首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
Time-dependent expression of functional proteins in fetal ovaries is important to understand the developmental process of the ovary. This study was carried out to enhance our understanding of the developmental process of porcine fetal ovaries and to better address the differences in fetal ovary development of local and foreign pigs. The objective of the present study is to test the expression of key proteins that regulate the growth and development of fetal ovaries in Meishan and Yorkshire porcine breeds by using proteomics technology. Six Meishan and 6 Yorkshire pregnant gilts were used in this experiment. Fetal ovaries were obtained from Yorkshire and Meishan gilts on days 55 and 90 of the gestation period. Using 2D-DIGE (two dimensional-difference in gel electrophoresis) analysis, the results showed that there are about 1551 and 1400 proteins in gilt fetal ovaries on days 55 and 90, respectively of the gestation. Using MALDI TOF-TOF MS analysis, 27 differentially expressed proteins were identified in the fetal ovaries of the 2 breeds on day 55 of gestation, and a total of 18 proteins were identified on day 90 of gestation. These differentially expressed proteins were involved in the regulation of biological processes (cell death, stress response, cytoskeletal proteins) and molecular functions (enzyme regulator activity). We also found that alpha-1-antitrypsin, actin, vimentin, and PP2A proteins promote the formation of primordial follicles in the ovaries of Yorkshire pigs on day 55 of gestation while low expression heat shock proteins and high expression alpha-fetoproteins (AFP) may promote Meishan fetal ovarian follicular development on day 90 of gestation. These findings provide a deeper understanding of how reduced expression of heat shock proteins and increased expression of AFP can significantly reduce the risk of reproductive disease in obese Meishan sows. Our study also shows how these proteins can increase the ovulation rate and may be responsible for the low reproductive efficiency reported in other obese breeds. The ovarian developmental potential was found to be greater in Meishan pigs than in Yorkshire pigs.  相似文献   

2.
Partitioning-defective proteins (PAR) are detected to express mainly in the cytoplast, and play an important role in cell polarity. However, we showed here that PAR6, one kind of PAR protein, was localized in the nuclei of mouse oocytes that formed primordial follicles during the perinatal period, suggesting a new role of PAR protein. It is the first time we found that, in mouse fetal ovaries, PAR6 appeared in somatic cell cytoplasm and fell weak when somatic cells invaded germ cell cysts at 17.5 days post coitus (dpc). Meanwhile, the expression of PAR6 was observed in cysts, and became strong in the nuclei of some germ cells at 19.5 dpc and all primordial follicular oocytes at 3 day post parturition (dpp), and then obviously declined when the primordial follicles entered the folliculogenic growth phase. During the primordial follicle pool foundation, the number of PAR6 positive germ cells remained steady and was consistent with that of formed follicles at 3 dpp. There were no TUNEL (apoptosis examination) positive germ cells stained with PAR6 at any time studied. The number of follicles significantly declined when 15.5 dpc ovaries were treated with the anti-PAR6 antibody and PAR6 RNA interference. Carbenoxolone (CBX, a known blocker of gap junctions) inhibited the expression of PAR6 in germ cells and the formation of follicles. Our results suggest that PAR6 could be used as a potential marker of germ cells for the primordial follicle formation, and the expression of PAR6 by a gap junction-dependent process may contribute to the formation of primordial follicles and the maintenance of oocytes at the diplotene stage.  相似文献   

3.
ABSTRACT: BACKGROUND: Follicle numbers and developing ovarian morphology, particularly with reference to the presence of interstitial tissue, are intimately linked within the ovary of the African elephant during the period spanning mid-gestation to puberty. These have not been previously quantified in any studies. The collection of 7 sets of elephant fetal ovaries between 11.2 and 20.2 months of gestation, and 29 pairs of prepubertal calf ovaries between 2 months and 9 years of age during routine management off-takes of complete family groups in private conservancies in Zimbabwe provided an opportunity for a detailed study of this period. RESULTS: The changing morphology of the ovary is described as the presumptive cortex and medulla components of the fetal ovary settled into their adult form. Interstitial tissue dominated the ovary in late fetal life and these cells stained strongly for 3beta-hydroxysteroid dehydrogenase. This staining continued postnatally through to 4.5 years of age suggesting continued secretion of progestagens by the ovary during this period. The considerable growth of antral follicles peaked at 28% of ovarian volume at around 16.7 months of fetal age. The numbers of small follicles (primordial, early primary and true primary), counted in the cortex using stereological protocols, revealed fewer small follicles in the ovaries of animals aged 0 to 4.5 years of age than during either late fetal life or prepubertal life. CONCLUSIONS: The small follicle populations of the late-fetal and prepubertal ovaries of the African elephant were described along with the changing morphology of these organs. The changes noted represent a series of events that have been recorded only in the elephant and the giraffe species to date. The expansion of the interstitial tissue of the fetal ovary and its continued presence in early post natal life may well contribute to the control of follicle development in these early years. Further research is required to determine the reasons behind the variation of numbers of small follicles in the ovaries of prepubertal calves.  相似文献   

4.
Age-related changes in ovarian morphology were studied in female Japanese monkeys,Macaca fuscata fuscata. A total of 47 nonlactating females of various ages ranging from new-born to >28 yr old were used. Ovarian size increased during the first decade of life, reached a plateau at around 10 yr. This was followed by a gradual decline throughout the remaining life span. The ovarian cortex of new-born animals consisted of numerous clusters of mitotic primordial germ cells. Such mitotic germ cells were observed even in the ovary of 28-day-old animal, but were not found in any animal after 1.5 yr of age. Numbers of primordial follicles decreased exponentially with the advance of age, and only a few primordial follicles were observed after about 16 yr of age. The numbers of primary and tertiary follicles increased from ages 4 to 16 yr, with a peak at 8 to 10 yr, and then decreased gradually. Developing tertiary follicles were observed as early as 1.5 yr of age. About 40% of tertiary follicles were atretic follicles throughout life, and their size was similar to that of developing tertiary follicles. Corpora lutea or corpora albicantia were found in ovaries more than 4 yr old. Remnants of corpora lutea and corpora albicantia, together with thick-walled blood vessels and fibrosis, became apparent in ovaries after 16 yr, and were observed characteristically in ovaries over 26 yr of age. There was no significant difference in the number or in the size of tertiary follicles between the breeding and nonbreeding seasons.  相似文献   

5.
Mammalian females enter puberty with follicular reserves that exceed the number needed for ovulation during a single lifetime. Follicular depletion occurs throughout reproductive life and ends in menopause, or reproductive senescence, when the follicle pool is exhausted. The mechanisms regulating the production of a species-specific initial follicle pool are not well understood. However, the establishment of a follicular reserve is critical to defining the length of reproductive cyclicity. Here we show that activin A (rh-ActA), a known regulator of follicle formation and growth in vitro, increased the number of postnatal mouse primordial follicles by 30% when administered to neonatal animals during the time of germline cyst breakdown and follicle assembly. This expansion in the initial follicle pool was characterized by a significant increase in both germ cell and granulosa cell proliferation. However, the excess follicles formed shortly after birth did not persist into puberty and both adult rh-ActA- and vehicle-treated animals demonstrated normal fertility. A follicle atresia kinetic constant (k(A)) was modeled for the two groups of animals, and consistent with the empirical data, the k(A) for rh-ActA-treated was twice that of vehicle-treated animals. Kinetic constants for follicle formation, follicle loss and follicle expansion from birth to postnatal day 19 were also derived for vehicle and rh-ActA treatment conditions. Importantly, introduction of exogenous rh-ActA revealed an intrinsic ovarian quorum sensing mechanism that controls the number of follicles available at puberty. We propose that there is an optimal number of oocytes present at puberty, and when the follicle number is exceeded, it occurs at the expense of oocyte quality. The proposed mechanism provides a means by which the ovary eliminates excess follicles containing oocytes of poor quality prior to puberty, thus maintaining fertility in the face of abnormal hormonal stimuli in the prepubertal period.  相似文献   

6.
Mouse oocyte development in vitro has been studied in the past several years, but no evidence showed that the fertilizable oocytes could be obtained from the fetal mouse germ cells before the formation of the primordial follicles. In this study, an efficient and simple method has been established to obtain the mature oocytes from the fetal mouse germ cells at 16.5 days post-coitum (dpc). For the initial of follicular formation, fetal mouse 16.5 dpc ovaries were transplanted to the recipient under the kidney capsule, and the ovaries were recovered after 14 days. Subsequently, the growing preantral follicles in the ovarian grafts were isolated and cultured in vitro for 12 days. Practically, the mature oocytes ovulated from the antral follicles were able to be fertilized in vitro and support the embryonic development. The results demonstrate that the fetal mouse 16.5 dpc germ cells are able to form primordial follicles with the ovarian pregranulosa cells during the period of transplantation in the ectopic site, and the oocytes within the growing follicles are able to mature in vitro, then are able to support the embryonic development.  相似文献   

7.
8.
Summary Sympathetic neurotransmitters have been shown to be present in the ovary of the rat during early postnatal development and to affect steroidogenesis before the ovary becomes responsive to gonadotropins, and before the first primordial follicles are formed. This study was undertaken to determine if development of the ovarian innervation is an event that antedates the initiation of folliculogenesis in the rat, Rattus norvegicus. Serial sections of postnatal ovaries revealed a negligible frequency of follicles 24 h after birth (about 1 primordial follicle per ovary). Twelve hours later there were about 500 follicles per ovary, a number that more than doubled to about 1300 during the subsequent 12 h, indicating that an explosive period of follicular differentiation occurs between the end of postnatal days 1 and 2. Electron microscopy demonstrated that before birth the ovaries are already innervated by fibers containing clear and dense-core vesicles. Immunohistochemistry performed on either fetal (day 19) or newborn (less than 15h after birth) ovaries showed the presence of catecholaminergic nerves, identified by their content of immunoreactive tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. While some of these fibers innervate blood vessels, others are associated with primordial ovarian cells, thereby suggesting their participation in non-vascular functions. Since prefollicular ovaries are insensitive to gonadotropins, the results suggest that the developing ovary becomes subjected to direct neurogenic influences before it acquires responsiveness to gonadotropins.  相似文献   

9.
During mammalian ovary formation, the production of ovarian follicles is accompanied by an enormous loss of germ cells. It is not known how this loss is regulated. We have investigated the role of the Trk tyrosine kinase receptors, primarily TrkB, in this process. The ovaries of TrkB-/- and TrkC-/- mice with a mixed (129Sv x C57BL/6) genetic background were examined shortly after birth. Around 50% of TrkB-/- mice had grossly abnormal ovaries that contained greatly reduced numbers of follicles. No defects were found in the ovaries of TrkC-/- mice. Congenic TrkB-/- mice were generated on 129Sv and C57BL/6 backgrounds: whereas the former had a mixed ovarian phenotype similar to that of the original colony of mice, the ovaries of all offspring of the C57BL/6 congenic line contained reduced numbers of follicles. RT-PCR showed that mRNA encoding TrkB and its two ligands, neurotrophin 4 (NT4) and brain-derived neurotrophic factor (BDNF), were present throughout the period of follicle formation in the mouse. In situ hybridisation showed that TrkB was expressed primarily in the germ cells before and after follicle formation. Mouse neonatal and fetal ovaries and human fetal ovaries were cultured in the presence of K252a, a potent inhibitor of all Trk receptors. In mice, K252a inhibited the survival of germ cells in newly formed (primordial) follicles. This effect was rescued by the addition of basic fibroblast growth factor (bFGF) to the culture medium. Combined addition of both BDNF and NT4 blocking antibodies lowered germ-cell survival, indicating that these TrkB ligands are required in this process. The results indicate that signalling through TrkB is an important component of the mechanism that regulates the early survival of female germ cells.  相似文献   

10.
The vertebrate ovary is an extremely dynamic organ in which excessive or defective follicles are rapidly and effectively eliminated early in ontogeny and thereafter continuously throughout reproductive life. More than 99% of follicles disappear, primarily due to apoptosis of granulosa cells, and only a minute fraction of the surviving follicles successfully complete the path to ovulation. The balance between signals for cell death and survival determines the destiny of the follicles. An abnormally high rate of cell death followed by atresia can negatively affect fertility and eventually lead irreversibly to premature ovarian failure. In this review we provide a short overview of the role of programmed cell death in prenatal differentiation of the primordial germ cells and in postnatal folliculogenesis. We also discuss the issue of neo-oogenesis. Next, we highlight molecules involved in regulation of granulosa cell apoptosis. We further discuss the potential use of scores for apoptosis in granulosa cells and characteristics of follicular fluid as prognostic markers for predicting the outcome of assisted reproduction. Potential therapeutic strategies for combating premature ovarian failure are also addressed.  相似文献   

11.
In cattle and other species in which the pool of resting, primordial follicles is formed during fetal life, little is known about the regulation of the early stages of ovarian follicular development. We used histological morphometry and a combination of observations in vivo and experiments in vitro to study the timing and regulation of follicle formation and the acquisition of the capacity of primordial follicles to initiate growth in cattle. In vivo, primordial, primary, and secondary follicles were first observed around Days 90, 140, and 210 of gestation, respectively. The long interval between the first appearance of primordial and primary follicles suggests that primordial follicles are not capable of activating when they are first formed, or they are inhibited from activating. This hypothesis was confirmed by the finding that most primordial follicles in pieces of ovarian cortex obtained from fetal ovaries older than 140 days activated (i.e., initiated growth) after 2 days in vitro, whereas follicles in cortical pieces from 90- to 140-day-old fetal ovaries did not. We tested the hypothesis that the oocytes of newly formed primordial follicles are not in meiotic arrest and found that before Day 141, most oocytes ( approximately 73%) were in prediplotene stages of prophase I, whereas after Day 140, the majority of oocytes ( approximately 85%) had arrested at the diplotene stage. This observation was further confirmed by the finding that levels of mRNA for YBX2, a protein associated with meiotic arrest, were 2.3 times higher in ovarian cortical pieces isolated after versus before Day 141. Primordial follicles in cortical pieces from 90- to 140-day-old fetal ovaries did activate during a longer, 10-day culture, but activation could be inhibited by adding estradiol or progesterone, but not dihydrotestosterone (all at 10(-6) M). Fetal ovaries secreted estradiol in vitro, and secretion by ovaries from 83 to 140-day-old fetuses declined precipitously ( approximately 30-fold) with age, consistent with the hypothesis that estradiol inhibits activation of newly formed primordial follicles in vivo. In summary, the results show that newly formed primordial follicles do not activate in vivo or within 2 days in vitro and that capacity to activate is correlated with achievement of meiotic arrest by the oocyte and can be inhibited by estradiol, which fetal ovaries actively produce around the time of follicle formation.  相似文献   

12.
Mammalian germ cells proliferate by mitosis and begin meiotic development in fetal ovaries. The aim of this study is to demonstrate the germ cell proliferation and apoptosis, and elucidated some of the key developmental events and stages in Mongolian sheep fetal ovaries. Fourty three pairs of sheep fetal ovaries at days 37-99 of gestation were collected from local slaughterhouse. Studies in histological structure of ovaries and germ cell apoptosis were achieved by employing light microscopy and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL). Following fetal gestation age increasing, three key development events were detected: oogonia fleetly proliferated by mitosis and clustered at days 37-55 of gestation in ovarian cortex forming oogonia nest; the formation of ovigerous cords (OC) and disorganization took place at day 51-81, especially at days 63-66 more OC developed, and more germ cells in OC entered meiosis prophase; subsequently, with the OC disappeared, primordial follicles gradually prevailed from day 73 of gestation. Another observation was germ cells apoptosis and the number of apoptotic germ cells showed a peak from day 58 to day 73 (P<0.05) and germ cells in OC were prone to apoptosis. The study provides evidence about histological feature and germ cells apoptosis in sheep fetal ovaries.  相似文献   

13.
The central thesis is that, while embryonic oocytes originate from extra-ovarian sources, those generated during fetal period and in postnatal life are derived from the ovarian surface epithelium (OSE). With the assistance of immune system-related cells, primitive granulosa and germ cells appear to originate from OSE stem cells in the fetal and adult human gonads. Fetal primary follicles are formed during the second trimester of intrauterine life, prior to the end of immune adaptation, possibly in order to be recognized as self and renewed later. With the onset of menarche, a periodical follicular renewal emerges to replace aging primary follicles and ensure that fresh eggs are always available during the prime reproductive period. The periodical follicular renewal ceases between 35-40 years of age, and the remaining primary follicles are utilized during the premenopausal period until exhausted. However, the persisting oocytes accumulate genetic alterations and may become unsuitable for ovulation and fertilization. Premature ovarian failure (POF) may result from premature termination of follicular renewal during adulthood, possibly due to the alteration of fetal follicular development during immune adaptation (idiopathic POF), or due to the alteration of the adult immune system by cytostatic chemotherapy. Factors responsible for the diminution of follicular renewal may be responsible for the aging of other tissues and the whole body in general. However, our recent research shows that OSE stem cells may produce new eggs in vitro, even when derived from ovaries lacking primary follicles. Consequently, their in vitro fertilization (IVF) and subsequent utilization of embryos for intrauterine implantation may represent a novel IVF approach for providing genetically related children to women with ovarian infertility, which is worthy of consideration and further exploration.  相似文献   

14.
The mechanism of development of the ovarian follicles has been largely unknown. We performed an immunohistochemical (IHC) study to determine the follicular expressions of c-kit, SCF, and inhibin-alpha at different developmental stages in mouse ovary. Ovaries were obtained from 14 and 16 days post coitum and 2, 7, and 21 days post partum (dpp) mice. IHC for c-kit, SCF, and inhibin-alpha was carried out. c-Kit and SCF were expressed on oogonia regardless of the developmental stage. Immunoreactive c-kit and SCF antigens were expressed on oocytes of primordial and primary follicles of neonate mouse ovaries. In 21 dpp mouse ovary, the expression of c-kit/SCF in oocytes gradually decreased as the follicles developed. c-Kit/SCF was expressed strongly in oocytes of preantral follicles and weakly in granulosa and thecal cells. Inhibin-alpha was mainly expressed on granulosa cells of preantral and early antral follicles of the 21 dpp mouse ovaries. These findings suggest that the IHC expression of c-kit/SCF proteins is specific in all developmental stages of ovarian follicles and is decreased after the follicle starts to grow. The expression of inhibin-alpha is negatively correlated with the expression of c-kit/SCF in the ovarian follicles in mice.  相似文献   

15.
The c-kit proto-oncogene encodes a transmembrane tyrosine kinase receptor and was shown to be allelic with the white-spotting locus (W) of the mouse. Mutations at the W locus have pleiotropic effects on the development of hematopoietic stem cells, melanoblasts, and primordial germ cells. In order to elucidate the role of c-kit protein in gametogenesis and oocyte maturation, we have examined immunohistochemically the expression of c-kit in the ovaries of mice at late fetal and postnatal stages, and in early embryos. By the avidin-biotin-peroxidase (ABC) method using rat anti-mouse c-kit monoclonal antibody, the c-kit protein was detected in ovaries after the time of birth, but not before. The expression of c-kit was observed mainly on the surface of oocytes, but not in granulosa cells nor in interstitial regions. Oocytes of primordial to fully grown Graafian follicles showed the c-kit protein. When ovulation was induced by hCG, the expression of c-kit in ovulated unfertilized oocytes was weaker than in oocytes of Graafian follicles. In 1-cell embryos the c-kit protein was still observed, but with cell division its expression further decreased, and it was not detected in embryos of 4-cell, 8-cell, and morula stages. In summary, the highest expression of c-kit was observed on the surface of oocytes arrested in the diplotene stage of meiotic prophase. With ovulation and the resumption of meiotic maturation, its expression declined. These results suggest that the c-kit protein may play some role in meiotic arrest, oocyte growth, and oocyte maturation.  相似文献   

16.
Ovarian development in Meishan pigs   总被引:2,自引:0,他引:2  
Ovaries collected from a total of 35 Meishan gilts of various ages were morphologically and histologically examined. Vesicular follicles were first observed in ovarian sections at 45 d of age. Simultaneously, protruding follicles appeared on the surface of the ovaries, and then ovarian weight increased rapidly with an increasing number of protruding follicles. About half of the gilts between 75 and 90 d of age had ovaries with corpora lutea, indicating that some of them had started estrous cycles before reaching 75 d of age. In Meishan gilts treated with exogenous gonadotropins, ovaries were stimulated as early as 45 d of age. These results suggest that the precocity of Meishan gilts may include the development of vesicular follicles in the ovaries at an early age.  相似文献   

17.
Total follicular populations in ewes of high and low ovulation rates.   总被引:1,自引:0,他引:1  
The total ovarian follicular populations were studied in two breeds of ewes which differed greatly in their ovulation rates. Thus 8 Romanov (mean ovulation rate 3.1) and 12 Ile-de-France ewes (mean ovulation rate 1.4) were ovariectomized at oestrus during the breeding season. Each right ovary and 3 left ovaries were sectioned at 7 micron and examined microscopically. The number of small follicles, i.e. with 2 or less layers of granulosa cells, was estimated by a tested sampling procedure whilst all larger follicles were measured and arranged into classes. There were half as many small follicles but 1.5--2 times more large follicles in the ovaries of the Romanov ewes compared to those of the Ile-de-France ewes. The number of atretic follicles was approximately the same in both breeds and does not explain the difference observed in ovulation rate. It is concluded that the higher ovulation rate in the Romanov ewe is due to the greater number of large follicles available to be stimulated for ovulation.  相似文献   

18.
An experiment was conducted to test effects of prenatal and postnatal fraternity size (size of litter in which an individual develops prenatally or is reared postnatally) on ovarian development in mice. Fraternity size treatments were created by standardizing sizes of prenatal and postnatal fraternities in which mice were gestated and reared. Prenatal fraternity size was standardized by surgery on Day 9 of gestation to 6, 10, and 14 fetuses. Postnatal fraternity size was standardized by randomly assigning pups to litters of 5, 10, or 15 pups within 24 h of birth. Female pups were killed at either 3 or 20 wk of age and right ovaries were prepared for histology. Follicles were classified by size and morphology, and numbers of follicles in each class were tabulated. Interaction of postnatal fraternity size and age was observed for number of antral follicles (p less than 0.05). Mice reared in small postnatal fraternities had more antral follicles at weaning (3 wk) and fewer antral follicles at maturity (20 wk of age) than mice reared in large postnatal fraternities. No effect of either prenatal or postnatal fraternity size on other follicle populations was observed (p greater than 0.20). Numbers of Type 2 (primordial), Type 3a, and Type 3b follicles changed with age (p less than 0.01); numbers of primordial follicles declined with age, but numbers of Type 3a and 3b follicles increased. A hypothesis of a negative association between postnatal fraternity size and number of antral follicles at 3 wk of age was supported, but a hypothesis of a positive association between fraternity size and number of primordial follicles was not supported.  相似文献   

19.
Oogenesis in fetal pig ovaries comprises the successive changes from the primordial germ cells to the dictyotene oocytes in primordial ovarian follicles. In this study the observations were carried out with an electron microscope and stereological analysis was performed. At the ultrastructural level there are no differences between the primordial germ cells and oogonia, but oogonia are connected with the intercellular bridges. The onset of the dictyotene phase was accompanied by the changes in the cytoplasm of oocytes. Near the nucleus, the yolk nucleus is formed containing numerous Golgi bodies, endoplasmic reticulum (ER), mitochondria and granules. ER proliferates in contact with the external leaflet of the nuclear envelope forming the narrow ER cisterns. Between the nuclear envelope and ER cisterns, the vesicles with grey content are visible. The proliferating ER forms numerous concentric cisterns around the nucleus. Next, the most external cisterns fragment, detach, and then form the cup-like structures. These structures separate the distinct areas of cytoplasm-compartments, which contain mitochondria, ribosomes and lipid droplets. The cells of cortical sex cords of the ovary, which encloses the oocyte, form the follicles. The volume of oocytes in forming follicle increases due to the increase in the number of the cell inclusions: lipid droplets, vacuoles and yolk globules. In the oocytes of primordial ovarian follicles, the compartments are transformed into the yolk globules, which are encountered by a sheath of ER cisterns and the grey vesicles; they contain the mitochondria, lipid droplets and light vacuoles. The role of the compartments and yolk globules as metabolic units is discussed in comparison with similar structures of the mature eggs of pigs and other mammal species.  相似文献   

20.
Xu B  Hua J  Zhang Y  Jiang X  Zhang H  Ma T  Zheng W  Sun R  Shen W  Sha J  Cooke HJ  Shi Q 《PloS one》2011,6(1):e16046
Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer granulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号