首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 682 毫秒
1.
转基因抗虫作物对非靶标昆虫的影响   总被引:18,自引:3,他引:15  
转基因抗虫作物自 1996年被批准商业化种植以来 ,它的抗虫性和经济效益已得到了普遍肯定 ,同时 ,转基因抗虫作物对非靶标生物的影响 ,如转基因抗虫作物的长期种植 ,是否会导致次要害虫上升为主要害虫 ,是否会影响有益昆虫 ,包括重要经济昆虫、捕食性和寄生性天敌以及重要蝶类的种类及种群数量 ,已成为转基因抗虫作物生态风险评估的重要内容。一些研究结果表明 ,转基因抗虫作物在对靶标害虫有效控制的同时 ,一些对杀虫蛋白不敏感的非靶标害虫有加重危害的趋势 ,由于种植转基因抗虫作物 ,减少了化学农药的使用 ,客观上也使非靶标害虫种群数量上升 ,这对转基因抗虫作物害虫综合治理提出了新的要求。靶标害虫数量的减少直接影响了害虫天敌种群数量 ,靶标害虫取食转基因抗虫作物后发育迟缓 ,也间接影响了天敌昆虫的生长发育 ,转基因抗虫作物的花粉或花蜜是一些重要经济昆虫如蜜蜂、熊蜂和一些寄生蜂 ,甚至捕食性天敌的食物来源 ,或花粉飘落到一些鳞翅目昆虫如家蚕或重要蝶类昆虫的寄主植物上 ,直接或间接对这些昆虫造成一定影响。目前大多数研究表明转基因抗虫作物对非靶标昆虫 ,特别是对有益昆虫没有明显的不利影响 ,也有研究报道认为对某些有益昆虫有一定的不良影响。这为深入开展转基因抗虫作物的生态安全  相似文献   

2.
重组DNA技术的发展为培育高效的抗虫作物提供了前所未有的便利条件。通过转基因技术,全世界已培育出众多转基因抗虫植物品系。其中,表达苏云金芽孢杆菌(Bt)基因的作物品系如Bt棉花和Bt玉米已在很多国家大规模种植,在害虫控制方面发挥了重要的作用。转基因抗虫作物可能带来的生态风险问题,如对农田非靶标节肢动物的潜在影响,一直受到相关研究者及民众的广泛关注。至今,已有大量研究论文发表。本文在总结、归纳前人研究的基础上,阐述了从实验室到田间多层次评价转基因抗虫作物对非靶标生物影响的一般研究程序和方法,并简要综述了Bt玉米和Bt棉花2种已商业化种植的转基因抗虫作物对农田非靶标节肢动物生态影响的研究进展。现有研究表明:当前种植的Bt作物所表达的Cry蛋白杀虫专一性非常强,对农田非靶标节肢动物没有毒性;且Bt作物的利用降低了广谱化学杀虫剂的施用量,从而提高了非专一性害虫天敌的种群密度,加强了对害虫的控制,并有效地保护了生态环境和农民健康。因此,Bt作物可以作为害虫综合防治(IPM)的一个策略,结合其他防治措施可加强对害虫的有效控制。  相似文献   

3.
转基因作物的长期大面积种植, 在为农业生产带来惠益的同时, 对农业生态系统的健康和稳定可能会产生潜在的影响。转基因作物表达的Bt蛋白对靶标害虫起到较好的控制效果, 而对Bt蛋白不敏感的非靶标害虫种群可能会迅速发展起来, 对作物造成为害。随着抗虫转基因作物的连续多年种植, 科学家们对于田间杀虫剂施用量的增减看法不尽一致。通过总结已有的研究报道, 本文以Bt玉米和Bt棉花为例, 分析了大田中非靶标害虫暴发的现状, 以及暴发的主要原因(如杀虫剂的使用、害虫天敌减少和物种替代)。在生产实践中, 抗虫作物的长期大面积释放导致广谱杀虫剂施用量减少, 田间非靶标害虫数量上升。因此今后需要继续开展更多的研究来综合评估种植转Bt基因作物产生的长期潜在影响, 优化害虫防治措施, 避免非靶标害虫暴发。  相似文献   

4.
根据风险=危险×暴露的原理,在实验室条件下评价转基因作物对非靶标节肢动物影响时,所选择的代表性非靶标生物通常是在农田系统中较高地暴露于转基因外源杀虫蛋白的节肢动物种.为了弄清Bt稻田主要节肢动物暴露于Cry蛋白的程度,选择合适的非靶标节肢动物,用于转基因抗虫水稻的风险评价,本文采用酶联免疫技术检测了水稻不同生长期从转cry2Aa基因水稻田采集的不同节肢动物体内Cry2Aa蛋白的含量.结果表明: 不同节肢动物种体内的Cry蛋白含量差异显著.一些节肢动物体内不含Cry蛋白,而一些节肢动物体内含有较高的Cry蛋白;相对于花期后采集的节肢动物,在Bt水稻花期采集的节肢动物,特别是捕食性节肢动物体内的Cry蛋白含量较高;寄生性节肢动物体内未检测到Cry蛋白.这为在实验室条件下评价转基因水稻对农田非靶标节肢动物的影响奠定了基础.  相似文献   

5.
根据风险=危险×机露的原理,在实验室条件下评价转基因作物对非靶标节肢动物影响时,所选择的代表性非靶标生物通常是在农田系统中较高地关露于转基因外源杀虫蛋白的节肢动物种.为了弄清Bt稻田主要节肢动物暴露于Cry蛋白的程度,选择合适的非靶标节肢动物,用于转基因抗虫水稻的风险评价,本文采用酶联免疫技术检测了水稻不同生长期从转cry2Aa基因水稻田采集的不同节肢动物体内Cry2Aa蛋白的含量.结果表明:不同节肢动物种体内的Cry蛋白含量差异显著.一些节肢动物体内不合Cry蛋白,而一些节肢动物体内含有较高的Cry蛋白;相对于花期后采集的节肢动物,在Bt水稻花期采集的节肢动物,特别是捕食性节肢动物体内的Cry蛋白含量较高;寄生性节肢动物体内未检测到Cry蛋白.这为在实验室条件下评价转基因水稻对农田非靶标节肢动物的影响奠定了基础.  相似文献   

6.
随着转基因作物商业化种植的发展,人们越来越关注转基因作物对生态安全的影响,其中的一个焦点就是转基因作物对非靶标昆虫天敌的影响。转基因作物主要通过花粉和取食转基因植物的昆虫两个途径影响天敌的种群。目前国内外转基因作物对天敌影响的研究方法包括田间种群调查,室内转基因作物花粉或取食转基因作物的害虫对天敌影响研究,近年来把高浓度毒蛋白通过人工饲料喂养给天敌的Tier-1法研究也逐渐增多。大多数研究表明,转基因抗虫作物中的杀虫蛋白通过花粉和取食转基因植物的昆虫两个途径对天敌没有产生不利的影响。同样,Tier-1法研究结果,也证明浓度毒蛋白喂养对天敌并没有产生不利的影响。  相似文献   

7.
杀虫晶体蛋白(insecticidal crystal proteins,ICPs;含有Cry和Cyt 2大家族)和营养期杀虫蛋白(vegetative insecticidal proteins,Vips)等Bt杀虫蛋白可有效防治鳞翅目害虫,其中Cry应用最广泛。然而,一些地区的鳞翅目害虫已对Bt杀虫蛋白产生了抗性。目前,普遍认为鳞翅目昆虫中肠受体与Bt杀虫蛋白结合能力的改变是导致其对Bt杀虫蛋白产生抗性的最主要因素。在鳞翅目昆虫中,Cry受体是研究得最为透彻的Bt受体,已经被证实的有氨肽酶N、钙黏蛋白、碱性磷酸酶和ABC转运蛋白等。Vips杀虫蛋白类与鳞翅目昆虫中肠受体的结合方式与Cry杀虫蛋白相似,但结合位点与Cry杀虫蛋白不同。本文从结构特点、作用机制及不同鳞翅目昆虫间的表达差异等角度对以上4种鳞翅目昆虫中肠Bt受体进行了综述,并提出如下展望:(1)以棉铃虫或小菜蛾等鳞翅目昆虫为农业害虫模式生物进行深入研究,阐明其对Bt杀虫蛋白产生抗性的机制,为研究其他鳞翅目农业害虫对Bt杀虫蛋白产生抗性的机制提供理论借鉴;(2)鉴于在不同鳞翅目昆虫间,中肠Bt受体与Bt杀虫蛋白结合存在差异,且同一Bt杀虫蛋白与鳞翅目昆虫Bt受体并不专一性结合,Bt杀虫蛋白多基因组合策略是较为有效的田间鳞翅目昆虫防治策略,是今后一段时间内Bt杀虫蛋白应用的发展方向。  相似文献   

8.
转Bt基因植物对蜜蜂的安全性研究进展   总被引:1,自引:0,他引:1  
蜜蜂是农业生态系统中重要的传粉昆虫,也是重要的经济昆虫.其可通过取食抗虫转基因作物花粉而摄取到外源转基因杀虫蛋白.因此,蜜蜂通常作为重要的指示物种用于转基因抗虫作物的环境安全评价工作中.本文在总结国内外相关研究数据的基础上,系统分析了抗虫转基因作物的种植对蜜蜂的安全性,获得以下结论:Bt杀虫蛋白具有较强的杀虫专一性,当前商业化应用的Bt杀虫蛋白对蜜蜂没有直接毒性,因此,转Bt基因作物的种植不会对蜜蜂种群及其发挥的重要生态功能产生显著的负面影响.而早期曾用于植物转基因的蛋白酶抑制剂和植物凝集素对蜜蜂的生长发育及行为具有显著的不利影响,因此,表达这类杀虫蛋白的转基因作物应该不会进入商业化应用.  相似文献   

9.
简要综述了转基因抗虫水稻的潜在影响,主要包括转基因抗虫水稻表达的抗虫毒蛋白对稻田土壤微生态系统、靶标害虫、非靶标害虫、节肢动物种群动态、自然天敌的影响以及抗虫Bt蛋白在食物链中的传递规律,并对转基因抗虫水稻潜在的不利影响提出了相应的防范策略.  相似文献   

10.
苏云金芽孢杆菌(Bt)微生物制剂是农业、林业和饮用水等领域用来控制靶标害虫幼虫的有效工具,至今已经有50余年的使用历史。同时其在美国、欧洲和其他一些国家被广泛用于经过认证的有机农业生产之中。目前已获审批的转基因Bt作物中最常使用的是Cry蛋白。Cry蛋白的作用机制、食品安全性以及致敏性已经经过啮齿类动物、农场动物和人体内试验和生物信息学研究的严格检验。Cry蛋白的杀虫作用只在靶标害虫的碱性消化道内,与中肠上皮细胞的特异蛋白受体结合才能起到杀虫作用,而其他非靶标生物体内(人类、猕猴、小鼠、大鼠和牛等)都被证明没有这种特异蛋白质受体。美国、欧洲和其他国家的管理机构都已经证实了转基因Bt作物和Cry蛋白在农作物和饮用水中残留的安全性。食物加工过程能够最大化地减少转基因作物中功能性Cry蛋白的摄入。转基因抗虫作物有利于降低农药杀虫剂的使用的同时,也能够有效防止玉米中伏马菌毒素的污染。  相似文献   

11.
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix ??-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix ??-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene.We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene.  相似文献   

12.
Environmental risk assessment for genetically modified crops producing insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) includes the evaluation of adverse effects on non-target organisms. Although ELISA concentration measurements indicate the presence of Cry proteins, sensitive insect bioassays determine whether there is biological activity. The insecticidal activity of the coleopteran-active Cry3Bb1 expressed in different tissues of Bt maize, contained in maize-fed herbivores, and in spiked soil was measured in sensitive insect bioassays using larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Biological activity was confirmed of Cry3Bb1 contained in pulverized Bt maize pollen, roots, leaves, silk, and Bt maize-fed spider mites and western corn rootworm adults. When test substances were incorporated into artificial diet at the same concentrations of Cry3Bb1 (measured by ELISA), maize pollen and leaf litter exhibited lower toxicity than fresh plant material and maize-fed arthropods. This suggests that nutritional quality of food and degradation of Cry proteins may influence toxicity to insects. When soil was spiked with Cry3Bb1, the Bt protein was highly adsorbed and retained its full biological activity. Because toxicity of Cry proteins contained in different matrices cannot always be determined from ELISA values alone, sensitive insect bioassays can improve hazard and exposure assessments in environmental risk assessment of Bt crops.  相似文献   

13.
Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators.  相似文献   

14.
Insecticidal bacteria: an overwhelming success for invertebrate pathology   总被引:1,自引:0,他引:1  
The discovery and study of insecticidal bacteria, which began a little over a century ago, led to the development of commercial bacterial insecticides in the middle of the century that became the first successful and widely used microbial control agents. Most of these products were based on Bacillus thuringiensis, a bacterium that kills insects through the use of insecticidal proteins that subsequently became known as Cry proteins. While most of these products were only effective against lepidopteran pests, their success eventually led in the 1970s and 1980s to the discovery of strains effective against larvae of coleopteran pests and nematocerous dipterans, such as vector and nuisance mosquitoes and blackflies. The cloning in 1981 of the first gene encoding a Cry protein led to an explosion of basic and applied research that culminated in new strains of recombinant insecticidal bacteria and, even more importantly, the development, commercialization, and wide-scale deployment of insecticidal transgenic crops based on Cry proteins. This new and environmentally safe technology has revolutionized agricultural pest control, yielding a multibillion dollar industry that is paving the way to new types of plants that will dominate food and fiber production as the 21st century progresses. In this brief symposium paper, I provide an overview of some of the key work that led to this remarkable success.  相似文献   

15.
Cry1Ac protoxin (the active insecticidal toxin in both Bollgard and Bollgard II cotton [Gossypium hirsutum L.]), and Cry2Ab2 toxin (the second insecticidal toxin in Bollgard II cotton) were bioassayed against five of the primary lepidopteran pests of cotton by using diet incorporation. Cry1Ac was the most toxic to Heliothis virescens (F.) and Pectinophora gossypiella (Saunders), demonstrated good activity against Helicoverpa zea (Boddie), and had negligible toxicity against Spodoptera exigua (Hübner) and Spodoptera frugiperda (J. E. Smith). Cry2Ab2 was the most toxic to P. gossypiella and least toxic to S. frugiperda. Cry2Ab2 was more toxic to S. exigua and S. frugiperda than Cry1Ac. Of the three insect species most sensitive to both Bacillus thuringiensis (Bt) proteins (including H. zea), P. gossypiella was only three-fold less sensitive to Cry2Ab2 than Cry1Ac, whereas H. virescens was 40-fold less sensitive to Cry2Ab2 compared with CrylAc. Cotton plants expressing Cry1Ac only and both Cry1Ac and Cry2Ab2 proteins were characterized for toxicity against H. zea and S.frugiperda larvae in the laboratory and H. zea larvae in an environmental chamber. In no-choice assays on excised squares from plants of different ages, second instar H. zea larvae were controlled by Cry1Ac/Cry2Ab2 cotton with mortality levels of 90% and greater at 5 d compared with 30-80% mortality for Cry1Ac-only cotton, depending on plant age. Similarly, feeding on leaf discs from Cry1Ac/Cry2Ab2 cotton resulted in mortality of second instars of S.frugiperda ranging from 69 to 93%, whereas exposure to Cry1Ac-only cotton yielded 20-69% mortality, depending on plant age. When cotton blooms were infested in situ in an environmental chamber with neonate H. zea larvae previously fed on synthetic diet for 0, 24, or 48 h, 7-d flower abortion levels for Cry1Ac-only cotton were 15, 41, and 63%, respectively, whereas for Cry1Ac/Cry2Ab2 cotton, flower abortion levels were 0, 0, and 5%, respectively. Cry1Ac and Cry2Ab2 concentrations were measured within various cotton tissues of Cry1Ac-only and Cry1Ac/Cry2Ab2 plants, respectively, by using enzyme-linked immunosorbent assay. Terminal leaves significantly expressed the highest, and large leaves, calyx, and bracts expressed significantly the lowest concentrations of Cry1Ac, respectively. Ovules expressed significantly the highest, and terminal leaves, large leaves, bracts, and calyx expressed significantly (P < 0.05) the lowest concentrations of Cry2Ab2. These results help explain the observed differences between Bollgard and Bollgard II mortality against the primary lepidopteran cotton pests, and they may lead to improved scouting and resistance management practices, and to more effective control of these pests with Bt transgenic crops in the future.  相似文献   

16.
A concern with the widespread use of insecticidal transgenic crops is their potential to adversely affect non-target organisms, including biological control agents such as larvae of the green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae). Since the insecticidal proteins expressed by the current transgenic plants are active only after ingestion, dietary bioassays are required to test direct effects on non-target organisms. After showing that C. carnea larvae utilize carbohydrate foods, we exposed them to insecticidal proteins dissolved in a sucrose solution. Feeding on snowdrop lectin (Galanthus nivalis agglutinin, GNA) as a model compound, the larvae were negatively affected in a number of life-table parameters. Interestingly, GNA caused a prolongation in first instar development, but had no effect on subsequent utilization of prey resulting in an increased weight of second instars. Comparable studies with avidin, a biotin-binding protein, revealed strong effects on C. carnea survival at the concentration tested. Despite the fact that the proteolytic digestion of C. carnea larvae is reported to be dominated by serine proteases, ingestion of soybean trypsin inhibitor (SBTI) did not cause any detrimental effects. Similarly, two Cry proteins derived from Bacillus thuringiensis (Cry1Ac and Cry1Ab) did not cause negative effects on C. carnea, what is consistent with earlier studies. The here presented bioassay provides a valuable tool to assess direct impacts of insecticidal proteins to C. carnea larvae and other predators that are known to feed on carbohydrate solutions.  相似文献   

17.
The Cry toxins are a family of crystal-forming proteins produced by the bacterium Bacillus thuringiensis. Their mode of action is thought to be to create pores that disrupt the gut epithelial membranes of juvenile insects. These pores allow pathogen entry into the hemocoel, thereby killing the insect. Genes encoding a spectrum of Cry toxins, including Cry mutants, Cry chimaeras and other Cry derivatives, are used commercially to enhance insect resistance in genetically modified (GM) crops. In most countries of the world, such GM crops are regulated and must be assessed for human and environmental safety. However, such risk assessments often do not test the GM crop or its tissues directly. Instead, assessments rely primarily on historical information from naturally occurring Cry proteins and on data collected on Cry proteins (called ‘surrogates’) purified from laboratory strains of bacteria engineered to express Cry protein. However, neither surrogates nor naturally occurring Cry proteins are identical to the proteins to which humans or other nontarget organisms are exposed by the production and consumption of GM plants. To-date there has been no systematic survey of these differences. This review fills this knowledge gap with respect to the most commonly grown GM Cry-containing crops approved for international use. Having described the specific differences between natural, surrogate and GM Cry proteins this review assesses these differences for their potential to undermine the reliability of risk assessments. Lastly, we make specific recommendations for improving risk assessments.  相似文献   

18.
A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae)   总被引:1,自引:0,他引:1  

Background

Honey bees (Apis mellifera L.) are the most important pollinators of many agricultural crops worldwide and are a key test species used in the tiered safety assessment of genetically engineered insect-resistant crops. There is concern that widespread planting of these transgenic crops could harm honey bee populations.

Methodology/Principal Findings

We conducted a meta-analysis of 25 studies that independently assessed potential effects of Bt Cry proteins on honey bee survival (or mortality). Our results show that Bt Cry proteins used in genetically modified crops commercialized for control of lepidopteran and coleopteran pests do not negatively affect the survival of either honey bee larvae or adults in laboratory settings.

Conclusions/Significance

Although the additional stresses that honey bees face in the field could, in principle, modify their susceptibility to Cry proteins or lead to indirect effects, our findings support safety assessments that have not detected any direct negative effects of Bt crops for this vital insect pollinator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号