The single HPLC column was linked to either an atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI) source as a part of MS/MS system. The total run cycle time using single column direct injection methods can be achieved within 4 min per sample. The analytical results obtained by the described direct injection methods were comparable with those obtained by semi-automated protein precipitation methods within +/- 15%. The advantages and challenges of using direct single column LC-MS/MS methods with two ionization sources in combination of sample pooling technique are discussed.  相似文献   

20.
Glycerophosphocholines (GPCho's) are known to cause liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) matrix ionization effects during the analysis of biological samples (i.e. blood, plasma). We have developed a convenient new method, which we refer to as "in-source multiple reaction monitoring" (IS-MRM), for detecting GPCho's during LC-MS/MS method development. The approach uses high energy in-source collisionally induced dissociation (CID) to yield trimethylammonium-ethyl phosphate ions (m/z 184), which are formed from mono- and disubstituted GPCho's. The resulting ion is selected by the first quadrupole (Q1), passed through the collision cell (Q2) in the presence of collision gas at low energy to minimize fragmentation, and m/z 184 selected by the third quadrupole. This approach can be combined with standard multiple reaction monitoring (MRM) transitions with little compromise in sensitivity during method development and sample analysis. Hence, this approach was used to probe ionization matrix effects in plasma samples. The resulting information was employed to develop LC-MS/MS analyses for drugs and their metabolites with cycle times less than 5 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号