首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The chlorovirus PBCV-1, like many large double-stranded DNA-containing viruses, contains several genes that encode putative proteins involved in nucleotide biosynthesis. This report describes the characterization of the PBCV-1 dCMP deaminase, which produces dUMP, a key intermediate in the synthesis of dTTP. As predicted, the recombinant protein has dCMP deaminase activity that is activated by dCTP and inhibited by dTTP. Unexpectedly, however, the viral enzyme also has dCTP deaminase activity, producing dUTP. Typically, these two reactions are catalyzed by proteins in separate enzyme classes; to our knowledge, this is the first example of a protein having both deaminase activities. Kinetic experiments established that (i) the PBCV-1 enzyme has a higher affinity for dCTP than for dCMP, (ii) dCTP serves as a positive heterotropic effector for the dCMP deaminase activity and a positive homotropic effector for the dCTP deaminase activity, and (iii) the enzymatic efficiency of the dCMP deaminase activity is about four times higher than that of the dCTP deaminase activity. Inhibitor studies suggest that the same active site is involved in both dCMP and dCTP deaminations. The discovery that the PBCV-1 dCMP deaminase has two activities, together with a previous report that the virus also encodes a functional dUTP triphosphatase (Y. Zhang, H. Moriyama, K. Homma, and J. L. Van Etten, J. Virol. 79:9945-9953, 2005), means that PBCV-1 is the first virus to encode enzymes involved in all three known pathways to form dUMP.  相似文献   

2.
Several enzymatic activities involved in the biosynthetic pathways of nucleotides, including thymidine kinase, which has been used as a biochemical marker in studies of gene transfer, are induced by herpes simplex virus (HSV). The utility of additional markers prompted us to reanalyze the effects of HSV infection on the activities of two other enzymes for which direct selective methods can be devised: dCMP deaminase and CDP reductase. For this purpose, mutant Chinese hamster (lA1) cells devoid of dCMP deaminase activity or Syrian hamster (BHK-21/C13) cells were infected by HSV type 1 or 2, and the activities of thymidine kinase, dCMP deaminase, and CDP reductase were measured in the cell extracts. The reported induction of thymidine kinase and CDP reductase by HSV was confirmed, whereas the stimulation of dCMP deaminase activity could not be observed. For both cell lines, the HSV-induced CDP reductase differed from the host enzyme by sensitivity to inhibition by both dTTP and dATP. This property should be helpful in developing a selection system for this activity.  相似文献   

3.
Deoxycytidylate deaminase isolated from normal human lymphocytes and from mononuclear leucocytes from patients with acute lymphoblastic leukemia, chronic lymphocytic leukemia and acute monocytic leukemia has been characterized in regard to the substrate, dAMP and the allosteric regulators dCTP and dTTP. The enzymes exhibited sigmoidal initial velocity versus dCMP concentration whereas in the presence of the activator, dCTP, Michaelis-Menten kinetics were obtained.At saturating substrate concentrations dTTP acted as an allosteric inhibitor of the enzyme isolated from non-stimulated as well as from stimulated lymphocytes. However, the enzymes isolated from the leukemic cells had lost the allosteric regulation by dTTP.At low substrate concentrations the competitive inhibitor, dAMP, activated all the enzymes. This activation was abolished in the presence of dCTP which indicates that dAMP might be involved in the regulation of dCMP deaminase activity and thus influence the dCTP and dTTP pools under physiological conditions.Abbreviations dCMP deaminase deoxycytidylate deaminase - PHA Phytohemagglutinin - ALL acute lymphoblastic leukemia - CLL chronic lymphocytic leukemia - AMOL acute monocytic leukemia - WBC white blood cells  相似文献   

4.
The activities of dCMP deaminase and DNA polymerase I increased twofold and fivefold in BHK-21/C13 cells after infection by the virus of herpes simplex. The increases were greatly diminished, and under certain conditions prevented, by inclusion of actinomycin D or cycloheximide in the cell-virus system during the infective cycle. The dCMP deaminase purified from infected cells harvested 8h after infection differed from the deaminase purified from non-infected cells inasmuch as (a) it was more resistant to heating at 37 degrees C; (b) the substrate (dCMP) concentration at half-maximum velocity was lower; (c) maximum activation was achieved by a lower concentration of dCTP; (d) it was more resistant to inhibition by dTTP; and (e) it behaved differently when assayed in the presence of a herpes-virus-specific antiserum. The DNA polymerase activity in the infected cells was markedly decreased in the presence of the herpes-virus-specific antiserum.  相似文献   

5.
6.
Ribonucleotide reductase (RNR) and deoxycytidylate deaminase (dCMP deaminase) are pivotal allosteric enzymes required to maintain adequate pools of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis and repair. Whereas RNR inhibition slows DNA replication and activates checkpoint responses, the effect of dCMP deaminase deficiency is largely unknown. Here, we report that deleting the Schizosaccharomyces pombe dcd1+ dCMP deaminase gene (SPBC2G2.13c) increases dCTP ∼30-fold and decreases dTTP ∼4-fold. In contrast to the robust growth of a Saccharomyces cerevisiae dcd1Δ mutant, fission yeast dcd1Δ cells delay cell cycle progression in early S phase and are sensitive to multiple DNA-damaging agents, indicating impaired DNA replication and repair. DNA content profiling of dcd1Δ cells differs from an RNR-deficient mutant. Dcd1 deficiency activates genome integrity checkpoints enforced by Rad3 (ATR), Cds1 (Chk2), and Chk1 and creates critical requirements for proteins involved in recovery from replication fork collapse, including the γH2AX-binding protein Brc1 and Mus81 Holliday junction resolvase. These effects correlate with increased nuclear foci of the single-stranded DNA binding protein RPA and the homologous recombination repair protein Rad52. Moreover, Brc1 suppresses spontaneous mutagenesis in dcd1Δ cells. We propose that replication forks stall and collapse in dcd1Δ cells, burdening DNA damage and checkpoint responses to maintain genome integrity.  相似文献   

7.
Deoxycytidylate deaminase is unique within the zinc-dependent cytidine deaminase family as being allosterically regulated, activated by dCTP, and inhibited by dTTP. Here we present the first crystal structure of a dTTP-bound deoxycytidylate deaminase from the bacteriophage S-TIM5, confirming that this inhibitor binds to the same site as the dCTP activator. The molecular details of this structure, complemented by structures apo- and dCMP-bound, provide insights into the allosteric mechanism. Although the positioning of the nucleoside moiety of dTTP is almost identical to that previously described for dCTP, protonation of N3 in deoxythymidine and not deoxycytidine would facilitate hydrogen bonding of dTTP but not dCTP and may result in a higher affinity of dTTP to the allosteric site conferring its inhibitory activity. Further the functional group on C4 (O in dTTP and NH2 in dCTP) makes interactions with nonconserved protein residues preceding the allosteric motif, and the relative strength of binding to these residues appears to correspond to the potency of dTTP inhibition. The active sites of these structures are also uniquely occupied by dTMP and dCMP resolving aspects of substrate specificity. The methyl group of dTMP apparently clashes with a highly conserved tyrosine residue, preventing the formation of a correct base stacking shown to be imperative for deamination activity. The relevance of these findings to the wider zinc-dependent cytidine deaminase family is also discussed.  相似文献   

8.
A mutant V79 hamster fibroblast cell line lacking the enzyme dCMP deaminase was used to study the regulation of deoxynucleoside triphosphate pools by substrate cycles between pyrimidine deoxyribosides and their 5'-phosphates. Such cycles were suggested earlier to set the rates of cellular import and export of deoxyribosides, thereby influencing pool sizes (V. Bianchi, E. Pontis, and P. Reichard, Proc. Natl. Acad. Sci. USA 83:986-990, 1986). While normal V79 cells derived more than 80% of their dTTP from CDP reduction via deamination of dCMP, the mutant cells had to rely completely on UDP reduction for de novo synthesis of dTTP, which became limiting for DNA synthesis. Because of the allosteric properties of ribonucleotide reductase, CDP reduction was not diminished, leading to a large expansion of the dCTP pool. The increase of this pool was kept in check by a shift in the balance of the deoxycytidine/dCMP cycle towards the deoxynucleoside, leading to massive excretion of deoxycytidine. In contrast, the balance of the deoxyuridine/dUMP cycle was shifted towards the nucleotide, facilitating import of extracellular deoxynucleosides.  相似文献   

9.
dCMP deaminase from Bacillus subtilis has been purified 700-fold. In addition to the substrate, dCMP, the enzyme requires dCTP, Zn2+, and 2-mercaptoethanol, Mg2+ cannot substitute for Zn2+. The dCMP saturation curve is hyperbolic in the presence of saturating concentrations of dCTP and Zn2+. The dCTP saturation curve is sigmoidal, the sigmoidicity being dependent on the Zn2+ and dCMP concentrations. The molecular weight as determined by gel filtration is 170,000 both in the presence and in the absence of dCTP and Zn2+. In the absence of thiols, the enzyme is highly unstable. At 0 degrees, the half-life of the enzyme activity is 30 min. Addition of Zn2+ and dCTP protects against this inactivation. In the presence of a thiol, dCTP and Zn2+ protect the enzyme against heat inactivation at 50 degrees. A mutant lacking dCMP deaminase (dcd) was isolated. Labeling of the pyrimidine nucleotide pools reveals that in the parent strain, 45% of the dTTP pool is derived via dCMP deamination, the residual 55% being derived via reduction of a uridine nucleotide. Since the dcd mutant grows with the same doubling time as the parent strain, we conclude that uridine nucleotide reduction alone is capable of supplying sufficient dUMP for normalthymidine nucleotide synthesis.  相似文献   

10.
Disc polyacrylamide gel electrophoresis (disc PAGE) analyses have revealed that mouse, human, and monkey cytosol deoxycytidylate (dCMP) deaminases differ in electrophoretic mobility, so that mixtures of mouse and human, mouse and monkey, and human and monkey enzymes can be separated. To learn whether the genes for dCMP deaminase and thymidine (dT) kinase are genetically linked, disc PAGE analyses of cytosol fractions from human-mouse and monkey-mouse somatic cell hybrids were carried out. The interspecific somatic cell hybrids were derived from the fusion of cytosol dT kinase deficient mouse cells with cytosol dT kinase-positive human and monkey cells: they contained mostly mouse chromosomes and a few primate chromosomes, including the determinant for primate cytosol dT kinase. The disc PAGE analyses demonstrated that the human-mouse and monkey-mouse somatic cell hybrids contained a dCMP deaminase activity with an electrophoretic mobility characteristic of mouse dCMP deaminase. Enzymes with electrophoretic mobilities characteristic of human and monkey dCMP deaminases were not demonstrable. These findings suggest that primate cytosol dT kinase and dCMP deaminase are coded on different chromosomes, or that the formation in hybrid cells of an active primate dCMP deaminase is suppressed. Chick-mouse somatic cell hybrids containing chick but not mouse cytosol dT kinase were also analyzed. The chick-mouse hybrid cells contained cytosol dCMP deaminase activity, but it was not possible to establish whether the enzyme was of murine or avian origin because of the similarity in electrophoretic mobility between the chick and mouse enzymes. Human and mouse cells contained low levels of mitochondrial dCMP deaminase activity. In contrast to dT kinase isozymes, however, mitochondrial and cytosol dCMP deaminases were electrophoretically indistinguishable.This investigation was aided by Grant Q-163 from the Robert A. Welch Foundation and by USPHS Grants CA-06656-12 and 1-K6-AI 2352 from the National Cancer Institute and the National Institute of Allergy and Infectious Diseases.  相似文献   

11.
The molecular and kinetic properties of cytidine deaminase from E. coli and chicken liver show several interesting differences and similarities: 1. Both enzymes possess an oligomeric structure, and linear kinetics. 2. The chicken liver enzyme is strictly dependent on the presence of reducing agents and presents a microheterogeneity in the pure preparation. 3. Both enzymes display identical specificity and share a rapid-equilibrium random Uni-Bi mechanism of catalysis. 4. The chicken liver enzyme is inhibited competitively by dTTP, CMP and dCMP.  相似文献   

12.
The complement-fixing tumor (T) antigen induced by simian virus 40 (SV40) has been prepared from SV40-infected cell cultures, from infected cell cultures treated at the time of infection with 1-beta-d-arabinofuranosylcytosine (ara-C), and from SV40-transformed cells. Upon partial purification, the T antigen exhibited the following properties: it was tightly adsorbed by calcium phosphate gel, it was precipitated by acetic acid at pH 5 or by ammonium sulfate at about 20 to 32% saturation, and it had a molecular weight greater than 250,000, as estimated by Sephadex G-200 gel chromatography. In contrast, deoxycytidylate (dCMP) deaminase, thymidylate (dTMP) kinase, and thymidine (dT) kinase were less strongly bound to calcium phosphate and were not precipitated at pH 5; these enzymes also had much lower molecular weights than the T antigen, as did dihydrofolic (FH(2)) reductase. Furthermore, higher ammonium sulfate concentrations were required to precipitate dCMP deaminase, dTMP kinase, and FH(2) reductase activities than to precipitate the T antigen. Another difference was that the T antigen was not stabilized, but dCMP deaminase, dTMP kinase, and dT kinase, were stabilized, respectively, by dCTP, dTMP, and dT or dTTP. Deoxyribonucleic acid (DNA) polymerase activity resembled the T antigen in adsorption to calcium phosphate, in precipitation by ammonium sulfate or at pH 5, and in the rate of inactivation when incubated at 38 C. However, the polymerase activity could be partly separated from the T antigen by Sephadex G-200 gel chromatography. The cell fraction containing partially purified T antigen also contained a soluble complement-fixing antigen (presumably a subunit of the viral capsid) which reacted with hyperimmune monkey sera. The latter antigen was present in very low titers or absent from cell extracts prepared from SV40-infected monkey kidney cell cultures which had been treated with ara-C at the time of infection, or from SV40-transformed mouse kidney (mKS) or hamster tumor (H-50) cells. The T antigen, however, was present in usual amounts in SV40-transformed cells or ara-C treated, infected cells.  相似文献   

13.
Thymidine triphosphate, a negative regulator of deoxycytidylate deaminase, was found to bind covalently to this enzyme on exposure to UV light at 254 nM. The rate of half-maximal fixation was extremely rapid, occurring within 30 s and probably attaining a maximum of about 1 mol of dTTP fixed/mol of enzyme subunit. In contrast to the case of ribonucleotide reductase (Ericksson, S., Caras, I. W., and Martin, D. W., Jr. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 81-85) where the fixation of dTTP inactivated this enzyme, the activity of the deaminase was unaffected. The bound nucleotide could be released on exposure to UV 254 nm light in the presence of dCTP or dTTP but not dATP or dGTP. The enzyme-fixed nucleotide was found to remain with the larger of the two peptides released as a result of CNBr treatment of the labeled enzyme. Studies are in progress to define the location of this nucleotide, which will be aided greatly by our recent clarification of the complete amino acid sequence of T2-deoxycytidylate deaminase.  相似文献   

14.
Deoxynucleoside triphosphate concentrations in Chinese hamster ovary cell lines, CHO-K1 and Mut 8–16, were examined following exposure of cells to UV or dimethylsulfate. Marked decreases in dCTP were observed 2 hr after exposure to both mutagens. In contrast, dTTP concentrations increased with increased cell killing after exposure to UV but not after exposure to dimethylsulfate. Examination of DNA synthesis in permeabilized cells in the presence of excess concentrations of dNTP substrates suggests that excess dCTP enhances replication while excess of dTTP inhibits replication. We therefore ask whether the increase in the dTTPdCTP ration in mutagenized whole cells either contributes to or prolongs induced inhibition of replication. In addition we proposed that such an induced dNTP imbalance may also contribute to an increase in mutations by enhancing the probability for base-misincorporation.  相似文献   

15.
The effect of 5-methoxymethyl-2'-deoxycytidine (MMdCyd), in combination with tetrahydrodeoxyuridine (H4dUrd) and 5-methoxymethyl-2'-deoxyuridine (MMdUrd) on deoxyribonucleoside triphosphate pools was assessed. The dNTP pool content was almost 5 times as high in herpes simplex virus (HSV) infected VERO cells compared with mock-infected cells. Significant differences in dNTP pool sizes were observed with the different treatments. Treatment of HSV-infected cells with MMdCyd and MMdUrd resulted in a massive expansion of the dTTP pool, whereas pools of dCTP and dGTP were not affected substantially. MMdUrd and MMdCyd produced dATP pools that were 4 and 2.5 times that of the controls, respectively. Treatment with H4dUrd resulted in the dCTP pool increasing 12 times and barely detectable levels of dTTP. MMdCyd in combination with H4dUrd resulted in a marked reduction of the total deoxyribonucleoside triphosphate level. These results indicate that during viral replication the bulk of the thymidine nucleotides are derived from the dCyd/dCMP deaminase de novo pathway.  相似文献   

16.
dCMP deaminase was partially purified from BHK-21/C13 cells grown in culture. The molecular weight of the enzyme was estimated by gel filtration and gradient centrifugation to be 130000 and 115000 respectively. The enzyme had a pH optimum of 8.4. Its activity versus substrate concentration curve was sigmoid, the substrate concentration at half-maximal velocity being 4.4mm. dCTP activated the deaminase maximally at 40μm, gave a hyperbolic curve for activity versus dCMP concentration and a Km value for dCMP of 0.91mm. dCTP activation required the presence of Mg2+ or Mn2+ ions. dTTP inhibited the deaminase maximally at 15μm; the inhibition required the presence of Mg2+ or Mn2+ ions. The enzyme was very heat-labile but could be markedly stabilized by dCTP at 0.125mm and ethylene glycol at 20% (v/v).  相似文献   

17.
Potentially mutagenic uracil-containing nucleotide intermediates are generated by deamination of dCTP, either spontaneously or enzymatically as the first step in the conversion of dCTP to dTTP. dUTPases convert dUTP to dUMP, thus avoiding the misincorporation of dUTP into DNA and creating the substrate for the next enzyme in the dTTP synthetic pathway, thymidylate synthase. Although dCTP deaminase and dUTPase activities are usually found in separate but homologous enzymes, the hyperthermophile Methanococcus jannaschii has an enzyme, DCD-DUT, that harbors both dCTP deaminase and dUTP pyrophosphatase activities. DCD-DUT has highest activity on dCTP, followed by dUTP, and dTTP inhibits both the deaminase and pyrophosphatase activities. To help clarify structure-function relationships for DCD-DUT, we have determined the crystal structure of the wild-type DCD-DUT protein in its apo form to 1.42A and structures of DCD-DUT in complex with dCTP and dUTP to resolutions of 1.77A and 2.10A, respectively. To gain insights into substrate interactions, we complemented analyses of the experimentally defined weak density for nucleotides with automated docking experiments using dCTP, dUTP, and dTTP. DCD-DUT is a hexamer, unlike the homologous dUTPases, and its subunits contain several insertions and substitutions different from the dUTPase beta barrel core that likely contribute to dCTP specificity and deamination. These first structures of a dCTP deaminase reveal a probable role for an unstructured C-terminal region different from that of the dUTPases and possible mechanisms for both bifunctional enzyme activity and feedback inhibition by dTTP.  相似文献   

18.
19.
The presence of 2 mM deoxycytidine (CdR) in growth medium substantially increased the deoxycytidine triphosphate (dCTP) and deoxuthymidine triphosphate (dTTP) pools in a Chinese hamster ovary cell line, CHO-K1, and in a radiation-sensitive mutant, xrs-5, derived from it (Jeggo et al., 1982). We observed significant differences in alkaline-sucrose gradient profiles of pulse-labeled DNA from unirradiated CHO-K1 and xrs-5 cells. For the latter cell line, a sizable fraction of the DNA synthesized during 5 or 10 min of growth subsequent to a 5-min radiolabeling period was found to co-sediment with large-chromosome DNA. This characteristics of xrs-5 was dramatically reduced by the presence of 2 mM CdR in the culture medium, and the UV resistance of the mutant increased to nearly that of the parent cell line under these culture conditions. These results show that the locus conferring UV-radiation sensitivity to xrs-5 affects DNA replication and that replicative activity and UV-radiation sensivity are jointly modulated by CdR, possibly through its impact on the size of deoxynucleoside triphosphate pools.  相似文献   

20.
脱氧胞嘧啶核苷酸脱氨酶属于脱氧胞苷酸脱氨家族.对来自于变性链球菌UA159的脱氧胞嘧啶核苷酸脱氨酶进行了克隆,在大肠杆菌中进行了表达,最后纯化.快速液相分子排阻色谱分析表明这种酶在溶液中形成六聚体.利用悬滴气相扩散技术获得了这个蛋白的晶体.在北京同步辐射的3W1A线站,收集了衍射分辨率到达3.1!的数据.这个晶体属于P213空间群,其晶胞参数为a=b=c=113.2",!="=#=90°.计算可得马修斯系数为3.6#3·Da-1,据此可估计在一个不对称单位中含有两个单亚基.据目前所知,这是第一个关于野生型的脱氧胞嘧啶核苷酸脱氨酶的结晶学报道.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号