首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this study is to formulate lyophilized oral sustained release polymeric nanoparticles of nateglinide in order to decrease dosing frequency, minimize side effects, and increase bioavailability. Nateglinide-loaded poly Ɛ-caprolactone nanoparticles were prepared by emulsion solvent evaporation with ultrasonication technique and subjected to various studies for characterization including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, photon correlation spectroscopy and evaluated for in vitro drug release and pharmacodynamic studies. The influence of increase in polymer concentration, ultrasonication time, and solvent evaporation rate on nanoparticle properties was investigated. The formulations were optimized based on the above characterization, and the formulation using 5% polymer, 3-min sonication time, and rota-evaporated was found to have the best drug entrapment efficiency of 64.09 ± 4.27% and size of 310.40 ± 11.42 nm. Based on SEM, nanoparticles were found to be spherical with a smooth surface. In vitro drug release data showed that nanoparticles sustained the nateglinide release for over 12 h compared to conventional tablets (Glinate 60 mg), and drug release was found to follow Fickian mechanism. In vivo studies showed that nanoparticles prolonged the antidiabetic activity of nateglinide in rats significantly (p ≤ 0.05) compared to the conventional tablets (Glinate 60 mg) over a period of 12 h. Accelerated stability data indicated that there was minimal to no change in drug entrapment efficiency.KEY WORDS: drug encapsulation efficiency, nanoparticles, poly Ɛ-caprolactone (PCL), probe sonication  相似文献   

2.
Cisplatin, first (platinum) compound to be evolved as an anticancer agent, has found its important place in cancer chemotherapy. However, the dose-dependent toxicities of cisplatin, namely nephrotoxicity, ototoxicity, peripheral neuropathy, and gastrointestinal toxicity hinder its widespread use. Liposomes can reduce the toxicity of cisplatin and provide a better therapeutic action, but the low lipid solubility of cisplatin hinders its high entrapment in such lipid carrier. In the present investigation, positively charged reactive aquated species of cisplatin were complexed with negatively charged caprylate ligands, resulting in enhanced interaction of cisplatin with lipid bilayer of liposomes and increase in its encapsulation in liposomal carrier. Prepared cisplatin liposomes were found to have a vesicular size of 107.9 ± 6.2 nm and zeta potential of −3.99 ± 3.45 mV. The optimized liposomal formulation had an encapsulation efficiency of 96.03 ± 1.24% with unprecedented drug loading (0.21 mg cisplatin / mg of lipids). The in vitro release studies exhibited a pH-dependent release of cisplatin from liposomes with highest release (67.55 ± 3.65%) at pH 5.5 indicating that a maximum release would occur inside cancer cells at endolysosomal pH. The prepared liposomes were found to be stable in the serum and showed a low hemolytic potential. In vitro cytotoxicity of cisplatin liposomes on A549 lung cancer cell line was comparable to that of cisplatin solution. The developed formulation also had a significantly higher median lethal dose (LD50) of 23.79 mg/kg than that of the cisplatin solution (12 mg/kg). A promising liposomal formulation of cisplatin has been proposed that can overcome the disadvantages associated with conventional cisplatin therapy and provide a higher safety profile.Key Words: cisplatin, complexation, cytotoxicity, LD50, liposome  相似文献   

3.
To investigate the possibility of liquid proliposomes being carriers for oral delivery, nimodipine liquid proliposomes-based soft capsules (NPSC) were prepared. Nimodipine proliposomes were characterized by transmission electron microscopy (TEM), conversion rate from proliposomes to liposomes, entrapment efficiency, particle size, and zeta potential. Accelerated stability testing of NPSC was carried out for 3 months at 40 ± 2°C, 75 ± 5% RH. The concentration of nimodipine in plasma of New Zealand rabbits of NPSC, nimodipine soft capsules, and hydrated liposomes was studied. Results showed that nimodipine proliposomes were automatically converted into liposomes when exposed to a water phase in 30 s. The average diameter was 378.6 ± 26.5 nm in distilled water with entrapment efficiency (EE%) of 84.7 ± 5.9%, while the average diameter was 316.9 ± 34.6 nm in 0.1 M hydrochloric acid solution with EE% of 72.8 ± 4.7%. Accelerated stability test showed that there was no change in drug content, particle size, and EE% except for a decrease in dissolution of nimodipine. In vivo experiments, areas under the plasma level-time curve of NPSC and nimodipine-hydrated liposomes increased 2.41 and 2.34 times more than that of nimodipine soft capsules, peak concentration increased 2.87 and 2.92 times, time of peak concentration from 0.75 to 2 and 1 h, respectively. Nimodipine-hydrated liposomes presented similar pharmacokinetic parameters compared with NPSC. Results suggested that NPSC offered a potential way to improve oral delivery of nimodipine.Key words: liquid proliposomes, nimodipine, pharmacokinetics, soft capsules, stability  相似文献   

4.
The present study aimed at development of capsular dosage form of surface-adsorbed nanoemulsion (NE) of olmesartan medoxomil (OLM) so as to overcome the limitations associated with handling of liquid NEs without affecting their pharmaceutical efficacy. Selection of oil, surfactant, and cosurfactant for construction of pseudoternary phase diagrams was made on the basis of solubility of drug in these excipients. Rationally selected NE formulations were evaluated for percentage transmittance, viscosity, refractive index, globule size, zeta potential, and polydispersity index (PDI). Formulation (F3) comprising of Capmul MCM® (10% v/v), Tween 80® (11.25% v/v), polyethylene glycol 400 (3.75% v/v), and double-distilled water (75% v/v) displayed highest percentage cumulative drug release (%CDR; 96.69 ± 1.841), least globule size (17.51 ± 5.87 nm), low PDI (0.203 ± 0.032), high zeta potential (−58.93 ± 0.98 mV), and hence was selected as the optimized formulation. F3 was adsorbed over colloidal silicon dioxide (2 ml/400 mg) to produce free-flowing solid surface-adsorbed NE that presented a ready-to-fill capsule composition. Conversion of NE to surface-adsorbed NE and its reconstitution to NE did not affect the in vitro release profile of OLM as the similarity factor with respect to NE was found to be 66% and 73% respectively. The %CDR after 12 h for optimized NE, surface-adsorbed NE, and reconstituted NE was found to be 96.69 ± 0.54, 96.07 ± 1.76, and 94.78 ± 1.57, respectively (p > 0.05). The present study established capsulated surface-adsorbed NE as a viable delivery system with the potential to overcome the handling limitations of NE.KEY WORDS: bioavailability, nanoemulsion, olmesartan medoxomil, oral  相似文献   

5.
The aim was to develop a liposomal oxymatrine conjugating d-alpha tocopheryl polyethylene glycol 1000 succinate (OMT-LIP) for enhanced therapeutics of hepatic fibrosis. OMT-LIP was prepared using the remote loading method. The influences of formulation compositions on the encapsulation efficiency of OMT-LIP were investigated. Mean particle size, zeta potential, morphology, in vitro release, fibrotic liver targeting, and therapeutics of OMT-LIP were thoroughly assessed. The intraliposomal buffer composition and concentration, extraliposomal phase composition and pH, types of phospholipid, lipid molar ratio composition, and theoretical drug loading are crucial factors to entrap OMT into liposomes. The optimum OMT-LIP presented spherically unilamellar microstructures with entrapment efficiency of 79.7 ± 3.9%, mean particle size of 121.6 ± 52.9 nm, and zeta potential of −5.87 mV. OMT-LIP significantly increased the accumulation of OMT in the fibrotic liver with an 11.5-fold greater AUC than OMT solution in the dimethylnitrosamine (DMN)-induced hepatic fibrosis animals. OMT-LIP could be a potential strategy to improve treatment outcomes for hepatic fibrosis, showing the protective effects to mice given CCl4 and the enhanced therapeutics to mice with either DMN or CCl4-induced hepatic fibrosis.KEY WORDS: fibrotic liver targeting, hepatic fibrosis, liposomes, oxymatrine, therapeutics  相似文献   

6.
Frequent instillation of terbinafine hydrochloride (T HCl) eye drops (0.25%, w/v) is necessary to maintain effective aqueous humor concentrations for treatment of fungal keratitis. The current approach aimed at developing potential positively charged controlled-release polymeric nanoparticles (NPs) of T HCl. The estimation of the drug pharmacokinetics in the aqueous humor following ocular instillation of the best-achieved NPs in rabbits was another goal. Eighteen drug-loaded (0.50%, w/v) formulae were fabricated by the nanopreciptation method using Eudragit® RS100 and chitosan (0.25%, 0.5%, and 1%, w/v). Soybean lecithin (1%, w/v) and Pluronic® F68 (0.5%, 1%, and 1.5%, w/v) were incorporated in the alcoholic and aqueous phases, respectively. The NPs were evaluated for particle size, zeta potential, entrapment efficiency percentage (EE%), morphological examination, drug release in simulated tear fluid (pH 7.4), Fourier-transform IR (FT-IR), X-ray diffraction (XRD), physical stability (2 months, 4°C and 25°C), and drug pharmacokinetics in the rabbit aqueous humor relative to an oily drug solution. Spherical, discrete NPs were successfully developed with mean particle size and zeta potential ranging from 73.29 to 320.15 nm and +20.51 to +40.32 mV, respectively. Higher EE% were achieved with Eudragit® RS100-based NPs. The duration of drug release was extended to more than 8 h. FT-IR and XRD revealed compatibility between inactive formulation ingredients and T HCl and permanence of the latter’s crystallinity, respectively. The NPs were physically stable, for at least 2 months, when refrigerated. F5-NP suspension significantly (P < 0.05) increased drug mean residence time and improved its ocular bioavailability; 1.657-fold.Key words: aqueous humor, chitosan, Eudragit® RS100, nanoparticles, terbinafine hydrochloride  相似文献   

7.
The current study aims to develop a stable pH-sensitive drug delivery system. First, cleavable polyethylene glycol-α-tocopherol hemisuccinate (PEG-THS) was synthesized. Conventional pH-sensitive vesicles composed of the Tris salt of α-tocopherol hemisuccinate (THST) were then prepared using the detergent removal technique. The vesicles had a mean particle size of (163.8 ± 5.5) nm and a zeta potential of −74.5 ± 6.4 mV. The THST vesicles were then modified using PEG-THS or uncleavable PEG-cholesterol (PEG-CHOL) (THST/PEG-lipids, 100:6 molar ratio). The mean vesicle particle size and absolute zeta potential decreased with increasing PEG-THS proportion. When the pH was decreased, the vesicle particle size and calcein release rate increased. The THST vesicles were initially Ca2+-unstable but exhibited significantly improved stability after modification with PEG-THS, especially at PEG-lipid ratios above 6%. Incubation in an acid serum increased the calcein release rate of conventional THST vesicles to 45 ± 1.98% at 10 min. However, the release rate of the PEG-CHOL vesicles remained low. The calcein release rate of PEG-THS vesicles was between those of conventional and PEG-CHOL-V. Therefore, PEG-THS can protect vesicles in serum and reconstitute their pH sensitivity in acidic conditions. Cleavable PEG-THS can be used in stable pH-sensitive preparations without loss of pH sensitivity. Free calcein and conventional vesicles eliminated from the plasma soon after injection, as well as the half-life (t1/2) and area under the curve of PEG-THS-V encapsulating calcein, were dramatically increased. This phenomenon indicates that the use of PEG-lipid derivatives has gained a favorably long circulation effect in mice.Key words: cleavage, long circulation, PEG-α-tocopherol hemisuccinate, pH-sensitive, vesicles  相似文献   

8.
Berberine hydrochloride (BH) is an isoquinolin alkaloid with promising anticancer efficacies. Nevertheless, further development and application of this compound had been hampered by its poor aqueous solubility, low gastrointestinal absorption, and rapid metabolism in the body. In this study, a solid lipid nanoparticle (SLN)-based system was developed for efficient incorporation and persistent release of BH. The drug-loading SLNs (BH-loaded SLNs) were stable, with a mean particle size of 81.42 ± 8.48 nm and zeta potential of −28.67 ± 0.71 mV. BH-loaded SLNs showed desirable drug entrapment efficiency and drug-loaded, and the release of BH from SLNs was significantly slower than free BH. Importantly, our in vitro study indicated that BH-loaded SLNs more significantly inhibited cell proliferation on MCF-7, HepG 2, and A549 cancer cells. Meanwhile, clone formation, cellular uptake, cell cycle arrest, and cell apoptosis studies also demonstrated that BH-loaded SLNs enhanced the antitumor efficacies of BH on MCF-7 cancer cells. Taken together, our results suggest that this SLN formulation may serve as a novel, simple, and efficient system for the delivery of BH.KEY WORDS: antitumor evaluation, apoptosis, berberine hydrochloride, solid lipid nanoparticles  相似文献   

9.
A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (Cmax) was 14,677.51 ± 12.16 ng/ml at 3 h Tmax and pulsatile colonic tablets showed Cmax = 12,374.67 ± 16.72 ng/ml at 12 h Tmax. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.KEY WORDS: core mini-tablets, double-compression coating, inner compression coat, outer compression coat, similarity factor  相似文献   

10.
Liposomes (LIP), nanoparticles (NP), dendrimers (DEN), and carbon nanotubes (CNTs), represent eminent classes of drug delivery devices. A study was carried out herewith by employing docetaxel (DTX) as model drug to assess their comparative drug delivery potentials. Under optimized conditions, highest entrapment of DTX was observed in CNT-based formulation (DTX-CNTs, 74.70 ± 4.9%) followed by nanoparticles (DTX-NP, 62.34 ± 1.5%), liposome (49.2 ± 1.51%), and dendrimers (28.26 ± 1.74%). All the formulations were found to be of nanometric size. In vitro release studies were carried out in PBS (pH 7.0 and 4.0), wherein all the formulations showed biphasic release pattern. Cytotoxicity assay in human cervical cancer SiHa cells inferred lowest IC50 value of 1,235.09 ± 41.93 nM with DTX-CNTs, followed by DTX-DEN, DTX-LIP, DTX-NP with IC50 values of 1,571.22 ± 151.27, 1,653.98 ± 72.89, 1,922.75 ± 75.15 nM, respectively. Plain DTX showed higher hemolytic toxicity of 22.48 ± 0.94%, however loading of DTX inside nanocarriers drastically reduced its hemolytic toxicity (DTX-DEN, 17.22 ± 0.48%; DTX-LIP, 4.13 ± 0.19%; DTX-NP, 6.43 ± 0.44%; DTX-CNTs, 14.87 ± 1.69%).KEY WORDS: carbon nanotubes, dendrimer, drug delivery, liposomes, nanoparticles, nanotechnology  相似文献   

11.
Polymeric micelles were studied as delivery carriers of diazepam, a practically insoluble drug in water, for rectal administration. The diazepam-loaded polymeric micelles were developed by using poloxamer 407 (P407), poloxamer 188, and d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS). Among the used polymers, TPGS resulted in polymeric micelles with good characteristics for encapsulation of diazepam which had the small particle size of 8–12 nm and narrow size distribution (PI 0.053–0.275). Additionally, 7.5% w/v of TPGS could entirely entrap the desired concentration of diazepam (5 mg/mL). To improve the physical stability upon lyophilization, an addition of P407 of 1% w/v prevented aggregation, increased physical stability, and maintained chemical stability of the lyophilized powders of diazepam-loaded polymeric micelles for 3 months storage at 4°C. The rate and amount of diazepam release from TPGS polymeric micelles mainly depended on the concentration of TPGS. The release data were fitted to Higuchi''s model suggesting that the drug release mechanism was controlled by Fickian diffusion. In conclusion, 10% w/v TPGS and 1% w/v P407 were the optimum formulation of lyophilized diazepam-loaded polymeric micelles.Key words: diazepam, lyophilization, poloxamer 407, polymeric micelles, d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS)  相似文献   

12.
The aim of this study was to investigate the effects of formulation and process variables on the properties of niosomes formed from Span 40 as nonionic surfactant. A variety of formulations encapsulating Paclitaxel, a hydrophobic model drug, were prepared using different dicetyl phosphate (DCP) and Span 40-cholesterol (1:1) amounts. Formulations were optimized by multiple regression analysis to evaluate the changes on niosome characteristics such as entrapment efficiency, particle size, polydispersity index, zeta potential and in vitro drug release. Multiple regression analysis revealed that as Span 40-cholesterol amounts in the formulations were increased, zeta potential and percent of drug released at 24th hour were decreased. Besides, DCP was found to be effective on increasing niosome size. As a process variable, the effect of sonication was observed and findings revealed an irreversible size reduction on Span 40 niosomes after probe sonication. Monodisperse small sized (133 ± 6.01 nm) Span 40 niosomes entrapping 98.2% of Paclitaxel with a weight percentage of 3.64% were successfully prepared. The drug–excipient interactions in niosomes were observed by differential scanning calorimetry and X-ray powder diffraction analysis. Both techniques suggest the conversion of PCTs’ crystal structure to amorphous form. The thermal analyses demonstrate the high interaction between drug and surfactant that explains high entrapment efficiency. After 3-month storage, niosomes preserved their stability in terms of drug amount and particle size. Overall, this study showed that Span 40 niosomes with desired properties can be prepared by changing the content and production variables.Key words: drug delivery systems, drug release, multiple regression, niosomes, paclitaxel  相似文献   

13.
The relative bioavailability of chlorothiazide from mucoadhesive polymeric compacts is compared to commercial oral suspension in pigs. A single-dose randomized study was conducted in 12 healthy pigs that are 9–10 weeks old. After overnight fasting, pigs were divided into two groups of six animals. To the first group, a reference product containing 50 mg of chlorothiazide suspension, and in the second group, test product (mucoadhesive compacts) chlorothiazide (50 mg) was administered with 75 mL of water via gastric tubes. Blood samples were collected between 0 to 24 h using catheters inserted into the jugular vein. Plasma was separated by protein precipitation, and chlorothiazide concentrations were determined using a high-performance liquid chromatography method. The mean Tmax and the Cmax of chlorothiazide following the administration of oral suspension and mucoadhesive compacts were 0.58 ± 0.20 h and 682.97 ± 415.69 ng/mL and 2.17 ± 0.98 h and 99.42 ± 124.08 ng/mL, respectively. The Kel and T1/2 of chlorothiazide were found to be 1.06 ± 0.28 h−1 and 0.70 ± 0.21 h from suspension and 0.95 ± 1.11 h−1 and 2.05 ± 1.90 h from the compacts, respectively. The Tmax of mucoadhesive compacts were significantly longer (p < 0.05; 2.17 h) than the reference products (0.58 h), whereas the Cmax of compacts were significantly lower (99 ng/mL) than the reference product (683 ng/mL; p < 0.05). The area under the curve (AUC) of compacts accounts only 50.15% (404.32 ± 449.93 ng h/mL) of the reference product’s AUC (806.27 ± 395.97 ng h/mL). The relative bioavailability of the compacts was lower than that of the suspension, and this may be due to the narrow window of absorption for chlorothiazide.Key words: bioavailability, chlorothiazide, mucoadhesive compacts, pigs  相似文献   

14.
Controlled-release (CR) matrix tablet of 4 mg risperidone was developed using flow bound dry granulation–slugging method to improve its safety profile and compliance. Model formulations F1, F2, and F3, consisting of distinct blends of Methocel® K100 LV-CR and Ethocel® standard 7FP premium, were slugged. Each batch of granules (250–1,000 μm), obtained by crushing the slugs, was divided into three portions after lubrication and then compressed to 9-, 12-, and 15-kg hard tablets. In vitro drug release studies were carried out in 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using a paddle dissolution apparatus run at 50 rpm. The CR test tablet, containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness, exhibited pH-independent zero-order release kinetics for 24 h. The drug release rate was inversely proportional to the content of Ethocel®, while the gel layer formed of Methocel® helped in maintaining the integrity of the matrix. Changes in the hardness of tablet did not affect the release kinetics. The tablets were reproducible and stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. Risperidone and its active metabolite, 9-hydroxyrisperidone, present in the pooled rabbit’s serum, were analyzed with HPLC-UV at λmax 280 nm. The CR test tablet exhibited bioequivalence to reference conventional tablet in addition to the significantly (p < 0.05) optimized peak concentration, Cmax, and extended peak time, Tmax, of the active moiety. There was a good association between drug absorption in vivo and drug release in vitro (R2 = 0.7293). The successfully developed CR test tablet may be used for better therapeutic outcomes of risperidone.KEY WORDS: controlled release, dry granulation slugging method, risperidone  相似文献   

15.
Li S  Ji Z  Zou M  Nie X  Shi Y  Cheng G 《AAPS PharmSciTech》2011,12(3):1011-1018
Tetrandrine (TET) is a poorly water-soluble bisbenzylisoquinoline alkaloid. In this study, TET solid lipid nanoparticles (SLNs) were prepared by a melt–emulsification and ultrasonication technique. Precirol® ATO 5, glyceryl monostearate, and stearic acid were used as the lipid matrix for the SLNs, while Lipoid E80, Pluronic F68, and sodium deoxycholate were used as emulsifying and stabilizing agents. The physicochemical characteristics of the TET–SLNs were investigated when it was found that the mean particle size and zeta potential of the TET–SLNs were 134 ± 1.3 nm and −53.8 ± 1.7 mV, respectively, and the entrapment efficiency (EE) was 89.57% ± 0.39%. Differential scanning calorimetry indicated that TET was in an amorphous state in SLNs. TET–SLNs exhibited a higher release rate at a lower pH and a lower release rate at a higher pH. The release pattern of the TET–SLNs followed the Weibull model. The pharmacokinetics of TET–SLNs after intravenous administration to male rats was studied. TET–SLN resulted in a higher plasma concentration and lower clearance. The biodistribution study indicated that TET–SLN showed a high uptake in reticuloendothelial system organs. In conclusion, TET–SLNs with a small particle size, and high EE, can be produced by the method described in this study. The SLN system is a promising approach for the intravenous delivery of tetrandrine.Key words: characterization, pharmacokinetics, preparation, solid lipid nanoparticles, tetrandrine  相似文献   

16.
Controlled-release (CR) tablet formulation of olanzapine was developed using a binary mixture of Methocel® K100 LV-CR and Ethocel® standard 7FP premium by the dry granulation slugging method. Drug release kinetics of CR tablet formulations F1, F2, and F3, each one suitably compressed for 9-, 12-, and 15-kg hardness, were determined in a dissolution media of 0.1 N HCl (pH 1.5) and phosphate buffer (pH 6.8) using type II dissolution apparatus with paddles run at 50 rpm. Ethocel® was found to be distinctly controlling drug release, whereas the hardness of tablets and pH of the dissolution media did not significantly affect release kinetics. The CR test tablets containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness exhibited pH-independent zero-order release kinetics for 24 h. In vivo performance of the CR test tablet and conventional reference tablet were determined in rabbit serum using high-performance liquid chromatography coupled with electrochemical detector. Bioavailability parameters including Cmax, Tmax, and AUC0–48 h of both tablets were compared. The CR test tablets produced optimized Cmax and extended Tmax (P < 0.05). A good correlation of drug absorption in vivo and drug release in vitro (R2 = 0.9082) was observed. Relative bioavailability of the test tablet was calculated as 94%. The manufacturing process employed was reproducible and the CR test tablets were stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. It was concluded that the CR test tablet formulation successfully developed may improve tolerability and patient adherence by reducing adverse effects.Key words: bioavailability, controlled release, Ethocel®, olanzapine  相似文献   

17.
Breviscapine is used in the treatment of ischemic cerebrovascular diseases, but it has a low bioavailability in the brain due to its poor physicochemical properties and the activity of P-glycoprotein efflux pumps located at the blood–brain barrier. In the present study, breviscapine-loaded solid lipid nanoparticles (SLN) coated with polyethylene glycol (PEG) derivatives were formulated and evaluated for their ability to enhance brain bioavailability. The SLNs were either coated with polyethylene glycol (40) (PEG-40) stearate alone (Bre-GBSLN-PS) or a mixture of PEG-40 stearate and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000) (Bre-GBSLN-PS-DSPE) and were characterized both in vitro and in vivo. The mean particle size, polydispersity index, and entrapment efficiency for Bre-GBSLN-PS and Bre-GBSLN-PS-DSPE were 21.60 ± 0.10 and 22.60 ± 0.70 nm, 0.27 ± 0.01 and 0.26 ± 0.04, and 46.89 ± 0.73% and 47.62 ± 1.86%, respectively. The brain pharmacokinetic parameters revealed that the brain bioavailability of breviscapine from the Bre-GBSLN-PS and Bre-GBSLN-PS-DSPE was significantly enhanced (p < 0.01) with the area under concentration–time curve (AUC) of 1.59 ± 0.39 and 1.42 ± 0.58 μg h/mL of breviscapine, respectively, in comparison to 0.11 ± 0.02 μg h/mL from the commercial breviscapine injection. The ratios of the brain AUC for scutellarin in comparison with the plasma scutellarin AUC for commercial breviscapine injection, Bre-GBSLN-PS, and Bre-GBSLN-PS-DSPE were 0.66%, 2.82%, and 4.51%, respectively. These results showed that though both SLN formulations increased brain uptake of breviscapine, Bre-GBSLN-PS-DSPE which was coated with a binary combination of PEG-40 stearate and DSPE-PEG2000 had a better brain bioavailability than Bre-GBSLN-PS. Thus, the coating of SLNs with the appropriate PEG derivative combination could improve brain bioavailability of breviscapine and can be a promising tool for brain drug delivery.KEY WORDS: breviscapine, microdialysis, mixed PEGylation, P-glycoprotein (P-gp), solid lipid nanoparticles  相似文献   

18.
The present research work focused on the comparative assessment of porous versus nonporous films in order to develop a suitable buccoadhesive device for the delivery of glibenclamide. Both films were prepared by solvent casting technique using the 32 full factorial design, developing nine formulations (F1–F9). The films were evaluated for ex vivo mucoadhesive force, ex vivo mucoadhesion time, in vitro drug release (using a modified flow-through drug release apparatus), and ex vivo drug permeation. The mucoadhesive force, mucoadhesion time, swelling index, and tensile strength were observed to be directly proportional to the content of HPMC K4M. The optimized porous film (F4) showed an in vitro drug release of 84.47 ± 0.98%, ex vivo mucoadhesive force of 0.24 ± 0.04 N, and ex vivo mucoadhesion time of 539.11 ± 3.05 min, while the nonporous film (NF4) with the same polymer composition showed a release of 62.66 ± 0.87%, mucoadhesive force of 0.20 ± 0.05 N, and mucoadhesive time of 510 ± 2.00 min. The porous film showed significant differences for drug release and mucoadhesion time (p < 0.05) versus the nonporous film. The mechanism of drug release was observed to follow non-Fickian diffusion (0.1 < n < 0.5) for both porous and nonporous films. Ex vivo permeation studies through chicken buccal mucosa indicated improved drug permeation in porous films versus nonporous films. The present investigation established porous films to be a cost-effective buccoadhesive delivery system of glibenclamide.KEY WORDS: buccoadhesive drug delivery, glibenclamide, in vitro release and ex vivo permeation, porous film  相似文献   

19.
This study aimed to identify the response of a salivary stress protein, extracellular heat shock protein (eHSP70), to intense exercise and to investigate the relationship between salivary eHSP70 and salivary immunoglobulin A (SIgA) levels in response to exercise. Sixteen healthy sedentary young males (means ± SD 23.8 ± 1.5 years, 172.2 ± 6.4 cm, 68.3 ± 7.4 kg) performed 59 min of cycling exercise at 75 % VO2max. Saliva and whole blood samples were collected before (Pre), immediately after (Post), and at 1, 2, 3, and 4 h after completion of the exercise (1, 2, 3, and 4 h). The salivary eHSP70 and SIgA levels were measured by enzyme-linked imunosorbent assay (ELISA), and the secretion rates were computed by multiplying the concentration by the saliva flow rate. White blood cells were analyzed using an automated cell counter with a direct-current detection system. The salivary eHSP70 secretion rates were 1.11 ± 0.86, 1.51 ± 1.47, 1.57 ± 1.32, 2.21 ± 2.04, 3.36 ± 2.72, and 6.89 ± 4.02 ng · min−1 at Pre, Post, and 1, 2, 3, and 4 h, respectively. The salivary eHSP70 secretion rate was significantly higher at 4 h than that at Pre, Post, 1, and 3 h (p < 0.05). The SIgA secretion rates were 26.9 ± 12.6, 20.3 ± 10.4, 19.6 ± 11.0, 21.8 ± 12.8, 21.5 ± 11.9, and 21.9 ± 11.7 μg · min−1 at Pre, Post, 1, 2, 3, and 4 h, respectively. The salivary SIgA secretion rate was significantly lower between 1 and 4 h than that at Pre (p < 0.05). There was a positive correlation between salivary eHSP70 and SIgA in both concentration and secretion rates before exercise (p < 0.05). The absolute number of white blood cells significantly increased after exercise, with a maximum at 2 h (p < 0.05). The neutrophil/lymphocyte ratio was significantly increased from 1 to 4 h when compared with that in the Pre samples (p < 0.05). The present study revealed that salivary eHSP70 significantly increased at 4 h after the 59 min of intense exercise in sedentary male subjects. Exercise stress can induce elevated salivary eHSP70 level and upregulate oral immune function partially.  相似文献   

20.

Background

Few works have evaluated the effect of statins on left ventricular dysfunction in patients with chronic heart failure (CHF), by using tissue Doppler imaging (TDI). We therefore aimed to investigate whether atorvastatin treatment may influence prognosis and myocardial performance evaluated by TDI in subjects with CHF.

Methods

Five hundred thirty-two consecutive CHF outpatients enrolled in a local registry, the Daunia Heart Failure Registry, were prospectively analysed. 195 patients with CHF and left ventricular ejection fraction (LVEF) ≤40 %, either in treatment with atorvastatin (N: 114) or without statins (N: 81), underwent TDI examination. Adverse events were evaluated during follow-up.

Results

The atorvastatin group showed a lower incidence of adverse events (cardiac death: 0 % vs 7 %, p < 0.01), and better TDI performance (E/E’ 15 ± 5.7 vs 18 ± 8.3, p < 001) than controls. Ischaemic CHF patients in treatment with atorvastatin also showed a lower incidence of adverse events (death: 10 % vs 26 %, p < 0.05; sustained ventricular arrhythmias: 5 % vs 19 %, p < 0.05, cardiac death: 0 vs 8 %, p < 0.05) and better TDI performance (E/E’ ratio: 15.00 ± 5.68 vs 19.72 ± 9.14, p < 0.01; St: 353.70 ± 48.96 vs 303.33 ± 68.52 msec, p < 0.01) than controls. The association between atorvastatin and lower rates of cardiac death remained statistically significant even after correction in a multivariable analysis (RR 0.83, 95 % CI 0.71–0.96, p < 0.05 in CHF with LVEF ≤40 %; RR 0.77, 95 % CI 0.62–0.95, p < 0.05 in ischaemic CHF with LVEF ≤40 %).

Conclusions

Treatment with atorvastatin in outpatients with systolic CHF is associated with fewer cardiac deaths, and a better left ventricular performance, as assessed by TDI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号