首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the colonial tunicate, Botryllus primigenus Oka, gonads consist of indifferent germline precursor cells, the primordial testis and ovary, and mature gonads, of which the immature gonad components can be reconstructed de novo in vascular buds that arise from the common vascular system, although the mechanism is uncertain. In this study, we investigated how and what kinds of cells regenerated the gonad components. We found that few Vasa-positive cells in the hemocoel entered the growing vascular bud, where their number increased, and finally developed exclusively into female germ cells. Simultaneously, small cell aggregates consisting of Vasa(-) and Vasa(±) cells appeared de novo in the lateral body cavity of developing vascular buds. Double fluorescent in situ hybridization showed that these cell aggregates were both Piwi- and Myc-positive. They could form germline precursor cells and a primordial testis and ovary that strongly expressed Vasa. Myc knockdown by RNA interference conspicuously lowered Piwi expression and resulted in the loss of germline precursor cells without affecting Vasa(+) oocyte formation. Myc may contribute to gonad tissue formation via Piwi maintenance. When human recombinant BMP 4 was injected in the test vessel, coelomic Piwi(+) cells were induced to express Vasa in the blood. We conclude, therefore, that in vascular buds of B. primigenus, female germ cells can develop from homing Vasa(+) cells in the blood, and that other gonad components can arise from coelomic Vasa(-)/Piwi(+)/Myc(+) cells.  相似文献   

2.
A recent study has shown that in the budding tunicate Polyandrocarpa misakiensis, the mitochondrial respiratory chain (MRC) dramatically attenuates the gene activity during senescence. In this study, we examined the possible involvement of superoxide dismutase (SOD) in the attenuation of gene expression of cytochrome c oxidase subunit 1 (COX1) in aged zooids. By RT‐PCR and in situ hybridization, Cu/Zn‐SOD (SOD1) was found to be expressed in most cells and tissues of buds and juvenile zooids but showed a conspicuous decline in senescent adult zooids, except in the gonad tissue in which the cytoplasm of juvenile oocytes was stained heavily. This expression pattern of SOD1 was similar to that of COX1. In contrast to SOD1, Mn‐SOD (SOD2) was expressed constitutively in both somatic and germline tissues of buds, juvenile zooids, and senescent adult zooids. Knockdown of SOD1 by RNAi diminished the gene activity of not only SOD1 but also of COX1. The resultant zooids had transient deficiencies in growth and budding, and they recovered from these deficiencies approximately 1 month later. Our results indicate that in Pmisakiensis, SOD1 is a senescence‐associated nuclear gene and that the experimental decline in SOD1 gene expression accompanies the attenuation of MRC gene activity. Although it is uncertain how SOD1 is downregulated during tunicate senescence, the decreased SOD1 activity could be one of the main causes of MRC gene attenuation during normal senescence.  相似文献   

3.
4.
The postembryonic development of the gonad in the hermaphroditic appendicularian O. gracilis was studied using transmission electron microscopy. The primordial germ cells were detected first in 10-h-old larvae and represent migrating primordial germ syncytium (mPGS) localized in the hemocoel of the tail/trunk junction and several haemocoel areas of the digestive compartment. The mPGS consisted of primordial germ nuclei (PGN) 2 μm in diameter, and elongate somatic-line nuclei 1.8 μm in diameter. In 12.5-h-old juveniles the gonad primordium 40 × 90 μm in size, was separated by a narrow space of haemocoel between the gut and the epidermis of the reproductive compartment. The gonad primordium consisted of the central syncytial part of primordial germ nuclei (PGN), enclosing a single layer of somatic epithelium. In 3-day-old juveniles, the gonad was differentiated into testis and ovary. The testis, 400 × 550 μm in size, is a syncytium of spermatogonial nuclei, covered by a single layer of somatic epithelium. The ovaries, 350 × 850 μm in size, consist of a syncytium with nurse nuclei and meiotic nuclei. The hermaphroditic gonad originates from extragonadal mPGS. Early gonadogenesis in appendicularians has ultrastructural features in common with early gonadogenesis in ascidians.  相似文献   

5.

Background  

As many invertebrate species have multipotent cells that undergo cell growth and differentiation during regeneration and budding, many unique and interesting homeostatic factors are expected to exist in those animals. However, our understanding of such factors and global mechanisms remains very poor. Single zooids of the tunicate, Polyandrocarpa misakiensis, can give off as many as 40 buds during the life span. Bud development proceeds by means of transdifferentiation of very limited number of cells and tissues. TC14-3 is one of several different but closely related polypeptides isolated from P. misakiensis. It acts as a cytostatic factor that regulates proliferation, adhesion, and differentiation of multipotent cells, although the molecular mechanism remains uncertain. The Polycomb group (PcG) genes are involved in epigenetic control of genomic activity in mammals. In invertebrates except Drosophila, PcG and histone methylation have not been studied so extensively, and genome-wide gene regulation is poorly understood.  相似文献   

6.
7.
The organization of the body cavities is an important morphological trait that can be used for establishing the phylogenetic relationships between different groups of animals. In the present study, the hemocoel and coelomic systems of 10‐hr‐old juveniles and adults of the hermaphroditic oikopleurid Oikopleura gracilis were examined using light and transmission electron microscopy. The trunk hemocoel in 10‐hr‐old juveniles was represented by small clefts containing layers of extracellular matrix of adjacent tissues or interstices with migrating primordial germ syncytium. The wide hemocoel in the tail contained extracellular strands, subdividing the hemocoel into hemal sinuses. In adults, a large hemocoel appeared in the trunk and tail, and also contained extracellular strands. The hermaphroditic gonad was surrounded by its own lining, separating it from the hemocoel. The gamete‐filled cavity in the ovary and testis appeared only at late‐stage gonadogenesis, when the pre‐spawning reduction of syncytium occurred in the gonads. The true coelom in 10‐hr‐old juveniles and adults was represented by the pericardium. The lining of the pericardium consisted of myoepithelial and peritoneal cells. In the myoepithelial cells of 10‐hr‐old juveniles, myofibrils had been formed. The myoepithelial cells of adults had several parallel rows of completely differentiated myofibrils. The substantial reduction of the coelomic and circulatory systems in O. gracilis evidently results from the extreme shortening of ontogeny in appendicularians. Development in O. gracilis from early juvenile to adult involves the following steps, which also suggest how the tunicate heart may have evolved: a single‐layered coelomic sac gives rise to a grooved pericardium with an open hemal sinus (simple heart). In ascidians, this simple heart in turn gives rise to a closed tubular, double‐layered heart–pericardial complex, with a separate pericardial cavity and a closed heart, whose wall is formed by specialized myocardium.  相似文献   

8.
The objective of this study was to investigate the optimal developmental time to perform sex reversal in Ussuri catfish Tachysurus ussuriensis, to develop monosex breeding in aquaculture. Systematic observations of gonadal sex differentiation of P. ussiriensis were conducted. The genital ridge formed at 9 days post fertilization (dpf) and germ cells begin to proliferate at 17 dpf. The ovarian cavity began forming on 21 dpf and completed by 25 dpf while presumptive testis remained quiescent. The primary oocytes were at the chromatin nucleolus stage by 30 dpf, the peri‐nucleolus stage by 44 dpf and the cortical alveoli stage by 64 dpf. The germinal vesicle migrated towards the animal pole (polarization) at 120 dpf. In presumptive testis, germ cells entered into mitosis and blood vessels appeared in the proximal gonad on 30 dpf. The efferent duct anlage appeared on 36 dpf and formation of seminal lobules with spermatogonia and lobules interstitium occurred at 120 dpf. Therefore, gonadal sex differentiation occurred earlier in females than in males, with the histological differentiation preceding cytologic differentiation in T. ussuriensis. This indicates that undifferentiated gonads directly differentiate into ovary or testis between 17 and 21 dpf and artificial induction of sexual reversal by oral steroid administration must be conducted before 17 dpf.  相似文献   

9.
Evolution of solitary or colonial life histories in tunicates is accompanied by dramatic developmental changes that affect morphology and reproduction. We compared vasa expression in a solitary ascidian and a closely related colonial ascidian, in an effort to uncover developmental mechanisms important during the evolution of these contrasting life histories, including the ability to reproduce by budding. In this study, we explored the origin of germ cells in new buds developing by asexual reproduction in a colonial ascidian, Botrylloides violaceus and compared it to the source of germ cells in a solitary ascidian Boltenia villosa. We studied expression by in situ hybridization of vasa, a DEAD box RNA helicase gene found in germ cells across the metazoans. In B. villosa, bv-vasa mRNA was expressed in putative germ cells and oocytes of adult gonads, and was sequestered into a posterior lineage during embryogenesis. In mature colonies of the ascidian B. violaceus, bot-vasa mRNA was expressed in putative spermatogonia, in oocytes of zooids, and in some circulating cells in the zooids and differentiating buds. We propose that expression of vasa in cells other than gonadal germ cells of zooids in a colonial ascidian may serve as a source of germ-line stem cells in the colony.  相似文献   

10.
The germ cell lineage is first recognized as a population of mitotically proliferating primordial germ cells that migrate toward the gonadal ridge. Shortly after arriving at the gonadal ridge, the germ cells begin to initiate a commitment to gamete production in the developing gonad. The mechanisms controlling this transition are poorly understood. We recently reported that a mouse germ cell nuclear antigen 1 (GCNA1) is initially detected in both male and female germ cells as they reach the gonad at 11.5 days postcoitum (dpc). GCNA1 is continually expressed in germ cells through all stages of gametogenesis until the diplotene/dictyate stage of meiosis I. Since GCNA1 expression commences soon after primordial germ cells arrive at the gonadal ridge, we wanted to determine whether the gonadal environment was essential for induction of GCNA1 expression. By examining GCNA1 expression in germ cells that migrate ectopically into the adrenal gland, we determined that both the gonadal and adrenal gland environments allow GCNA1 expression. We also examined GCNA1 expression in Ftz-F1 null mice, which are born lacking gonads and adrenal glands. During embryonic development in the Ftz-F1 null mice, the gonad and most germ cells undergo apoptotic degeneration at about 12.5 dpc. While most of the germ cells undergo apoptosis without expressing GCNA1, a few surviving germs cells, especially outside the involuting gonad clearly express GCNA1. Thus, although the Ftz-F1 gene is essential for gonadal and adrenal development, induction of GCNA1 expression in germ cells does not require Ftz-F1 gene products. The finding that germ cell GCNA1 expression is not restricted to the gonadal environment and is not dependent on the Ftz-F1 gene products suggests that GCNA1 expression may be initiated in the germ cell lineage by autonomous means. Mol. Reprod. Dev. 48:154–158, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The origin of germ cells in the ascidian is still unknown. Previously, we cloned a vasa homologue (CiVH) of Ciona intestinalis from the cDNA library of ovarian tissue by polymerase chain reaction and showed that its expression was specific to germ cells in adult and juvenile gonads. In the present study, we prepared a monoclonal antibody against CiVH protein and traced the staining for this antibody from the middle tailbud stage to young adulthood. Results showed that positive cells are present in the endodermal strand in middle tailbud embryos and larvae. When the larval tail was absorbed into the trunk during metamorphosis, the CiVH-positive cells migrated from the debris of the tail into the developing gonad rudiment, and appeared to give rise to a primordial germ cell (PGC) in the young juvenile. The testis rudiment separated from the gonad rudiment, the remainder of which differentiated into the ovary. PGCs of the testis rudiment and the ovary rudiment differentiated into spermatogenic and oogenic cells, respectively. When the larval tail containing the antibody-positive cells was removed, the juveniles did not contain any CiVH-positive cells after metamorphosis, indicating that the PGCs in the juvenile originated from part of the larval tail. However, even in such juveniles, positive cells newly appeared in the gonad rudiment at a later stage. This observation suggests that a compensatory mechanism regulates germline formation in C. intestinalis.  相似文献   

12.
Summary The development of the gonad, from hatching through sexual maturity and oviposition, has been studied in Arion ater rufus and Deroceras reticulatum. At hatching, the gonad is comprised of several acini. These acini are hollow structures, the walls of which are generally one or two cell layers thick. This cell layer consists of intermingled germinal and non-germinal cells. Eventually, each acinus is divided into two compartments (cortical and medullar) by a layer of auxiliary cells.The auxiliary cells appear to differentiate into Sertoli and follicle cells. These three non-germinal cell types appear to form an uninterrupted cell barrier that isolates the female germ cells in the cortex from the male germ cells in the medulla. Thus, although these animals are hermaphroditic, the male and female germinal lines differentiate in physiologically isolated compartments.Supported in part by NSF Traineeship Grant GZ-198.1 and NIH Developmental Biology Training Grant, No. 5-T01-HD00266-01.The author extends his thanks to Professors Alan J. Kohn, Edward C. Roosen-Runge, and W. Siang Hsu for their advice, suggestions, and encouragement.  相似文献   

13.
Over the first 4 days of their life, primordial germ cells invade the endoderm, migrate into and through the developing hindgut, and traverse to the genital ridge where they cluster and ultimately inhabit the nascent gonad. Specific signal–receptor combinations between primordial germ cells and their immediate environment establish successful migration and colonization. Here we demonstrate that disruption of a cluster of six genes on murine chromosome 8, as exemplified by the Fused Toes (Ft) mutant mouse model, results in severely decreased numbers of primordial germ cells within the early gonad. Primordial germ cell migration appeared normal within Ft mutant embryos; however, germ cell counts progressively decreased during this time. Although no difference in apoptosis was detected, we report a critical decrease in primordial germ cell proliferation by E12.5. The six genes within the Ft locus include the IrxB cluster (Irx3, -5, -6), Fts, Ftm, and Fto, of which only Ftm, Fto, and Fts are expressed in primordial germ cells of the early gonad. From these studies, we have discovered that the Ft locus on mouse chromosome 8 is associated with cell cycle deficits within the primordial germ cell population that initiates just before translocation into the genital ridge.  相似文献   

14.
15.
In many animals, the germ plasm is sufficient and necessary for primordial germ cell (PGC) formation. It contains germinal granules and abundant mitochondria (germline‐Mt). However, the role of germline‐Mt in germ cell formation remains poorly understood. In Xenopus, the germ plasm is distributed as many small islands at the vegetal pole, which gradually aggregates to form a single large mass in each of the four vegetal pole cells at the early blastula stage. Polymerized microtubules and the adapter protein kinesin are required for the aggregation of germ plasm. However, it remains unknown whether germline‐Mt trafficking is important for the cytoplasmic transport of germinal granules during germ plasm aggregation. In this study, we focused on the mitochondrial small GTPase protein Rhot1 to inhibit mitochondrial trafficking during the germ plasm aggregation. Expression of Rhot1ΔC, which lacks the C‐terminal mitochondrial transmembrane domain, inhibited the aggregation of germline‐Mt during early development. In Rhot1‐inhibited embryos, germinal granule components did not aggregate during cleavage stages, which reduced the number of PGCs on the genital ridge at tail‐bud stage. These results suggest that mitochondrial trafficking is involved in the aggregation of germinal granule components, which are essential for the formation of PGCs.  相似文献   

16.
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells.  相似文献   

17.
Gonad development and sex differentiation from embryos to 594‐day‐old individuals were investigated in farmed Acipenser naccarii using light and transmission electron microscopy. The migrating primordial germ cells first appear along the dorsal wall of the body cavity in embryos 1.5 days before hatching. The gonadal ridge, containing a few primary primordial germ cells (PGC‐1) surrounded by enveloping cells, appears in 16‐day‐old larvae. At 60 days, the undifferentiated gonad is lamellar and PGC‐1 multiply, producing PGC‐2. In 105‐day‐old juveniles, a distinct germinal area with advanced PGC‐2 appears on the lateral side near the mesogonium and the first blood vessels are visible. At 180 days, putative ovaries with a notched gonadal epithelium and putative testes with a smooth one appear, together with adipose tissue on the distal side. In 210‐day‐old juveniles, active proliferation of germ cells begins in the putative ovaries, whereas putative testes still contain only a few germ cells. The onset of meiosis and reorganization of stromal tissue occurs in ovaries of 292‐day‐old individuals. Ovaries with developed lamellae enclosing early oocyte clusters and follicles with perinucleolar oocytes occur at 594 days. Meiotic stages are never found, even in anastomozing tubular testes of 594‐day‐old individuals. Steroid producing cells are detected in the undifferentiated gonad and in the differentiated ones of both sexes. Anatomical differentiation of the gonad precedes cytological differentiation and female differentiation largely precedes that of the male. Gonad development and differentiation are also associated with structural changes of connective tissue, viz. collagen‐rich areas are massive in developing testes and reduced in ovaries. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
The structure of the gonad of the European eel (Anguilla anguilla [L.]), an “undifferentiated” gonochoristic teleost, was investigated by transmission electron microscopy from 6–8 cm elvers to 22 cm yellow eels with juvenile hermaphroditic gonads. The pear-shaped gonads of 6–8 cm elvers assume, in 12–15 cm eels, a lamellar shape and enlarge by migration of germ cells, which we refer to as primary primordial germ cells. In the gonads of ∼ 16 cm eels, the primary primordial germ cells multiply, giving rise to clusters of germ cells that have ultrastructural characteristics of the primary primordial germ cells but show giant mitochondria, enlarged Golgi complexes, and round bodies not limited by membranes. We refer to these as secondary primordial germ cells. In 16–18 cm eels, syncytial clones of oogonia interconnected by cytoplasmic bridges are also observed. In 18–22-cm-long eels, the gonads contain primordial germ cells, oogonial clones, early oocyte cysts, single oocytes in early growth stages, and primary spermatogonia. Such germ cells are present in the same cross section where they are either intermingled or are in areas of predominantly female germ cells close to areas with predominantly male germ cells. These gonads are juvenile hermaphroditic and should be considered ambisexual because in larger eels they differentiate either into an ovary or into a testis. Somatic cells always envelop the germ cells following their migration into the gonad. These somatic cells first show similar ultrastructural features and then differentiate either into early Sertoli cells investing spermatogonia, or into early follicular (granulosa) cells investing the early previtellogenic oocytes. In eels ∼ 14 cm long, primitive steroid-producing cells also migrate into the gonad. In the ambisexual gonad they differentiate either into immature Leydig cells in the male areas, or into early special cells of the theca in the female areas. Nerve fibers are joined to the steroid-producing cells. Gonad development and differentiation are also associated with structural changes of the connective tissue characterized by the progressive appearance and deposition of collagen fibrils first in the mesogonadium, then in the gonad vascular region, and then in the germinal region. The collagen-rich areas are massive in the male areas and reduced in the female ones. J. Morphol. 231:195–216, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Gonadal differentiation in premetamorphic Bombina orientalis is described and staged. The pattern of events during differentiation in Bombina differs in several respects from that previously described in other anurans. The Bombina gonad initially develops on the ventral surface of the vena cava, where there is no pre-existent somatic genital ridge prior to the arrival of the germ cells. The sexually undifferentiated gonad does not have a distinct cortex and medulla; instead, medullary cells ingress from the mesonephric blastema during sexual differentiation. Formation of a testis or an ovary appears to depend on the ability (or lack of ability) of the medulla to invade the germ cell-containing cortex. In the germ line, sexual differetiation can be recognized by a premeiotic increase in oogonial cell volume.  相似文献   

20.
Testis cords of Triturus pyrrhogaster were cultivated in vitro on (a) medium with chick embryo extract and calf serum, (b) medium with newt gonad extract, (c) Trowell 's medium T8 and (d) liquid synthetic medium 199. Of the four media utilized, medium 199 gave the best result for long-term maintenance of the normal histological structures of the testis cords. Addition of insulin (5 μ/ml) to medium 199 resulted in a remarkable improvement for the maintenance of the testis cord and the migration of columnar cells of the peritoneal epithelium into the primordial germinal tissue occurred as in the intact testis of this animal. Trowell 's medium T8 was proved inadequate. Medium with chick embryo extract and calf serum retained most of the germ cells healthy but caused gradual decrease in height of the columnar cells. Testis cords cultivated on the same medium in combination with Xenopus testis maintained normal histological structure for 18 days, whereas, those kept in contact with Xenopus ovary showed involution within the same period. Newt testis extract brought about transformation of somatic elements of the germinal tissue into fibroblastlike cells which was followed by the disintegration of germ cells. Ovary extract did not cause selective destruction on the somatic or germinal elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号