首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 962 毫秒
1.
In the colonial tunicate, Botryllus primigenus Oka, gonads consist of indifferent germline precursor cells, the primordial testis and ovary, and mature gonads, of which the immature gonad components can be reconstructed de novo in vascular buds that arise from the common vascular system, although the mechanism is uncertain. In this study, we investigated how and what kinds of cells regenerated the gonad components. We found that few Vasa-positive cells in the hemocoel entered the growing vascular bud, where their number increased, and finally developed exclusively into female germ cells. Simultaneously, small cell aggregates consisting of Vasa(-) and Vasa(±) cells appeared de novo in the lateral body cavity of developing vascular buds. Double fluorescent in situ hybridization showed that these cell aggregates were both Piwi- and Myc-positive. They could form germline precursor cells and a primordial testis and ovary that strongly expressed Vasa. Myc knockdown by RNA interference conspicuously lowered Piwi expression and resulted in the loss of germline precursor cells without affecting Vasa(+) oocyte formation. Myc may contribute to gonad tissue formation via Piwi maintenance. When human recombinant BMP 4 was injected in the test vessel, coelomic Piwi(+) cells were induced to express Vasa in the blood. We conclude, therefore, that in vascular buds of B. primigenus, female germ cells can develop from homing Vasa(+) cells in the blood, and that other gonad components can arise from coelomic Vasa(-)/Piwi(+)/Myc(+) cells.  相似文献   

2.
3.
We investigated the mechanism by which germline cells are recruited in every asexual reproductive cycle of the budding tunicate Polyandrocarpa misakiensis using a vasa homolog (PmVas) as the germline-specific probe. A presumptive gonad of Polyandrocarpa arose as a loose cell aggregate in the ventral hemocoel of a 1-week-old developing zooid. It developed into a compact clump of cells and then separated into two lobes, each differentiating into the ovary and the testis. The ovarian tube that was formed at the bottom of the ovary embedded the oogonia and juvenile oocytes, forming the germinal epithelium. PmVas was expressed strongly by loose cell aggregates, compact clumps, and peripheral germ cells in the testis and germinal epithelium. No signals were detected in growing buds and less than 1-week-old zooids, indicating that germ cells arise de novo in developing zooids of P. misakiensis. Cells of the loose cell aggregates were 5–6 μm in diameter. They looked like undifferentiated hemoblasts in the hemocoel. To examine the involvement of PmVas in the germline recruitment at postembryonic stages, both growing buds and 1-week-old developing zooids were soaked with double-stranded PmVas RNA. The growing buds developed into fertile zooids expressing PmVas, whereas the 1-week-old zooids developed into sterile zooids that did not express PmVas. In controls (1-week-old zooids) soaked with double-stranded lacZ RNA, the gonad developed normally. These results strongly suggest that in P. misakiensis, PmVas plays a decisive role in switching from coelomic stem cells to germ cells.  相似文献   

4.
Gametogenesis of a compound ascidian Botryllus primigenus was studied histologically. On either side of the zooid (stage 9), in the gonadal space between the epidermis and the atrial epithelium, either a single testis or a complex of an egg follicle and a testis can be formed. The egg follicle consists of a single ovum (occasionally two ova) and its accessory cells and is connected with the atrial epithelium by the follicle stalk. The egg follicle is always accompanied by the brood pouch, a diverticulum of the atrial cavity. The testis is equipped with a vestigial spermiduct and is attached to the atrial epithelium. Buds of stage 8 comprise, besides the developing testes and, egg follicles, loose aggregations of hemoblasts and oocytes of early developmental stages, which are already accompanied by primary follicular cells. Both the oocytes and the primary follicular cells seem to arise from the hemoblasts. The young oocytes are isolated in the gonadal space of the buds nnd are transferred to buds of the succeeding generations until they finally mature. In the bud of stage 3, a compact mass of cells appears, attaching to tbe inner vesicle on either side of the body. It is derived from the hemoblasts lodged there in the preceding generation and presumably also from the circulating hemoblasts. When the cell mass receives a large oocyte derived from the preceding generation, part of the cell mass differentiates into egg envelopes, forming an egg follicle, and a follicle stalk and the remainder into a testis. When the cell mass receives no oocyte, it differentiate as a whole into a testis. In the egg follicle thus formed the outer and inner follicular cells increase in number by mitotic division. Subsequently, initial test cells are derived from the inner follicle by migration across the developing chorion; then they increas2 in number by mitosis. In the testis, meiosis and spermiogenesis take place.  相似文献   

5.
The vasa gene, first identified in Drosophila, is a key determinant for germline formation in eukaryotes. Homologs of vasa have been identified and linked to germline development, in many invertebrates and vertebrates. Here, we analyze the distribution of Vasa in early germ cells (oogonia and oocytes) and previtellogenic ovarian follicles of the lizard Podarcis sicula. During most of its previtellogenic growth, the oocyte in this lizard species is structurally and functionally integrated through intercellular bridges with special follicle cells called pyriform cells. The pyriform cells function similarly to Drosophila nurse cells, but are somatic in origin. In the oogenesis of P. sicula, Vasa is initially highly detected in the oogonia, but its levels decrease in early stage oocytes before the onset of pyriform cell differentiation. In the later stages of oogenesis, the high level of Vasa is related with the nurse function of the pyriform follicle cells. These observations suggest that cells of somatic origin are engaged in the synthesis of Vasa in the oogenesis of this lizard.  相似文献   

6.
银鲫种系细胞标记分子Vasa: cDNA克隆及其抗体制备   总被引:3,自引:0,他引:3  
种系细胞始自胚胎发育早期,是动物生殖及生殖工程的基础。为研究鱼类的种系细胞提供标记分子,我们克隆并鉴定了银鲫的vasacDNA即Cagvasa。CagvasacDNA全长2771碱基(nt),编码的蛋白为银鲫Vasa即CagVasa,全长701个氨基酸(aa)。CagVasa蛋白与已知Vasa蛋白的结构特征一致:在N端有14个RGG重复序列,在C端Vasa所特有的8个功能域俱全。银鲫Vasa与鲤鱼、斑马鱼、陆生脊椎动物和果蝇的Vasa蛋白分别有95%,89%,61%-66%和50%的同源性。卵巢切片的RNA原位杂交揭示,Cagvasa限于种系细胞,且表达水平呈现出低-高-低的动态变化:即两头低(卵原细胞跟Ⅳ期成熟卵子),中间高(Ⅱ-Ⅲ期卵子)。为分析鱼类种系细胞提供手段,我们用310aa的N端序列产生细菌的重组蛋白来免疫大白兔,获得了抗Vasa的多克隆抗体αVasa。Western免疫印迹表明,αVasa特异性地识别一个鱼类性腺的蛋白,该蛋白的分子量为75kD,仅见于银鲫的性腺和卵子。卵巢切片的组织免疫荧光共聚焦显微分析表明,抗体αVasa只对种系细胞染色:卵原细胞着色最深,卵母细胞和早期的卵子都浓染,成熟卵则浅染。类似情况亦见之于精子发生早期阶段的雄性种系细胞。卵巢和精巢的体细胞则不着色。因此,Cagvasa编码的当是Vasa同源蛋白,为银鲫种系细胞的第一个标记分子。我们的研究表明,抗体αVasa染色灵敏度高,特异性好,当是鉴别银鲫及其它鲤科鱼类的种系细胞的有效手段  相似文献   

7.
Body trunks were isolated from juvenile zooids of the Japanese colonial tunicate Botryllus primigenus and cultured in vitro to establish tissue-specific cell lines. Epidermal cells from some explants spread and formed a flat sheet consisting of vacuolated cells. They then dissociated into single cells, and their growth stopped within two weeks. Continuously proliferating cells were established from four explants. After the 20th implantation, nuclear and mitochondrial DNAs were extracted from these cells. The nucleotide sequences of proliferating cell nuclear antigen (PCNA) and mitochondrial large ribosomal RNA (mtlrRNA) completely matched the PCNA and mtlrRNA taken from living colonies of B. primigenus; this shows that the four independently proliferating cells were indeed of the Botryllus origin. One cell line (Bp0306E10) comprised round-shaped cells with a diameter of 8-10 microm. These cells have been cultured in vitro with a doubling time of approximately 24 hours since June, 2003. The BrdU labeling index was approximately 2%. Monoclonal antibodies raised against the cultured cells recognized a 28 kDa polypeptide and stained free mesenchymal cells in vivo. G418-resistant subclonal cells could be established by introducing a tunicate retrotransposon loaded with the neomycin resistance gene into the cells by electroporation. This study is the first to succeed in producing a sustainable cell culture of Botryllus.  相似文献   

8.
The germarium, oocytes and embryos of the parthenogenetic viviparous pea aphid Acyrthosiphon pisum are contained within a single ovariole. This species provides an excellent model for studying how maternally-inherited germ plasm is specified and how it is transferred to primordial germ cells. Previous studies have shown that germ cells are first segregated at the embryonic posterior after formation of the blastoderm. We used two cross-reacting antibodies against the conserved germline markers Vasa and Nanos, which specifically identified these presumptive germ cells, to investigate whether germ cells were determined during early development. We observed randomly-distributed weak expression of Vasa signals in the developing oocyte but no localization in the oocyte segregated from the germarium. Localized Vasa was not apparent until it was detected at the posterior in the embryo undergoing the second nuclear division. Nanos, on the other hand, was localized to a nuage-like structure surrounding the nucleus in the developing and segregated oocytes. At the beginning of the oocyte maturation division, Nanos localization shifted to the posterior and could be identified in successive stages until it was incorporated into the germ cells. Taken together, our results suggest that germ plasm is specified in the developing oocyte and that Nanos is an earlier germline marker than Vasa. Germ cells stained for Vasa remained at a dorsal location in the egg during mid-development and then were guided into abdominal segments A1 to A6 during germ-band retraction. We infer that germ cells coalesce with segmented gonadal mesoderm during this period.  相似文献   

9.
10.
11.
This study describes the structural and ultrastructural characteristics of gonadal sex differentiation and expression of Vasa, a germline marker, in different developmental stages of embryos and newborn fry of the barred splitfin Chapalichthys encaustus, a viviparous freshwater teleost endemic to Mexico. In stage 2 embryos, the gonadal crest was established; gonadal primordia were located on the coelomic epithelium, formed by scarce germ and somatic cells. At stage 3, the undifferentiated gonad appeared suspended from the mesentery of the developing swimbladder and contained a larger number of germ and somatic cells. At stages 4 and 5, the gonads had groups of meiotic and non-meiotic germ cells surrounded by somatic cells; meiosis was evident from the presence of synaptonemal complexes. These stages constituted a transition towards differentiation. At stage 6 and at birth, the gonad was morphologically differentiated into an ovary or a testis. Ovarian differentiation was revealed by the presence of follicles containing meiotic oocytes, and testicular differentiation by the development of testicular lobules containing spermatogonia in mitotic arrest, surrounded by Sertoli cells. Nuage, electron-dense material associated with mitochondria, was observed in germ cells at all gonadal stages. The Vasa protein was detected in all of the previously described stages within the germ-cell cytoplasm. This is the first report on morphological characteristics and expression of the Vasa gene during sexual differentiation in viviparous species of the Goodeidae family. Chapalichthys encaustus may serve as a model to study processes of sexual differentiation in viviparous fishes and teleosts.  相似文献   

12.
Germ cell sequestering in Animalia is enlightened by either, launching true germ line along epigenetic or preformistic modes of development, or by somatic embryogenesis, where no true germ line is set aside. The research on germ line-somatic tissue segregation is of special relevancy to colonial organisms like botryllid ascidians that reconstruct, on a weekly basis, completely new sets of male and female gonads in newly formed somatic tissues. By sequencing and evaluating expression patterns of BS-Vasa, the Botryllus schlosseri orthologue of Vasa, in sexually mature and asexual colonies during blastogenesis, we have demonstrated that the BS-Vasa mRNA and protein are not expressed exclusively in germ cell lineages, but appeared in cells repeatedly emerging de novo in the colony, independently of its sexual state. In addition, we recorded an immediate Vasa response to cellular stress (UV irradiation) indicating additional functions to its germ line assignments. To confirm germ lineage exclusivity, we examined the expression of three more stem cell markers (BS-Pl10, Bl-piwi and Oct4). Vasa co-expression with Pl10 and Oct4 was detected in germ line derivatives and with Bl-piwi in somatic tissues. Presumptive primordial germ cells (PGC-like cells), that are Vasa+/Pl10+/Oct4+ and 6-12 μm in diameter, were first detected in wrapped-tail embryos, in oozooids, in sexual/asexual colonies, within a newly identified PGC niche termed as ‘budlet niche’, and in circulating blood borne cells, indicating epigenetic embryogenesis. Alternatively, BS-Vasa co-expression with piwi orthologue, an omnipresent bona fide stemness flag, in non germ line cell populations, may indicate germ cell neogenesis (somatic embryogenesis) in B. schlosseri. Both alternatives are not necessarily mutually exclusive.  相似文献   

13.
Vasa is a widely conserved germline marker, both in vertebrates and invertebrates. We identify a vasa orthologue, Sgvasa, and use it to study germline development in the grasshopper Schistocerca gregaria, a species in which no germ plasm has been identified. In adults, Sgvasa is specifically expressed in the ovary and testis. It is expressed at high levels during early oogenesis, but no detectable vasa RNA and little Vasa protein are present in mature unlaid eggs. None appears to be localized to any defined region of the egg cortex, suggesting that germline specification may not depend on maternal germ plasm expressing vasa. Vasa protein is expressed in most cleavage energids as they reach the egg surface and persists at high levels in most cells aggregating to form the embryonic primordium. However, after gastrulation, Vasa protein persists only in extraembryonic membranes and in cells at the outer margin of the late heart-stage embryo. In the embryo, it then become restricted to cells at the dorsal margin of the forming abdomen. In older embryos, these Vasa-positive cells move toward the midline; Vasa protein accumulates asymmetrically in their cytoplasm, a pattern closely resembling that of germ cells in late embryonic gonads. Thus, we suggest that the Vasa-stained cells in the abdominal margin are germ cells, as proposed by Nelson (1934), and not cardioblasts, as has been proposed by others.  相似文献   

14.
Distinct types of oogonia are found in the germinal epithelium that borders the ovarian lamellae of Pimelodus maculatus: A‐undifferentiated, A‐differentiated and B‐oogonia. This is similar to the situation observed for spermatogonia in the vertebrate testis. The single A‐undifferentiated oogonia divide by mitosis giving rise to A‐groups of single differentiated oogonia, each enclosed by epithelial cells that are prefollicle cells. Subsequently, the single A‐differentiated oogonia proliferate to generate B‐oogonia that are interconnected by cytoplasmic bridges, hence, forming germline cysts. The prefollicle cells associated with them also divide. Within the germline cysts, B‐oogonia enter meiosis becoming oocytes. Meiotic prophase and early folliculogenesis occur within the germline cysts. During folliculogenesis, prefollicle cells grow between the oocytes, encompassing and individualizing each of them. The intercellular bridges disappear, and the germline cysts are broken down. Next, a basement membrane begins to form around the nascent follicle, separating an oocyte and its associated prefollicle cells from the cell nest. Folliculogenesis is completed when the oocyte and the now follicle cells are totally encompassed by a basement membrane. Cells derived from the ovarian stroma encompass the newly‐formed ovarian follicle, and become the theca, thereby completing the formation of the follicle complex. Follicle complexes remain attached to the germinal epithelium as they share a portion of basement membrane. This attachment site is where the oocyte is released during ovulation. The postovulatory follicle complex is continuous with the germinal epithelium as both are supported by a continuous basement membrane. The findings in P. maculatus reinforce the hypothesis that ovarian follicle formation represents a conserved process throughout vertebrate evolution. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
Germ cells of diverse animal species have a unique membrane-less organelle called germ plasm (GP). GP is usually associated with mitochondria and contains RNA binding proteins and mRNAs of germ genes such as vasa. GP has been described as the mitochondrial cloud (MC), intermitochondrial cement (IC) and chromatoid body (CB). The mechanism underlying varying GP structures has remained incompletely understood. Here we report the analysis of GP through light and electron microscopy by using Vasa as a marker in adult male germ cells of the fish medaka (Oryzias latipes). Immunofluorescence light microscopy revealed germ cell-specific Vasa expression. Vasa is the most abundant in mitotic germ cells (oogonia and spermatogonia) and reduced in meiotic germ cells. Vasa in round spermatids exist as a spherical structure reminiscent of CB. Nanogold immunoelectron microscopy revealed subcellular Vasa redistribution in male germ cells. Vasa in spermatogonia concentrates in small areas of the cytoplasm and is surrounded by mitochondria, which is reminiscent of MC. Vasa is intermixed with mitochondria to form IC in primary spermatocytes, appears as the free cement (FC) via separation from mitochondria in secondary spermatocyte and becomes condensed in CB at the caudal pole of round spermatids. During spermatid morphogenesis, Vasa redistributes and forms a second CB that is a ring-like structure surrounding the dense fiber of the flagellum in the midpiece. These structures resemble those described for GP in various species. Thus, Vasa identifies GP and adopts varying structures via dynamic reorganization at different stages of germ cell development.  相似文献   

16.
Saito Y 《Zoological science》2003,20(5):581-589
Xenogeneic rejection was observed among colonies of three botryllids, Botryllus scalaris, Botryllus primigenus, and Botrylloides simodensis. Allogeneic recognition occurs in each of these species, but the manner of allogeneic rejection differs among them. We studied xenogeneic rejection reactions among these species under the following conditions: colony contact at natural growing edges, colony contact at artificially cut surfaces, and injection of xenogeneic blood plasma into a vascular vessel. In the first two cases, xenogeneic rejection occurred only in Botryllus primigenus and Botrylloides simodensis. The features of that xenogeneic rejection were similar to those of allogeneic rejection in each of these two botryllids. Injection of xenogeneic blood plasma induced responses similar to those of allogeneic rejection in all three botryllids. It is interesting to note that colonies of Botryllus scalaris never showed any response against injected blood plasma from allogeneic incompatible colonies, unlike the responses seen in colonies of the other two botryllids under the same conditions. On the basis of these results, the relationship between allogeneic and xenogeneic rejection in botryllids is discussed.  相似文献   

17.
18.
19.
As components of the 42S storage particles (thesaurisomes), thesaurin a and thesaurin b are involved in the long-term storage of tRNA and 5S RNA in previtellogenic oocytes of Xenopus laevis. Thesaurin a and thesaurin b are among the most abundant proteins in previtellogenic oocytes. We show here that the mRNAs encoding thesaurin a and thesaurin b are present not only in previtellogenic oocytes but also in pre-meiotic germ cells (oogonia). These mRNAs can also be detected in spermatogonia and early spermatocytes, and are translated into protein in testis, as they are in ovary. We conclude that male germ cells mimic female germ cells in several aspects of gene activity related to RNA accumulation and metabolism.  相似文献   

20.
DNA-synthesizing cells in the gonads of the ascidian Styela clava were labeled with tritiated thymidine and detected with autoradiography. In the testis, spermatogonia and primary spermatocytes are labeled after 1 hr. Labeled spermatozoa occur in the lumen of the testis follicles after 10 days and in the sperm ducts after 20 days. In the ovary, only germ cells (oogonia and pre-leptotene primary oocytes) and follicle cells are labeled after 1 hr. By 60 days, oocytes with basophilic cytoplasm (15–65 μ in diameter) are labeled; test cells embedded in larger eosinophilic oocytes (150 μ in diameter) are also labeled. Germ cells give rise to both oocytes and follicle cells. Through continued cell division, follicle cells give rise to test cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号