首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The fetal globin genes G gamma and A gamma from one chromosome of a chimpanzee (Pan troglodytes) were sequenced and found to be closely similar to the corresponding genes of man and the gorilla. These genes contain identical promoter and termination signals and have exons 1 and 2 separated by the conserved short intron 1 (122 bp) and exons 2 and 3 separated by the more rapidly evolving, larger intron 2 (893 bp and 887 bp in chimpanzee G gamma and A gamma, respectively). Each intron 2 has a stretch of simple sequence DNA (TG)n serving possibly as a "hot spot" for recombination. The two chimpanzee genes encode polypeptide chains that differ only at position 136 (glycine in G gamma and alanine in A gamma) and that are identical to the corresponding human chains, which have aspartic acid at position 73 and lysine at 104 in contrast to glycine and arginine at these respective positions of the gorilla A gamma chain. Phylogenetic analysis by the parsimony method revealed four silent (synonymous) base substitutions in evolutionary descent of the chimpanzee G gamma and A gamma codons and none in the human and gorilla codons. These Homininae (Pan, Homo, Gorilla) coding sequences evolved at one-tenth the average mammalian rate for nonsynonymous and one-fourth that for synonymous substitutions. Three sequence regions that were affected by gene conversions between chimpanzee G gamma and A gamma loci were identified: one extended 3' of the hot spot with G gamma replaced by the A gamma sequence, another extended 5' of the hot spot with A gamma replaced by G gamma, and the third conversion extended from the 5' flanking to the 5' end of intron 2, with G gamma replaced here by the A gamma sequence. A conversion similar to this third one has occurred independently in the descent of the gorilla genes. The four previously identified conversions, labeled C1-C4 (Scott et al. 1984), were substantiated with the addition of the chimpanzee genes to our analysis (C1 being shared by all three hominines and C2, C3, and C4 being found only in humans). Thus, the fetal genes from all three of these hominine species have been active in gene conversions during the descent of each species.   相似文献   

3.
We have determined the nucleotide sequences of the linked gamma 1- and gamma 2- fetal globin genes from a single orangutan (Pongo pygmaeus) chromosome and compared them with the corresponding genes of other simian primates (gamma 1- and gamma 2-genes of human, chimpanzee, gorilla, and the single gamma-gene of the spider monkey). Previous studies have indicated that the two gamma-gene loci in catarrhine primates resulted from a duplication about 25-35 million years ago. However, comparisons of aligned gamma-gene sequences show that these genes contain three regions with distinct histories of which only the 3' third clearly reflects the ancestral nature expected of the gamma-gene duplication. To explain these different evolutionary histories and also hominid relationships we provide evidence for the occurrence of sequence conversions which affect region 1 (120 base pairs 5'-flanking through exon 2) in all hominid species and extend to varying degrees into region 2 (intron 2 through exon 3). Close examinations of the proposed conversions further suggest that 12 of the 13 conversions identified involved gamma 1 converting gamma 2. Polarity of these conversions may be a result of differential survival between these genes because during human fetal development the gamma 1-gene is preferentially expressed over the gamma 2-gene and it may be subjected to greater selection pressure to remain unaltered.  相似文献   

4.
The complete mitochondrial DNA (mtDNA) molecule of the gorilla was sequenced. The entire sequence, 16,412 nucleotides, was determined by analysis of natural (not polymerase chain reaction) restriction fragments covering the whole molecule. The sequence was established from one individual and thus nonchimeric. After comparison with the COII gene of gorilla specimens with known geographical origin, the sequence was identified as characteristic of the Western lowland gorilla, Gorilla gorilla gorilla. With the exception of the NADH2 gene, all genes have a methionine start codon. The inferred start codon of NADH2 is ATT (isoleucine). The COIII, NASDH4, and cytochrome b genes are not terminated by a stop codon triplet, and the COI gene is probably terminated by an AAA triplet rather than by a regular stop codon. The great majority of genic sequences (rRNAs, peptide-coding genes, tRNAs) of the complete mtDNAs of Gorilla, Pan, and Homo show a greater similarity between Pan and Homo than between either of these genera to Gorilla. The analysis of the peptide-coding genes suggest that relative to comparison between Homo and Pan a certain degree of transition saturation has taken place in codon position 3 in comparisons between Gorilla to either Homo or Pan.   相似文献   

5.
6.
The order in which ectocranial sutures undergo fusion displays species-specific variation among primates. However, the precise relationship between suture closure and phylogenetic affinities is poorly understood. In this study, we used Guttman Scaling to determine if the modal progression of suture closure differs among Homo sapiens, Pan troglodytes, and Gorilla gorilla. Because DNA sequence homologies strongly suggest that P. troglodytes and Homo sapiens share a more recent common ancestor than either does with G. gorilla, we hypothesized that this phylogenetic relationship would be reflected in the suture closure patterns of these three taxa. Results indicated that while all three species do share a similar lateral-anterior closure pattern, G. gorilla exhibits a unique vault pattern, which, unlike humans and P. troglodytes, follows a strong posterior-to-anterior gradient. P. troglodytes is therefore more like Homo sapiens in suture synostosis.  相似文献   

7.
The sequence of the gorilla alpha-fetoprotein gene, including 869 base pairs of the 5' flanking region and 4892 base pairs of the 3' flanking region (24,607 in total), was determined from two overlapping lambda phage clones. The sequence extends 18,846 base pairs from the Cap site to the polyadenylation site, and it reveals that the gene is composed of 15 exons, which are symmetrically placed within three domains of alpha-fetoprotein. The deduced polypeptide chain is composed of a 19-amino-acid leader peptide, followed by 590 amino acids of the mature protein. The RNA polymerase II binding site, TATAAAA, and the promoter element, CCAAC, are positioned at -21 and -65 from the Cap site, respectively. The polyadenylation signal, AATAAA, is located in the last exon, which is untranslated. The sequence for the gorilla alpha-fetoprotein gene was compared with that of the previously published human alpha-fetoprotein gene (P. E. M. Gibbs, R. Zielinski, C. Boyd, and A. Dugaiczyk, 1987, Biochemistry 26: 1332-1343). Four types of repetitive sequence elements were found in identical positions in both species. However, one Alu and one Xba DNA repeat within introns 4 and 7, respectively, of the human gene are absent from orthologous positions in the gorilla. The Alu and the Xba DNA repeats probably emerged in the human genome after the human/gorilla divergence and became established novelties in the human lineage. There are 363/21,523 mutational changes between human and gorilla, amounting to 1.69% DNA divergence between the two primate species. The value of 1.69% is lower than the 2.27% obtained from melting temperatures of hybrids between human and gorilla genomic DNA (C. G. Sibley and J. E. Ahlquist, 1984, J. Mol. Evol. 26: 99-121). At the protein level, Homo sapiens differs from Gorilla gorilla only at 4 of 609 amino acid positions (0.66%) in the alpha-fetoprotein sequence. This difference signifies a lower rate of molecular divergence for the alpha-fetoprotein gene in primates, as compared to rodents.  相似文献   

8.
Comparative and phylogenetic analyses of homologous sequences from closely related species reveal genetic events which have happened in the past and thus provide considerable insight into molecular genetic processes. One such process which has been especially important in the evolution of multigene families is gene conversion. The fetal gamma 1 and gamma 2-globin genes of catarrhine primates (humans, apes, and Old World monkeys) underwent numerous gene conversion events after they arose from a gene duplication event 25-35 million years ago. By including the gamma 1- and gamma 2-globin gene sequences from the common gibbon, Hylobates lar, the present work expands the gamma-globin data set to represent all major groups of hominoid primates. A computer-assisted algorithm is introduced which reveals converted DNA segments and provides results very similar to those obtained by site-by-site evolutionary reconstruction. Both methods provide strong evidence for at least 14 different converted stretches in catarrhine primates as well as five conversions in ancestral lineages. Features of gene conversions generalized from this molecular history are 1) conversions are restricted to regions maintaining high degrees of sequence similarity, 2) one gene may dominate in converting another gene, 3) sequences involved in conversions may accumulate changes more rapidly than expected, and 4) certain elements, such as polypurine/polypyrimidine [Y)n) and (TG)n elements, appear to be hotspots for initiating or terminating conversion events.  相似文献   

9.
10.
11.
12.
Estimation of population parameters for the common ancestors of humans and the great apes is important in understanding our evolutionary history. In particular, inference of population size for the human-chimpanzee common ancestor may shed light on the process by which the 2 species separated and on whether the human population experienced a severe size reduction in its early evolutionary history. In this study, the Bayesian method of ancestral inference of Rannala and Yang (2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics. 164:1645-1656) was extended to accommodate variable mutation rates among loci and random species-specific sequencing errors. The model was applied to analyze a genome-wide data set of approximately 15,000 neutral loci (7.4 Mb) aligned for human, chimpanzee, gorilla, orangutan, and macaque. We obtained robust and precise estimates for effective population sizes along the hominoid lineage extending back approximately 30 Myr to the cercopithecoid divergence. The results showed that ancestral populations were 5-10 times larger than modern humans along the entire hominoid lineage. The estimates were robust to the priors used and to model assumptions about recombination. The unusually low X chromosome divergence between human and chimpanzee could not be explained by variation in the male mutation bias or by current models of hybridization and introgression. Instead, our parameter estimates were consistent with a simple instantaneous process for human-chimpanzee speciation but showed a major reduction in X chromosome effective population size peculiar to the human-chimpanzee common ancestor, possibly due to selective sweeps on the X prior to separation of the 2 species.  相似文献   

13.
Additional DNA sequence information from a range of primates, including 13.7 kb from pygmy chimpanzee (Pan paniscus), was added to data sets of beta-globin gene cluster sequence alignments that span the gamma 1, gamma 2, and psi eta loci and their flanking and intergenic regions. This enlarged body of data was used to address the issue of whether the ancestral separations of gorilla, chimpanzee, and human lineages resulted from only one trichotomous branching or from two dichotomous branching events. The degree of divergence, corrected for superimposed substitutions, seen in the beta-globin gene cluster between human alleles is about a third to a half that observed between two species of chimpanzee and about a fourth that between human and chimpanzee. The divergence either between chimpanzee and gorilla or between human and gorilla is slightly greater than that between human and chimpanzee, suggesting that the ancestral separations resulted from two closely spaced dichotomous branchings. Maximum parsimony analysis further strengthened the evidence that humans and chimpanzees share the longest common ancestry. Support for this human-chimpanzee clade is statistically significant at P = 0.002 over a human-gorilla clade or a chimpanzee-gorilla clade. An analysis of expected and observed homoplasy revealed that the number of sequence changes uniquely shared by human and chimpanzee lineages is too large to be attributed to homoplasy. Molecular clock calculations that accommodated lineage variations in rates of molecular evolution yielded hominoid branching times that ranged from 17-19 million years ago (MYA) for the separation of gibbon from the other hominoids to 5-7 MYA for the separation of chimpanzees from humans. Based on the relatively late dates and mounting corroborative evidence from unlinked nuclear genes and mitochondrial DNA for the close sister grouping of humans and chimpanzees, a cladistic classification would place all apes and humans in the same family. Within this family, gibbons would be placed in one subfamily and all other extant hominoids in another subfamily. The later subfamily would be divided into a tribe for orangutans and another tribe for gorillas, chimpanzees, and humans. Finally, gorillas would be placed in one subtribe with chimpanzees and humans in another, although this last division is not as strongly supported as the other divisions.  相似文献   

14.
Within- and between-species variability was examined in a noncoding 238-bp segment of the HOX2 cluster. DNA of 4-26 individuals of four species (Pongo pygmaeus, Pan troglodytes, Gorilla gorilla, and Homo sapiens) was PCR amplified and electrophoresed in a denaturing gradient gel to screen for variability. Coupled amplification and sequencing was used to determine the complete sequence for each of the different alleles identified, one each in humans and orangutans, two in chimpanzees, and four in gorillas. Maximum-parsimony methods were used to construct a gene tree for these sequences. Alleles in all four species cluster into groups consisting of only one species (i.e., alleles within a species are monophyletic). The number of base-pair differences observed among alleles within P. troglodytes and within G. gorilla is larger than the number of base-pair substitutions that phylogenetically link Pan with Homo. Given these and other published data, it is premature to accept any particular phylogenetic tree that relates these three genera through two separate speciation events.  相似文献   

15.
The human G gamma-globin and beta-globin genes are expressed in erythroid cells at different stages of human development, and previous studies have shown that the two cloned genes are also expressed in a differential stage-specific manner in transgenic mice. The G gamma-globin gene is expressed only in murine embryonic erythroid cells, while the beta-globin gene is active only at the fetal and adult stages. In this study, we analyzed transgenic mice carrying a series of hybrid genes in which different upstream, intragenic, or downstream sequences were contributed by the beta-globin or G gamma-globin gene. We found that hybrid 5'G gamma/3'beta globin genes containing G gamma-globin sequences upstream from the initiation codon were expressed in embryonic erythroid cells at levels similar to those of an intact G gamma-globin transgene. In contrast, beta-globin upstream sequences were insufficient for expression of 5'beta/3'G gamma hybrid globin genes or a beta-globin-metallothionein fusion gene in adult erythroid cells. However, beta-globin downstream sequences, including 212 base pairs of exon III and 1,900 base pairs of 3'-flanking DNA, were able to activate a 5'G gamma/3'beta hybrid globin gene in fetal and adult erythroid cells. These experiments suggest that positive regulatory elements upstream from the G gamma-globin and downstream from the beta-globin gene are involved in the differential expression of the two genes during development.  相似文献   

16.
Summary Electrophoretic mobilities of homologous erythrocyte enzymes at 21 loci studied in man (Homo sapiens), chimpanzee (Pan troglodytes) and gorilla (Gorilla gorilla) led to estimations of the genetic distances between the three species: If each form is placed at a corner of an isoscele triangle, the distance between the chimpanzee and either of the other two is greater than that between the latter two.  相似文献   

17.
To investigate the control of the gamma-globin gene during development, we produced transgenic mice in which sequences of the beta-gene promoter were replaced by equivalent sequences of the gamma-gene promoter in the context of a human beta-globin locus yeast artificial chromosome (betaYAC) and analyzed the effects on globin gene expression during development. Replacement of 1,077 nucleotides (nt) of the beta-gene promoter by 1,359 nt of the gamma promoter resulted in striking inhibition of the gamma-promoter/beta-gene expression in the adult stage of development, providing direct evidence that the expression of the gamma gene in the adult is mainly controlled by autonomous silencing. Measurements of the expression of the gamma promoter/beta-globin gene as well as the wild gamma genes showed that gene competition is also involved in the control of gamma-gene expression in the fetal stage of development. We conclude that autonomous silencing is the main mechanism controlling gamma-gene expression in the adult, while autonomous silencing as well as competition between gamma and beta genes contributes to the control of gamma to beta switching during fetal development.  相似文献   

18.
The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9–8.4×10−4 events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages.  相似文献   

19.
Man's place in hominoidea revealed by mitochondrial DNA genealogy   总被引:7,自引:0,他引:7  
Summary Molecular biology has resurrected C. Darwin and T.H. Huxley's question about the origin of humans, but the precise branching pattern and dating remain controversial. To settle this issue, a large amount of sequence information is required. We determined mitochondrial (mt) DNA sequences for five hominoids; pygmy and common chimpanzees, gorilla, orangutan, and siamang. The common region compared with the known human sequence is 4759 by long, encompassing genes for 11 transfer RNAs and 6 proteins. Because of the high substitution rates in mammalian mtDNA and an unprecedentedly large region compared, the sequence differences clearly indicate that the closest relatives to human are chimpanzees rather than gorilla. For dating the divergences of human, chimpanzee, and gorilla, we used only unsaturated parts of sequence differences in which the mtDNA genealogy is not obscured by multiple substitutions. The result suggests that gorilla branched off 7.7 ± 0.7 million years (Myr) ago and human 4.7 ± 0.5 Myr ago; the time difference between these divergences being as long as 3 Myr.Offprint requests to: S. Horai  相似文献   

20.
The DRB family of human class II major histocompatibility complex (Mhc) loci is unusual in that individuals differ in the number and combination of genes (haplotypes) they carry. Indications are that both the allelic and haplotype polymorphisms of the DRB loci predate speciation. Searching for the evolutionary origins of these polymorphisms, we have sequenced five DRB clones isolated from a cDNA library of a pigtail macaque (Macaca nemestrina) B lymphocyte line. The clones represent five different genes which we designate Mane-DRB*01-Mane-DRB*05. The genes appears to be approximately equidistant from each other, so that allelic relationships between them cannot be established on the basis of the sequence data alone. If positions coding for the peptide-binding region of the class II beta chains are eliminated from sequence comparisons, the Mane-DRB genes appear to be most closely related to the human (HLA) DRB1 genes of the DRw52 group. We interpret this finding to indicate that the ancestral gene of the DRw52 group of human DRB1 alleles separated from the rest of the HLA-DRB1 alleles before the separation of the Old World monkeys (Cercopithecoidea) from the apes (Hominoidea) in the early Oligocene. After this separation, the ancestral DRB1 gene of the DRw52 group duplicated in the Old World monkey lineage to give rise to genes at three loci at least, while in the ape lineage this gene may have remained single and diverged into a number of alleles instead. These findings suggest that some of the polymorphism currently present at the DRB1 locus is greater than 35 Myr old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号