首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
刘永平  杨静  杨明峰 《生物工程学报》2015,31(11):1553-1566
开花是植物从营养生长转换为生殖生长的生理发育过程,受光周期、温度、激素、年龄等多个因素诱导,在植物生长和物种进化中处于核心地位。综合不断更新的开花分子遗传结果,将植物响应各种内源和外源信号启动开花的途径归纳为:经典的光周期途径、春化途径、自主途径、赤霉素途径和较新的年龄途径共5条。旨在描绘出这些不同途径间既独立又相互影响的复杂网络关系,为进一步探索和阐述更多植物的开花分子机理提供借鉴与参考。  相似文献   

2.
拟南芥开花诱导途径分子机制研究进展   总被引:1,自引:0,他引:1  
拟南芥是分子和遗传学研究的模式植物,对植物花发育及控制花形态建成的分子遗传机制的研究进展主要是建立在对拟南芥研究的基础之上,拟南芥开花主要受到4个途径(自主途径、赤霉素途径、春化作用和光周期途径)的内源和外界信号的同时诱导.该文对近年来国内外有关拟南芥开花诱导的4个途径的分子机制研究进展进行综述,并初步绘制出各开花诱导途径基因间的调控网络图,以进一步明确基因间的相互作用模式及其在整个开花过程中的作用地位.  相似文献   

3.
The short-term effects of infestation by cowpea aphids ( Aphis craccivora Koch) and pea aphids [ Acyrthosiphon pisum (Harris)], both Homoptera: Aphididae, on plant growth and respiration of excised, intact shoots of cowpea [ Vigna unguiculata (L.) Walp. cv. Caloona], broad bean ( Vicia faba L. cv. Aquadulce) and garden pea ( Pisum sativum L. cv. Victory Freezer) seedlings were investigated, but not all plant-aphid combinations were utilized. Root, shoot and plant dry weights were significantly reduced within 10 days in the infested plants. Rates of total shoot respiration were significantly greater in infested plants within 10 days, and the increase was not due to increased alternative pathway activity but, rather, to increased cytochrome pathway activity. It is suggested that the aphid-induced increase in shoot respiration may be due to increased rates of photosynthesis, to substances injected into the phloem by the aphids and/or delayed senescence. These data indicate that aphid-infested shoots had a decreased carbon use efficiency.  相似文献   

4.
The short-term effects of cowpea aphids ( Aphis craccivora Koch) and pea aphids ( Acyrthosiphon pisum Harris), both Homoptera: Aphididae, on plant growth and respiration of excised, intact roots of cowpea [ Vigna unguiculata (L.) Walp. cv. Caloona], broadbean ( Vicia faba L. cv. Aquadulce) and garden pea ( Pisum sativum L. cv. Victory Freezer) seedlings were investigated, but not all plant-aphid combinations were used. Plant and root mean relative growth rates were significantly reduced within 10 days in the infested plants. Rates of total root respiration were was also significantly reduced in all infested plants within 10 days, presumably because of the reduced availability of translocate to the roots. The contribution of the cytochrome pathway to root respiration was significantly greater in control than in infested plants. The activity and engagement of the alternative respiratory pathway was also greater in control plants, and was absent in infested plants after 10 days infestation in all cases but one. These data indicate that the roots of aphid-infested plants were more efficient, in terms of energy conversion, than their respective controls.  相似文献   

5.
植物萜类化合物的生物合成及应用   总被引:4,自引:0,他引:4  
萜类化合物是植物中广泛存在的一类代谢产物,在植物生长、发育过程中起重要作用。植物中的萜类化合物有2条合成途径,即甲羟戊酸途径和甲基赤藓糖醇磷酸途径。这2条途径中都存在一系列调控萜类化合物生成、结构和功能各异的酶。植物萜类化合物不仅在植物生命活动中起重要作用,而且具有重要的商业价值,被广泛用于工业、医药卫生等领域。  相似文献   

6.
Propionate is produced in the human large intestine by microbial fermentation and may help maintain human health. We have examined the distribution of three different pathways used by bacteria for propionate formation using genomic and metagenomic analysis of the human gut microbiota and by designing degenerate primer sets for the detection of diagnostic genes for these pathways. Degenerate primers for the acrylate pathway (detecting the lcdA gene, encoding lactoyl-CoA dehydratase) together with metagenomic mining revealed that this pathway is restricted to only a few human colonic species within the Lachnospiraceae and Negativicutes. The operation of this pathway for lactate utilisation in Coprococcus catus (Lachnospiraceae) was confirmed using stable isotope labelling. The propanediol pathway that processes deoxy sugars such as fucose and rhamnose was more abundant within the Lachnospiraceae (based on the pduP gene, which encodes propionaldehyde dehydrogenase), occurring in relatives of Ruminococcus obeum and in Roseburia inulinivorans. The dominant source of propionate from hexose sugars, however, was concluded to be the succinate pathway, as indicated by the widespread distribution of the mmdA gene that encodes methylmalonyl-CoA decarboxylase in the Bacteroidetes and in many Negativicutes. In general, the capacity to produce propionate or butyrate from hexose sugars resided in different species, although two species of Lachnospiraceae (C. catus and R. inulinivorans) are now known to be able to switch from butyrate to propionate production on different substrates. A better understanding of the microbial ecology of short-chain fatty acid formation may allow modulation of propionate formation by the human gut microbiota.  相似文献   

7.
Alternative pathway amplification plays a major role for the final effect of initial specific activation of the classical and lectin complement pathways, but the quantitative role of the amplification is insufficiently investigated. In experimental models of human diseases in which a direct activation of alternative pathway has been assumed, this interpretation needs revision placing a greater role on alternative amplification. We recently documented that the alternative amplification contributed to 80-90% of C5 activation when the initial activation was highly specific for the classical pathway. The recent identification of properdin as a recognition factor directly initiating alternative pathway activation, like C1q in the classical and mannose-binding lectin in the lectin pathway initiates a renewed interest in the reaction mechanisms of complement. Complement and Toll-like receptors, including the CD14 molecule, are two main upstream recognition systems of innate immunity, contributing to the inflammatory reaction in a number of conditions including ischemia-reperfusion injury and sepsis. These systems act as "double-edged swords", being protective against microbial invasion, but harmful to the host when activated improperly or uncontrolled. Combined inhibition of complement and Toll-like receptors/CD14 should be explored as a treatment regimen to reduce the overwhelming damaging inflammatory response during sepsis. The alternative pathway should be particularly considered in this regard, due to its uncontrolled amplification in sepsis. The alternative pathway should be regarded as a dual system, namely a recognition pathway principally similar to the classical and lectin pathways, and an amplification mechanism, well known, but quantitatively probably more important than generally recognized.  相似文献   

8.
目的:探讨大鼠肺动脉高压(PAH)过程中TGF-beta1对胰岛素样生长因子结合蛋白(IGFBP)表达调节是否依赖于PI3K及ERK 信号通路。方法:取健康成年SD 大鼠26 只,随机分成2 组:PAH组,腹腔注射1%的野百合碱,剂量为60 mg/kg;对照(C)组腹腔 注射生理盐水。于4 周后超声检测肺动脉平均压力,取肺组织做HE 染色,应用NIS-Element 系统测量中膜厚度。原代培养肺动脉 平滑肌(PASMC)细胞,分别加入TGF-beta1 及TGF-beta1 中和抗体后,Western-blot 检测IGFBP3,IGFBP5,Smad2/Smad3 表达。加入 ERK特异性抑制剂PD98059 或PI3K 抑制剂LY294002,检测IGFBP3,IGFBP5 表达。结果:野百合碱处理4 周后,肺动脉高压组 的平均肺动脉压力及右室/(左室+室间隔)比值显著高于对照组。TGF-茁1 可显著升高IGFBP3,IGFBP5 及p-Smad3 的表达(P<0. 05),而抑制TGF-beta1 则可显著降低三种蛋白的表达(P<0.05)。加入LY294002 抑制PI3K ERK 后,IGFBP3 和p-Smad2 两种蛋白的 表达量显著下调(P<0.05)。加入PD98059 抑制ERK 后可显著降低IGFBP3 及IGFBP5 的表达水平(P<0.05)。结论:PAH 中 TGF-茁1 升高可通过活化Smad2/Smad3 上调IGFBP3和IGFBP5 的表达。TGF-beta1 促进IGFBP3,IGFBP5表达的作用依赖于PI3K 及ERK 信号通路。  相似文献   

9.
Coenzyme Q10 (CoQ10), a strong antioxidant, is used extensively in food, cosmetic and medicine industries. A natural producer, Rhodopseudomonas palustris, was engineered to overproduce CoQ10. For increasing the CoQ10 content, crtB gene was deleted to block the carotenoid pathway. crtB gene deletion led to 33% improvement of CoQ10 content over the wild type strain. However, it was found that the yield of hopanoids was also increased by competing for the precursors from carotenoid pathway with CoQ10 pathway. To further increase the CoQ10 content, hopanoid pathway was blocked by deleting shc gene, resulting in R. palustris [Δshc, ΔcrtB] to produce 4·7 mg g−1 DCW CoQ10, which was 1·2 times higher than the CoQ10 content in the wild type strain. The common strategy of co-expression of rate-limiting enzymes (DXS, DPS and UbiA) was combined with the pathway blocking method resulted in 8·2 mg g−1 DCW of CoQ10, which was 2·9 times higher than that of wild type strain. The results suggested a synergistic effect among different metabolic engineering strategies. This study demonstrates the potential of R. palustris for CoQ10 production and provides viable strategies to increase CoQ10 titer.  相似文献   

10.
异戊二烯(isoprene),又名2-甲基-1、3-丁二烯,是最简单的类异戊二烯化合物,是橡胶的重要前体物质,在精细化工如香料、新型农药等方面应用广泛。异戊二烯主要依赖化石燃料合成,但生产成本较高、易污染环境,生物法合成异戊二烯具有巨大的潜在应用价值,本文综述了生物法合成异戊二烯的主要途径与研究进展。  相似文献   

11.
白念珠菌是人类最常见的条件致病菌。促分裂素原活化蛋白激酶(MAPK链)是真核生物信号传递网络中的重要途径之一,在基因表达调控和细胞质功能活动中发挥关键作用。在白念珠菌中主要有4条MAPK途径:Mkcl途径、Cekl途径、Cek2途径和HOG途径。其中HOG途径在白念珠菌MAPK信号通路起着重要的作用。对于白念珠菌MAPK信号通路的作用及相关调控机制的了解,可以为寻找新的药物作用靶点,治疗念珠菌病提供帮助。  相似文献   

12.
For a long time the lysosomal pathway was thought to be exclusively one for catabolism and recycling of material taken up by endocytosis from the external milieu or from the cytosol by autophagy. At least in the immune system it is clear now that endo/lysosomal proteolysis generates crucially important information, in particular peptides that bind class II MHC molecules to create ligands for survey by the diverse antigen receptors of the T lymphocyte system. This process of antigen processing and presentation is used to display not only foreign but also self peptides and therefore is important for ‘self’ tolerance as well as immunity to pathogens. Some cells, macrophages and particularly dendritic cells can load peptides on class I MHC molecules in the endosome system through the important, though still not fully characterised, pathway of cross-presentation. Here I try to provide a brief review of how this area developed focussing to some extent our own contributions to understanding the class II MHC pathway. I also mention briefly recent work of others showing that proteolysis along this pathway turns out to regulate immune signalling events in the innate immune system such as the activation of some members of the Toll-like receptor family. Finally, our recent work on the endo/lysosome targeted protease inhibitor cystatin F, suggests that auto-regulation of protease activity in some immune cells occurs. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

13.
14.
The potent antimalarial sesquiterpene lactone, artemisinin, is produced in low quantities by the plant Artemisia annua L. The source and regulation of the isopentenyl diphosphate (IPP) used in the biosynthesis of artemisinin has not been completely characterized. Terpenoid biosynthesis occurs in plants via two IPP-generating pathways: the mevalonate pathway in the cytosol, and the non-mevalonate pathway in plastids. Using inhibitors specific to each pathway, it is possible to resolve which supplies the IPP precursor to the end product. Here, we show the effects of inhibition on the two pathways leading to IPP for artemisinin production in plants. We grew young (7–14 days post cotyledon) plants in liquid culture, and added mevinolin to the medium to inhibit the mevalonate pathway, or fosmidomycin to inhibit the non-mevalonate pathway. Artemisinin levels were measured after 7–14 days incubation, and production was significantly reduced by each inhibitor compared to controls, thus, it appears that IPP from both pathways is used in artemisinin production. Also when grown in miconazole, an inhibitor of sterol biosynthesis, there was a significant increase in artemisinin compared to controls suggesting that carbon was shifted from sterols into sesquiterpenes. Collectively these results indicate that artemisinin is probably biosynthesized from IPP pools from both the plastid and the cytosol, and that carbon from competing pathways can be channeled toward sesquiterpenes. This information will help advance our understanding of the regulation of in planta production of artemisinin.  相似文献   

15.
Current pathway synthesis tools identify possible pathways that can be added to a host to produce the desired target molecule through the exploration of abstract metabolic and reaction network space. However, not many of these tools explore gene-level information required to physically realize the identified synthesis pathways, and none explore enzyme-host compatibility. Developing tools that address this disconnect between abstract reactions/metabolic design space and physical genetic sequence design space will enable expedited experimental efforts that avoid exploring unprofitable synthesis pathways. This work describes a workflow, termed Probabilistic Pathway Assembly with Solubility Confidence Scores (ProPASS), which links synthesis pathway construction with the exploration of the physical design space as imposed by the availability of enzymes with predicted characterized activities within the host. Predicted protein solubility propensity scores are used as a confidence level to quantify the compatibility of each pathway enzyme with the host Escherichia coli (E. coli). This study also presents a database, termed Protein Solubility Database (ProSol DB), which provides solubility confidence scores in E. coli for 240,016 characterized enzymes obtained from UniProtKB/Swiss-Prot. The utility of ProPASS is demonstrated by generating genetic implementations of heterologous synthesis pathways in E. coli that target several commercially useful biomolecules.  相似文献   

16.
Changes in respiratory rate and the effects of respiratory inhibitorson respiration were determined in apple (Malus sylvestris cv. Delicious) and red pepper (Capsicum fructescens) fruits dusting different stages of development and ripening.The results showed that there was an abrupt rise in respiration daring ripening inapple fruit, but the respiration of the red pepper declined continuously throughout theripening period. Thus the apple is climacteric and the red pepper is non-climacteric fruit. The respiration of apple fruit was sensitive to KCN (1 mM) during the period ofdevelopment but changed to CLAM-sensitive and CN-resistant during preclimactericand climacteric phases, indicating that a diversion of respiratory pathways from the cy-tochrome path to the alternative path has occurred. The respiration of the red pepperfruit was CN-sensitive thoughout the whole period of fruit ripening, suggesting thatthe operation of the CN-resistant path was insignificant. Slices from climacteric apple fruits developed induced .respiration after aging, bothKCN and CLAM (1 mM) inhibited the induced respiratic considerably. However, slices from red pepper fruits showed no evidence of induced respiration after aging. Slices from climacteric apple fruits infiltrated with 3 mM CLAM before aging, reducedthe peak of the induced respiration by about 30%, indicating that the development ofinduced respiration was suppressed by the presence of CLAM. The above results indicated that the: climacteric fruits were characterized by diversion of traffic from the cytochrome path to the alternative path during ripening andby the development of induced respiration after slicing and aging. While in nonclimacteric fruits no .diversion of electron transport path was observed during ripening andno induced respiration occurred after aging. Although both the eytochrome and alternative pathways were present in the tissue of red pepper fruits, the alternative pathwas not operating except when the cytochrome path was blocked or was saturated by electron flow.  相似文献   

17.
Bordetella pertussis must survive the defenses of the human respiratory tract including the complement system. The BrkA (Bordetella resistance to killing) protein prevents killing by the antibody-dependent classical pathway. In this study, the ability of B. pertussis to activate the human complement cascade by other pathways was examined. B. pertussis was not killed in serum depleted of C2, however serum depleted for factor B killed B. pertussis as efficiently as intact serum, suggesting complement activation occurred exclusively by the classical pathway. B. pertussis was not killed by serum depleted of antibody, suggesting the bacteria fail to activate the antibody-independent branches of the classical pathway, including the mannose binding lectin pathway. Mutants lacking the terminal trisaccharide of lipopolysaccharide retained the complement-resistant phenotype, suggesting this structure does not influence activation of complement.  相似文献   

18.
硝基苯污染物的生物降解途径   总被引:5,自引:0,他引:5       下载免费PDF全文
硝基苯是一种有毒化合物,目前,关于硝基苯污染物的生物降解已进行了大量的研究。综述了生物降解硝基苯的两种主要途径氧化途径和部分还原途径,介绍了两种途径降解硝基苯的具体机制及相关酶和编码基因的特点,并对两种降解途径进行了简要的对比分析,为硝基苯及其它有机污染物生物降解技术的开发应用提供依据。  相似文献   

19.
Fermentation balances and growth yields were determined with various bacteria fermenting lactate to acetate plus propionate either via methylmalonyl-CoA or via acrylyl-CoA. All strains fermented lactate to acetate plus propionate at approximately a 1:2 ratio. Growth yields of Propionibacterium freudenreichii were more than twice as high as those of Clostridium homopropionicum or Veillonella parvula. Hydrogen was formed as a side product to a significant extent only by V. parvula and Pelobacter propionicus; the latter formed hydrogen preferentially when using ethanol as substrate. Acrylyl-CoA reductase of C. homopropionicum and Clostridium neopropionicum was found nearly exclusively in the cytoplasm thus confirming that this reduction step is unlikely to be involved in energy conservation. C. homopropionicum exhibited higher K(S) and higher micro(max) values, as well as higher specific substrate turnover rates than P. freudenreichii. The results allow us to conclude that C. homopropionicum using the acrylyl-CoA pathway with low growth yield obtains its specific competitive advantage compared to P. freudenreichii not through higher substrate affinity or metabolic shift toward enhanced acetate-plus-hydrogen formation but through faster specific substrate turnover.  相似文献   

20.
Biotin (Vitamin H or B7) is one of the most important cofactors involved in central metabolism of pro- and eukaryotic cells. Currently, chemical synthesis is the only route for commercial production. This study reports efficient microbial production of biotin in Pseudomonas mutabilis via multi-level metabolic engineering strategies: Level 1, overexpressing rate-limiting enzyme encoding genes involved in biotin synthesis (i.e. promoter and ribosome binding site engineering); Level 2, deregulating biotin biosynthesis (i.e. deletion of the negative regulator and the biotin importer genes); Level 3, enhancing the supply of co-factors (i.e. S-adenosyl-L-methionine and [Fe-S] cluster) for biotin biosynthesis; Level 4, increasing the availability of the precursor pimelate thioester (i.e. introduction of the BioW-BioI pathway from Bacillus subtilis). The combination of these interventions resulted in the establishment of a biotin overproducing strain, with the secretion of biotin increased for more than 460-fold. In combination with bioprocess engineering efforts, biotin was produced at a final titer of 87.17 mg/L in a shake flask and 271.88 mg/L in a fed-batch fermenter with glycerol as the carbon source. This is the highest biotin titer ever reported so far using rationally engineered microbial cell factories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号