首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A sensitive and reliable method was developed to quantitate phenylephrine in human plasma using liquid chromatography-electrospray tandem mass spectrometry. The assay was based on solid-phase extraction with C18 cartridges and hydrophilic interaction chromatography performed on a pentafluorophenylpropylsilica column (50 mm x 4 mm, 3 microm particles), the mobile phase consisted of methanol-10 mM ammonium acetate (90:10, v/v). Quantification was through positive-ion mode and selected reaction monitoring at m/z 168.1-->135.0 for phenylephrine and m/z 182.1-->135.0 for internal standard etilefrin, respectively. The lower limit of quantitation was 51 pg/ml using 0.25 ml of plasma and linearity was observed from 51 to 5500 pg/ml. Within-day and between-day precision expressed by relative standard deviation was less than 12% and inaccuracy did not exceed 8% at all levels. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

2.
Oxytocin (OT) is a neuropeptide with an extremely low endogenous level (low pg/ml) in human plasma. It is very challenging to develop a highly sensitive assay to measure endogenous OT, including radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA). Electrospray ionization (ESI) liquid chromatography–tandem mass spectrometry (LC–MS/MS) can provide high-throughput and selective methods for quantification of peptides in biological samples. A novel and highly sensitive two-dimensional LC–MS/MS (2D-LC–MS/MS) assay combining solid-phase extraction (SPE) has been developed and validated for the determination of endogenous OT in both human and rat plasma. The lower limit of quantification (LLOQ) was 1.00 pg/ml for human and 50.0 pg/ml for rat. Human plasma diluted with water (1:6, v/v) was successfully optimized as a surrogate matrix for human to prepare standard curves without endogenous interference. The extraction efficiency and absolute recovery were above 65.8% using the HLB SPE procedure, and matrix effects were lower than 12%. The method was validated in the range of 1.00–250 pg/ml for human plasma and 50.0–10,000 pg/ml for rat plasma with precision less than 12.7% and accuracy less than 7%.  相似文献   

3.
A method for the determination of melatonin in human saliva has been developed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS). Saliva was collected in plastic tubes. 7-D-Melatonin was added as internal standard and the samples were cleaned and concentrated by solid-phase extraction. The limit of detection was 1.05 pg x ml(-1) and the limit of quantification was 3.0 pg x ml(-1). The accuracy of the method was +/-14% at 5.60 pg x ml(-1) and +/-9% at 19.6 pg x ml(-1). The precision was +/-13% at 6.18 pg x ml(-1) and +/-11% at 31.2 pg x ml(-1), respectively. Our HPLC-MS-MS method shows a high sensitivity and specificity for melatonin and more reliable results compared with a radioimmunoassay. The chromatographic method has been used to determine the circadian rhythm of melatonin among three nurses working the night shift and a patient suffering from an inability to fall asleep at night.  相似文献   

4.
A sensitive method was developed for quantitation of the cytotoxic antibiotic l-alanosine in human plasma. Alanosine was extracted from plasma by anion-exchange solid phase extraction, derivatized with dansyl chloride and analyzed by liquid chromatography-tandem mass spectrometry using atmospheric pressure chemical ionization in negative mode. Dansylation led to 50-fold improvement of method sensitivity over non-dansylated alanosine with a resulting 20 ng/ml limit of alanosine quantitation in plasma being achieved. The method was validated and applied for clinical studies of alanosine administered to cancer patients.  相似文献   

5.
A procedure is described for the quantification of the major malondialdehyde deoxyguanosine adduct, pyrimido[1,2-alpha]purin-10(3H)-one-deoxyribose (M(1)GdR) in urine. M(1)GdR is isolated from urine by a combination of C(18) solid-phase extraction and immunoaffinity chromatography. Sodium borohydride treatment reduces M(1)GdR to the 5,6-dihydro derivative, which is quantified by liquid chromatography-mass spectrometry. Authentic [7,9-15N,8-13C]M(1)GdR is added to urine as an internal standard. A detection limit of 50 fmol M(1)GdR/ml urine is achieved starting with 5 ml of urine. Analysis of urine samples from control rats or rats treated with CCl(4) indicates that the levels of M(1)GdR are below the detection limit of the assay. This method is easily adaptable to the analysis of M(1)GdR in DNA samples or biological fluids.  相似文献   

6.
To evaluate human exposure to polycyclic aromatic hydrocarbons (PAHs), we developed a rapid, simple and sensitive method for determining 1-hydroxypyrene-glucuronide (1-OHP-G) in human urine. To improve precision, a deuterated glucuronide was used as an internal standard. The method requires only 1 mL of urine. The urine was treated with a mixed-mode anion-exchange and reversed-phase solid-phase extraction cartridge (Oasis MAX). The analytes were analyzed with a C(18) reversed-phase column with a gradient elution, followed by tandem mass spectrometry with electrospray ionization in negative ion mode. The detection limit of 1-OHP-G (corresponding to a signal-to-noise ratio of 3) was 0.13 fmol/injection. Urinary concentrations of 1-OHP-G determined by this method were strongly correlated (r(2)=0.961) with concentrations of 1-hydroxypyrene by conventional HPLC with fluorescence detection.  相似文献   

7.
A sensitive and specific method was developed and validated for the quantitation of quercetin in human plasma and urine. The application of liquid chromatography-tandem mass spectrometry (LC/MS/MS) with a TurboIonspray (TIS) interface in negative mode under multiple reactions monitoring was investigated. Chromatographic separation was achieved on a C12 column using a mobile phase of acetonitrile/water with 0.2% formic acid (pH 2.4) (40/60, v/v). The detection limit was 100 pg/ml and the lower limit of quantification was 500 pg/ml for plasma samples; the detection limit was 500 pg/ml and the lower limit of quantification was 1 ng/ml for urine samples. The calibration curve was linear from 1 to 800 ng/ml for plasma samples and was linear from 1 to 200 and 50 to 2000 ng/ml for urine samples. All the intra- and inter-day coefficients of variation were less than 11% and intra- and inter-day accuracies were within +/-15% of the known concentrations. This represents a LC/MS/MS assay with the sensitivity and specificity necessary to determine quercetin in human plasma and urine. This assay was used to determine both parent quercetin and the quercetin after enzymatic hydrolysis with beta-glucuronidase/sulfatase in human plasma and urine samples following the ingestion of quercetin 500 mg capsules.  相似文献   

8.
An ultrasensitive method capable of detection and quantification of beta-phenylethylamine in 1 ml of human plasma has been developed using gas chromatography/electron capture negative ion mass spectrometry. Phenylethylamine and tetra-deutero phenylethylamine internal standard in plasma were acetylated, extracted into organic solvent and then further acylated with pentafluorobenzoyl chloride. The N-acetyl-N-pentafluorobenzoyl-phenylethylamines were detected by high-resolution single ion monitoring of the molecular ions. Normal plasma levels were found to be 41.5 +/- 10.7 pg ml-1, in accordance with results of a previous high-performance liquid chromatographic method.  相似文献   

9.
Three methods have been developed for the analysis of Oltipraz in serum. A method suitable for routine use employs spiking with a homologous internal standard, off-line solid-phase extraction, high-performance liquid chromatographic separation, and optical absorbance detection at 450 nm. Method detection limit is about 1 ng/ml. A second method, less susceptible to bias from co-eluting interferences, uses a stable isotope-labeled internal standard, similar extraction and separation, and detection by thermospray mass spectrometry. Method detection limit is about 0.2 ng/ml. A third method was developed which can be used without specially synthesized internal standards. It uses on-line solid-phase extraction, with quantification by comparison with external standards. Method detection limit is about 3 ng/ml. Good agreement was observed between these methods and with similar and different methods run in other laboratories. Calibration curves were linear over the entire range which was investigated, i.e., up to 500 ng/ml. Coefficients of variation were similar for all three methods, being about 5%.  相似文献   

10.
Identification of sulfonylureas in serum by electrospray mass spectrometry   总被引:2,自引:0,他引:2  
Identification of sulfonylureas in serum is important in the diagnosis of hypoglycemic crisis of unknown origin. Methods based on HPLC with UV or fluorescence detection may give false positive results. Mass spectrometry may successfully avoid this problem. The described method allows the simultaneous identification and quantification of tolbutamide, chlorpropamide, glibenclamide, and glipizide in human serum using one of the tested sulfonylureas as the internal standard. Serum purification is carried out by solid-phase extraction with ENVI-C18 cartridges and samples are analyzed by liquid chromatography-electrospray mass spectrometry. For all drugs, the limit of detection and the limit of quantification are about 2 and 10 ng/ml, respectively.  相似文献   

11.
A highly sensitive method for the determination of tamsulosin hydrochloride, a structurally new type of sulphamoile derivative, in human plasma dialysate, plasma and urine has been developed by using liquid chromatography–electrospray tandem mass spectrometry (LC–MS–MS). Plasma dialysate, plasma and urine samples were extracted by brief liquid-phase extraction and analyzed using an HPLC system coupled to a mass spectrometer via an electrospray ionization interface. Selected reaction monitoring was used for the detection of tamsulosin and its internal standard. This method was validated in the concentration range 10–1000 pg/ml in plasma dialysate, 0.5–50 ng/ml in plasma, and 1–100 ng/ml in urine with sufficient specificity, accuracy and precision. The in vivo protein binding study demonstrated that the unbound tamsulosin in human plasma obtained by the equilibrium dialysis after 0.4-mg oral dosing was measurable. In addition, the percentage of unbound tamsulosin in an in vitro study (0.71–0.91%) obtained by using spiked 14C-labelled tamsulosin was slightly larger than that of the in vivo study (0.68–0.86%), indicating that the unbound concentration calculated by the product of the plasma concentration and the in vitro unbound fraction (fu) was unfavorably overestimated. These results suggest that the combination of LC–MS–MS and equilibrium dialysis method has enough sensitivity to determine the unbound concentration in clinical use and gives the concentration more exactly than the in vitro fu.  相似文献   

12.
A new extraction method has been developed for the extraction of prostaglandin E(2) (PGE(2)) from human plasma of patients suffering chronic inflammatory disorders. The extraction solvents were optimised systematically and simultaneously by using a central composite design. The optimised method involves precipitation of the protein fraction, centrifugation, evaporation and dissolution of the supernatant in the mobile phase, screening to confirm the presence of the analyte, and quantification of the positive samples by liquid chromatography tandem ion-trap mass spectrometry. Tandem mass spectrometry in negative mode was performed by isolating and fragmenting the ion [PGE(2)-H](-) signal m/z 351. Identification and quantification was carried out by extracting the ion fragment chromatograms at 333, 315 and 271 m/z. The quantitative determination was linear for the low nanogram (1-50 ng/ml) and upper picogram (400-1000 pg/ml) range studied, using 15 and 0.5 ng/ml of internal standard, respectively. The lower limit of detection was 2.5 pg for an injection volume of 25 microl. The optimised extraction method showed high reproducibility (coefficients of variation<4%) and recovery values, estimated from standard addition experiments, ranging from 96 to 98%.  相似文献   

13.
A sensitive internal standard method for the analysis of a DNA-adduct of N,N-dimethylformamide (N4-methylcarbamoylcytosine, NMC-C) in human urine has been developed. A sample pre-treatment involving an acidic hydrolysis is followed by the sample clean-up performed with solid-phase extraction (SPE) technique using a cation-exchange resin. A two-dimensional liquid chromatography is used to separate the target analyte from the matrix using first a C18 reversed phase column with incorporated hydrophilic moieties and then a C8 bonded reversed phase column for the final separation. Quantification is carried out by positive electrospray ionisation and mass spectrometry detection of the transitions from molecule ions to product ions (169-->112 and 172-->115) for the analyte and the labelled internal standard, respectively. The detection limit in urine reaches down to 8 ng/L (48 pmol/L). In the general population NMC-C could not be detected. In 10 out of 32 urine samples of occupationally to DMF exposed subjects NMC-C could be detected. The concentrations ranged up to 172 ng/L (1023 pmol/L) with a 95th percentile of 121 ng/L (720 pmol/L).  相似文献   

14.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed and validated for determination of ibutilide in human plasma. The analyte and internal standard sotalol were extracted from plasma samples by liquid-liquid extraction, and separated on a C(18) column, using acetonitrile-water-10% butylamine-10% acetic acid (80:20:0.07:0.06, v/v/v/v) as the mobile phase. Detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via TurboIonSpray ionization (ESI). Linear calibration curves were obtained in the concentration range of 20-10,000 pg/ml, with a lower limit of quantitation of 10 pg/ml. The intra- and inter-day precision values were below 8% and accuracy was within +/-3% at all three QC levels. The method was utilized to support clinical pharmacokinetic studies of ibutilide in healthy volunteers following intravenous administration.  相似文献   

15.
A new method based on fluorescence derivatization with 5‐(dimethylamino) naphthalene‐1‐sulfonyl chloride (dansyl chloride) was developed for the quantitative determination of galantamine in human plasma and urine using high‐performance liquid chromatography. The reaction between galantamine and dansyl chloride was optimally realized in 30 min at room temperature and pH 10.5, with a reagent to galantamine molar ratio of 2.13. The derivative was extracted with dichloromethane, and the extract was dried under a nitrogen stream and dissolved in the mobile phase. Chromatographic analysis was performed with an Inertsil C18 column and a mobile phase comprising 40% acetonitrile and 60% 10 mM o‐phosphoric acid, 1.2 ml/min. The injection volume was 20 μl. The derivatives were detected with a fluorescence detector (excitation 375 nm/emission 537 nm). The retention time for the dansyl derivative of galantamine was 16.8 min. Linearity was observed between 125 and 2000 ng/ml in water, urine and plasma. The limit of detection and limit of quantification for the developed method were 6.27–70.99 and 18.81–212.97 ng/ml, respectively. Per cent recovery was calculated as 95.15 for urine and 95.78 for plasma. Interday repeatability values for urine and plasma samples (n = 6) at three different concentrations were calculated as a per cent relative standard deviation of 0.24–0.59 and 0.35–0.56. The corresponding per cent relative standard deviation values for intraday repeatability were 0.13–0.51 and 0.04–0.15, respectively.  相似文献   

16.
A sensitive and specific high-performance liquid chromatographic assay with electrospray ionization mass spectrometry detection (LC-ESI-MS) has been developed and validated for the identification and quantification of the novel anticholinergic drug phencynonate in rat blood and urine. The sample pretreatment involves basification and iterative liquid-liquid extraction with ethyl ether-dichloromethane (2:1, v/v) solution, followed by LC separation and positive electrospray ionization mass spectrometry detection. The chromatography was on BetaBasic-18 column (150 mm x 2.1mm i.d., 3 microm). The mobile phase was composed of methanol-water (85:15, v/v), containing 0.5 per thousand formic acid, which was pumped at a flow-rate of 0.2 ml/min. Thiencynonate was selected as the internal standard (IS). Simultaneous MS detection of phencynonate and IS was performed at m/z 358.4 (phencynonate), m/z 364 (thiencynonate), and the selected reaction ion monitoring (SRM) of the two compounds was at 156. Phencynonate eluted at approximately 5.25 min, thiencynonate eluted at approximately 5.10 min and no endogenous materials interfered with their measurement. Linearity was obtained over the concentration range of 1-100 ng/ml in rat blood and 1-500 ng/ml in rat urine. The lower limit of quantification (LLOQ) was reproducible at 1 ng/ml in both of rat blood and urine. The precision measured was obtained from 2.92 to 9.76% in rat blood and 4.17 to 9.76% in rat urine. Extraction recoveries were in the range of 69.57-79.49% in blood and 56.85-64.86% in urine. This method was successfully applied to the identification and quantification of phencynonate in pharmacokinetic studies.  相似文献   

17.
Sanguinarine is a quaternary benzo[c]phenanthridine alkaloid, extracted from the argemone oil, which produced severe human intoxications. To investigate the sanguinarine biotransformation, we develop a simple extraction process and a high performance liquid chromatographic separation coupled to a sensitive fluorometric detection of sanguinarine in cell culture medium, as well as in rat urine and plasma. After extraction with an acidified organic solvent, sanguinarine elution is performed within 15 min on a Nucleosil C18 column with a gradient using 0.2% formic acid/water/acetonitrile as mobile phase. Extracted and standard sanguinarine are characterized by mass spectrometry. The extraction recovery of sanguinarine is about 80% in cell culture medium and in rat urine, but lower in plasma. This convenient high performance liquid chromatography (HPLC) method allows to quantify sanguinarine over concentrations ranged 10-2000 ng ml(-1). The limit of fluorometric detection is 0.5 ng. Under these conditions, the lower limit of quantification of sanguinarine is 50 ng ml(-1) in cell culture medium and in rat urine and 100 ng ml(-1) in rat plasma. This analytical HPLC method is specific, linear and reproducible in all media and is suitable for quantitative determination of sanguinarine in biological fluids.  相似文献   

18.
An assay based on combined microbore high-performance liquid chromatography–positive ion electrospray ionisation mass spectrometry with selected ion recording has been developed for the measurement of the antihistamine drug terfenadine in human plasma. A deuterated analogue of terfenadine was synthesised for use as an internal standard and extraction of terfenadine was carried out on C18 solid phase extraction columns. The limit of detection of terfenadine in plasma is 0.1 ng/ml and the intra-assay coefficient of variation at 1 ng/ml is 10.1%. Plasma concentrations of terfenadine measured in six normal subjects following a 120 mg oral dose are reported.  相似文献   

19.
A new analytical determination method of homocystine in human plasma has been developed. The method utilises liquid chromatography coupled to ionspray tandem mass spectrometry. Quantitative analysis was achieved using as an internal standard homocystine-d8. Mass spectrometer operated in the multiple reaction mode: homocystine and homocystine-d8 were detected through the transition from the precursor to the product ion (from m/z 269.3 to 90.0, and m/z 277.3 to 94.0, respectively). The method is extremely sensitive, with limit of detection in the range of 6 fmol/L. The interassay and intraassay coefficients of variation for homocystine were 6.22% and 3.4%, respectively. The accuracy for the added homocystine ranged from 85% to 110%. High specificity of tandem mass spectrometry coupled with a fast chromatographic process is suitable for a rapid and reliable assay of homocystine.  相似文献   

20.
A HPLC method was developed for determination of cimetidine in human plasma and urine. Plasma samples were alkalinized followed by liquid extraction with water-saturated ethyl acetate then evaporated under nitrogen. The extracts were reconstituted in mobile phase and injected onto a C(18) reversed-phase column; UV detection was set at 228 nm. Urine samples were diluted with an internal standard/mobile phase mixture (1:9) prior to injection. The lower limit of quantification in plasma and urine were 100 ng/ml and 10 microg/ml, respectively; intra- and inter-day coefficients of variation were 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号