首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Two fetal globin genes (G gamma and A gamma) from one chromosome of a lowland gorilla (Gorilla gorilla gorilla) have been sequenced and compared to three human loci (a G gamma-gene and two A gamma-alleles). A comparison of regions of local homology among these five sequences indicates that long after the duplication that produced the two nonallelic gamma-globin loci of catarrhine primates, about 35 million years (Myr) ago, at least one gene conversion event occurred between these loci. This conversion occurred not long before the ancestral divergence (about 6 Myr ago) of Homo and Gorilla. After this ancestral divergence, a minimum of three more gene conversion events occurred in the human lineage. Each human A gamma-allele shares specific sequence features with the gorilla A gamma-gene; one such distinctive allelic feature involves the simple repeated sequence in IVS 2. This suggests that early in the human lineage the A gamma-genes may have undergone a crossing-over event mediated by this simple repeated sequence. The DNA sequences from coding regions of both G gamma- and A gamma-loci, a comparison of 292 codons in the corresponding gorilla and human genes, show an unusually low evolutionary rate, with only two nonsilent differences and, surprisingly, not even one silent substitution. The two nonsynonymous substitutions observed predict a glycine at codon 73 and an arginine at codon 104 in the gorilla A gamma-sequence rather than aspartic acid and lysine, respectively, in human A gamma. Because only arginine has been found at position 104 in gamma-chains of Old World monkeys, it may represent the ancestral residue lost in gorilla and human G gamma-chains and in the human A gamma-chain. Possibly the arginine codon (AGG) was replaced by the lysine codon (AAG) in the G gamma-gene of a common ancestor of Homo and Gorilla and then was transferred to the A gamma-gene by subsequent conversions in the human lineage. DNA sequence conversions, similar to that attributed to the fetal gamma-globin genes, appear to be relatively frequent phenomena and, if widespread throughout the genome, may have profound evolutionary consequences.   相似文献   

2.
We have determined the nucleotide sequences of the linked gamma 1- and gamma 2- fetal globin genes from a single orangutan (Pongo pygmaeus) chromosome and compared them with the corresponding genes of other simian primates (gamma 1- and gamma 2-genes of human, chimpanzee, gorilla, and the single gamma-gene of the spider monkey). Previous studies have indicated that the two gamma-gene loci in catarrhine primates resulted from a duplication about 25-35 million years ago. However, comparisons of aligned gamma-gene sequences show that these genes contain three regions with distinct histories of which only the 3' third clearly reflects the ancestral nature expected of the gamma-gene duplication. To explain these different evolutionary histories and also hominid relationships we provide evidence for the occurrence of sequence conversions which affect region 1 (120 base pairs 5'-flanking through exon 2) in all hominid species and extend to varying degrees into region 2 (intron 2 through exon 3). Close examinations of the proposed conversions further suggest that 12 of the 13 conversions identified involved gamma 1 converting gamma 2. Polarity of these conversions may be a result of differential survival between these genes because during human fetal development the gamma 1-gene is preferentially expressed over the gamma 2-gene and it may be subjected to greater selection pressure to remain unaltered.  相似文献   

3.
A systematic review of parasitological data pertaining to the phylogeny of hominoid primates revealed considerable internal consistency and congruence with non-parasitological data. Hylobatids are supported as the sister-group of Pongo + Pan + Gorilla , the 'Great Apes'. Within the Great Apes, Pan + Gorilla are sister taxa. Multiple analyses of presence/absence data place Homo with cercopithecids, probably an artefact of humans' widespread occurrence and polymorphic feeding and living habits. Explicit phylogenetic hypotheses are available for only two parasite groups. Hookworms of the genus Oesophagostomum subgenus Conoweberia place Homo as the sister-group of Pan + Gorilla , whereas pinworms of the genus Enterobius place Homo as the sister-group of Pongo + Pan + Gorilla . This disagreement among data sets with regards to the placement of Homo , combined with the complete agreement about the placement of the other hominoids, is consistent with uncertainties in current findings from other sets of data.  相似文献   

4.
The fetal globin genes G gamma and A gamma from one chromosome of a chimpanzee (Pan troglodytes) were sequenced and found to be closely similar to the corresponding genes of man and the gorilla. These genes contain identical promoter and termination signals and have exons 1 and 2 separated by the conserved short intron 1 (122 bp) and exons 2 and 3 separated by the more rapidly evolving, larger intron 2 (893 bp and 887 bp in chimpanzee G gamma and A gamma, respectively). Each intron 2 has a stretch of simple sequence DNA (TG)n serving possibly as a "hot spot" for recombination. The two chimpanzee genes encode polypeptide chains that differ only at position 136 (glycine in G gamma and alanine in A gamma) and that are identical to the corresponding human chains, which have aspartic acid at position 73 and lysine at 104 in contrast to glycine and arginine at these respective positions of the gorilla A gamma chain. Phylogenetic analysis by the parsimony method revealed four silent (synonymous) base substitutions in evolutionary descent of the chimpanzee G gamma and A gamma codons and none in the human and gorilla codons. These Homininae (Pan, Homo, Gorilla) coding sequences evolved at one-tenth the average mammalian rate for nonsynonymous and one-fourth that for synonymous substitutions. Three sequence regions that were affected by gene conversions between chimpanzee G gamma and A gamma loci were identified: one extended 3' of the hot spot with G gamma replaced by the A gamma sequence, another extended 5' of the hot spot with A gamma replaced by G gamma, and the third conversion extended from the 5' flanking to the 5' end of intron 2, with G gamma replaced here by the A gamma sequence. A conversion similar to this third one has occurred independently in the descent of the gorilla genes. The four previously identified conversions, labeled C1-C4 (Scott et al. 1984), were substantiated with the addition of the chimpanzee genes to our analysis (C1 being shared by all three hominines and C2, C3, and C4 being found only in humans). Thus, the fetal genes from all three of these hominine species have been active in gene conversions during the descent of each species.   相似文献   

5.
Molecular phylogeny of the family of apes and humans   总被引:5,自引:0,他引:5  
The morphological picture of primate phylogeny has not unambiguously identified the nearest outgroup of Anthropoidea and has not resolved the branching pattern within Hominoidea. The molecular picture provides more resolution and clarifies the systematics of Hominoidea. Protein and DNA evidence divides Hominoidea into Hylobatidae (gibbons) and Hominidae, family Hominidae into Ponginae (orangutan) and Homininae, and subfamily Homininae into two tribes, one for Gorilla, and the other for Pan (chimpanzee) and Homo. Parsimony and maximum likelihood analyses, carried out on orthologous noncoding nucleotide sequences from primate beta-globin gene clusters, provide significant evidence for the human-chimpanzee tribe and overwhelming evidence for the human-chimpanzee-gorilla clade. These analyses also indicate that the rate of molecular evolution became slower in hominoids than in other primates and mammals.  相似文献   

6.
Within- and between-species variability was examined in a noncoding 238-bp segment of the HOX2 cluster. DNA of 4-26 individuals of four species (Pongo pygmaeus, Pan troglodytes, Gorilla gorilla, and Homo sapiens) was PCR amplified and electrophoresed in a denaturing gradient gel to screen for variability. Coupled amplification and sequencing was used to determine the complete sequence for each of the different alleles identified, one each in humans and orangutans, two in chimpanzees, and four in gorillas. Maximum-parsimony methods were used to construct a gene tree for these sequences. Alleles in all four species cluster into groups consisting of only one species (i.e., alleles within a species are monophyletic). The number of base-pair differences observed among alleles within P. troglodytes and within G. gorilla is larger than the number of base-pair substitutions that phylogenetically link Pan with Homo. Given these and other published data, it is premature to accept any particular phylogenetic tree that relates these three genera through two separate speciation events.  相似文献   

7.
Zusammenfassung Es wurden die Seren 33 anthropoider Affen (Pan 12, Gorilla 6, Pongo 11, Symphalangus 4) mit der Agargel-Immunoelektrophorese auf das Vorkommen von group specific components untersucht.Bei allen anthropoiden Affen konnten wir Gc-Globuline mit Anti-Human-Gc-Pferdeseren nachweisen. Bei Pongo und bei Gorilla sind die Gc-Phänotypen hominid geprägt. Bei Pongo fanden sich die Gc-Typen Gc 1-1, Gc 2-1 und Gc 2-2, bei Gorilla fand sich der Typ Gc 1-1. Der bei Pan und Symphalangus fefundene Gc-Typ steht außerhalb des Gc-Systems von Homo; er wird vermutlich durch ein eigenes Allel kontrolliert, das wir mit Gcape bezeichnen.Mit drei verschiedenen Anti-Human-Gc-Seren erwiesen sich die Gc-Globuline der anthropoiden Affen immunologisch mit denen des Menschen identisch.
Sera of 33 hominide primates (Pan 12, Gorilla 6, Pongo 11, Symphalangus 4) have been examined for the presence of the group specific components (Gc) by agar-gel immunoelectrophoresis.With the use of anti-human-Gc-horsesera Gc-globulins were demonstrated in all 33 sera of the four hominide primate species. Gc phenotypes of Pongo and of Gorilla were indistinguishable from human Gc phenotypes. In Pongo the types Gc 1-1, Gc 2-1 and Gc 2-2 have been observed, in Gorilla only the type Gc 1-1 has been found. The Gc phenotype in sera of Pan and Symphalangus was found to be different from the Gc phenotypes in Man. This Gc-type is probably determined by a specific Gc allele, for which the notation Gcape has been given.With three different anti-human-Gc-sera reaction of immunologic identity has been demonstrated between the human Gc and the Gc of the four hominide primate species.


Mit 5 Textabbildungen

Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

8.
Maximum-parsimony and maximum-likelihood analyses of two of the serum albumin gene's intron sequences from 24 catarrhines (17 cercopithecid and 7 hominid) and 3 platyrrhines (an outgroup to the catarrhines) yielded results on catarrhine phylogeny that are congruent with those obtained with noncoding sequences of the gamma(1)-gamma(2) globin gene genomic region, using only those flanking and intergenic gamma sequences that in their history were not involved in gene conversion. A data set that combined in a tandem alignment these two sets of noncoding DNA orthologues from the two unlinked nuclear genomic loci yielded the following confirmatory results both on the course of cladistic branchings (the divisions in a cladistic classification of higher ranking taxa into subordinate taxa) and on the ages of the taxa (each taxon representing a clade). The cercopithecid branch of catarrhines, at approximately 14 Ma (mega annum) divided into Colobini (the leaf-eating Old World monkeys) and Cercopithecini (the cheek-pouched Old World monkeys). At approximately 10-9 Ma, Colobini divided into an African clade, Colobina, and an Asian clade, Presbytina; similarly at this time level, Cercopithecini divided into Cercopithecina (the guenons, patas, and green monkeys) and Papionina. At approximately 7 Ma, Papionina divided into Macaca, Cercocebus, and Papio. At approximately 5 Ma, Cercocebus divided subgenerically into C. (Cercocebus) for terrestrial mangabeys and C. (Mandrillus) for drills and mandrills, while at approximately 4 Ma Papio divided subgenerically into P. (Locophocebus) for arboreal mangabeys, P. (Theropithecus) for gelada baboons, and P. (Papio) for hamadryas baboons. In turn, the hominid branch of catarrhines at approximately 18 Ma divided into Hylobatini (gibbons and siamangs) and Hominini; at approximately 14 Ma, Hominini divided into Pongina (orangutans) and Hominina; at approximately 7 Ma, Hominina divided into Gorilla and Homo; and at approximately 6-5 Ma, Homo divided subgenerically into H. (Homo) for humans and H. (Pan) for common and bonobo chimpanzees. Rates of noncoding DNA evolution were assessed using a data set of noncoding gamma sequence orthologues that represented 18 catarrhines, 16 platyrrhines, 3 non-anthropoid primates (2 tarsiers and 1 strepsirhine), and rabbit (as outgroup to the primates). Results obtained with this data set revealed a faster rate of nucleotide substitutions in the early primate lineage to the anthropoid (platyrrhine/catarrhine) ancestor than from that ancestor to the present. Rates were slower in catarrhines than in platyrrhines, slower in the cheek-pouched than in the leaf-eating cercopithecids, and slower yet in the hominids. On relating these results to data on brain sizes and life spans, it was suggested that life-history strategies that favor intelligence and longer life spans also select for decreases in de novo mutation rates.  相似文献   

9.
Abstract— Genealogical reconstructions carried out by the parsimony method on protein amino acid and DNA nucleotide sequence data are providing fresh evidence on cladistic branching patterns at taxonomic levels from the classes of Vertebrata and orders of Eutheria to the genera of Hominoidea. Minimum length trees constructed from amino acid sequence data group Mammalia with Archosauria (i.e., Aves plus Crocodilia), Amniota with Amphibia, and Tetrapoda with Teleostei. Within Mammalia, Edentata and Paenungulata (e.g., Proboscidea) appear as the most anciently separated from other eutherians. Another superordinal eutherian clade consists of Artiodactyla, Cetacea, and Perissodactyla. A third consistently contains Primates, Lagomorpha, and Tupaia. The cladistic positions of such orders as Carnivora, Chiroptera, Insectivora, and Rodentia are not well resolved by the currently still sparse body of sequence data. However, recent dramatic progress in the technology of gene cloning and nucleotide sequencing has opened the way for so enlarging the body of sequence data that it should become possible to solve almost any problem concerning the phylogenetic systematice of extant mammals. An example is provided by hominoid genera. Minimum length trees constructed from mitochondrial DNA nucleotide sequence data very strongly group Pan, Homo , and Gorilla into Homininae and then join Homininae and Ponginae (pongo) into Hominidae as the sister family of Hylobatidae (Hylobates). Resolution of the hominine trichotomy into two dichotomous branchings should be forthcoming as kilobase sequencing of nuclear genes progresses.  相似文献   

10.
While a number of studies have documented the mandibular variations in hominoids, few focused on evaluating the variation of the whole outline of this structure. Using an efficient morphometrical approach, i.e. elliptical Fourier analysis, mandibular outlines in lateral view from 578 adult hominoids representing the genera Hylobates, Pongo, Gorilla, Pan, and Homo were quantified and compared. This study confirms that elliptical Fourier analysis provides an accurate characterization of the shape of the mandibular profile. Differences in mandibular shape between hominoid genera, species, subspecies, and to a lesser extent between sexes were demonstrated. Mandibles in great apes and hylobatids subspecies were generally less distinct from each other than were species. However, the magnitudes of differences among subspecies of Gorilla and Pongo approached or exceeded those between Pan troglodytes and P. paniscus. The powerful discrimination between taxa from the genus down to subspecific level associated to the relatively low level of intrageneric mandibular polymorphism in great apes provides strong evidences in support of the taxonomic utility of the shape of the mandibular profile in hominoids. In addition, morphological affinities between Pongo and Pan and the clear distinction between Homo and Pan suggest that the mandibular outline is a poor estimate of phylogenetic relationships in great apes and humans. The sexual dimorphism in mandibular shape exhibits two patterns of expression: a high degree of dimorphism in Gorilla, Pongo, and H. s. syndactylus and a relatively low one in modern humans and Pan. Besides, degree of mandibular shape dimorphism can vary considerably among closely related subspecies as observed in gorillas, arguing against the use of mandibular shape dimorphism patterns as characters in phylogenetic analyses. However, the quantification of the mandibular shape and of the variations among hominoids provides an interesting comparative framework that is likely to supply further arguments for a better understanding of the patterns of differentiation between living hominoids.  相似文献   

11.
Ground sections of incisors, canines, and molars were selected that showed clear incremental markings in root dentine. The sample comprised 98 Homo sapiens, 53 Pan troglodytes, and a more limited combined sample of 51 Gorilla and Pongo sections. Daily rates of root dentine formation, together with the orientation of incremental markings in roots close to the cement-dentine junction (CDJ), were used to calculate root extension rates for the first 10mm of root formed beyond the buccal enamel cervix. Modern human anterior tooth roots showed a more regular pattern of increase in root length than those in great apes. In Pan, root growth rose quickly to higher rates but then flattened off. The fastest extension rates in modern humans were in incisor roots (10-12 microm per day), followed by canines (8-9 microm per day). Extension rates in Pan rose to slightly greater values in canines ( approximately 12-14 microm per day) than in incisors ( approximately 10-11 microm per day). Molar tooth roots in both modern humans and great apes grew in a nonlinear manner. Peak rates in molars reduced from M1 to M3 (8, 7, and 6 microm per day, respectively). Like humans, root growth in Pan peaked earlier in M1s at rates of between 8 and 9 microm per day, and later in M3s at rates of 7 to 8 microm per day. The more limited data set for Gorilla and Pongo molars suggests that extension rates were generally higher than in Pan by approximately 1.0-1.5 microm per day. There were greater differences in peak extension rates, with Gorilla and Pongo extension rates being between 2.5 and 4.5 microm per day higher than those in Pan. These findings highlight for the first time that root growth rates differ between tooth types in both pattern and rate and between taxa. They provide the basis with which to explore further the potential comparative relationships between root growth, jaw growth, and the eruption process.  相似文献   

12.
The complete mitochondrial DNA (mtDNA) molecule of the gorilla was sequenced. The entire sequence, 16,412 nucleotides, was determined by analysis of natural (not polymerase chain reaction) restriction fragments covering the whole molecule. The sequence was established from one individual and thus nonchimeric. After comparison with the COII gene of gorilla specimens with known geographical origin, the sequence was identified as characteristic of the Western lowland gorilla, Gorilla gorilla gorilla. With the exception of the NADH2 gene, all genes have a methionine start codon. The inferred start codon of NADH2 is ATT (isoleucine). The COIII, NASDH4, and cytochrome b genes are not terminated by a stop codon triplet, and the COI gene is probably terminated by an AAA triplet rather than by a regular stop codon. The great majority of genic sequences (rRNAs, peptide-coding genes, tRNAs) of the complete mtDNAs of Gorilla, Pan, and Homo show a greater similarity between Pan and Homo than between either of these genera to Gorilla. The analysis of the peptide-coding genes suggest that relative to comparison between Homo and Pan a certain degree of transition saturation has taken place in codon position 3 in comparisons between Gorilla to either Homo or Pan.   相似文献   

13.
The angle between the antero-posterior plane of the occipital condyles and a vertical axis at right angles to the Frankfort Horizontal was measured in Homo sapiens, Gorilla, Pan, Pongo and casts of two Neanderthal skulls, the Rhodesian skull and three australopithecine skulls. The angle was much greater in adult Homo sapiens and in the Neanderthal and australopithecine casts than in the adult groups of the three apes. In the immature groups, the angle underwent little change with age in Homo sapiens but in Gorilla and Pan the angle decreased markedly during the growth period. These findings can be readily correlated with the habitual bodily posture of each of the extant genera. In Homo sapiens , an upright posture is adopted early in life while in the African apes the young tend to move by brachiation and thus have an habitual posture of the spine closer to the vertical than in the "knuckle walking" adults. The large value of the angle in the Neanderthal casts also correlates well with the now widely held view that this group has a fully upright posture. However, the finding of a relatively low value for the angle in adult Pongo —a brachiator—runs counter to the general thesis that the angle is a direct reflection of overall posture and casts some doubt upon a conclusion that the large value of the angle in the australopithecine fossils necessarily indicates that these creatures stood upright.  相似文献   

14.
Phylogeny, neoteny and growth of the cranial base in hominoids   总被引:1,自引:0,他引:1  
This study tests the hypothesis that there is a general pattern in the growth of the cranial base of Homo sapiens that is 'essentially neotenous' [Gould, 1977]. Juvenile and adult crania of Homo sapiens, Gorilla gorilla, Pan troglodytes and Pongo pygmaeus were studied and the cross-sectional growth curves for 10 measurements made on the cranial base (as viewed in norma basilaris) were compared. The results of this study suggest that relatively simple modifications to the timing or pattern of growth are insufficient to explain the observed morphological differences between the cranial base of modern Homo sapiens and the great apes.  相似文献   

15.
Although quantitative variations exist between living Man ( Homo sapiens sapiens ) and the extant great apes ( Pongo, Pan, Gorilla ) in such features of the articular surface of the temporal bone (a part of the temporomandibular joint) as the proportionate development of the postglenoid tubercle, the relative prominence of the articular tubercle and the slope of its posterior face, these do not individually effect a clear differentiation between the four extant genera. But in multivariate combination of these features, although Pan and Pongo are relatively closely associated, Gorilla and Homo sapiens sapiens are distinct, and also clearly differentiated from each other. The differences between genera of extant apes are, on average, as great as those between extant Man and individual apes.
As portrayed by such multivariate compound, this anatomical region in four fossil groups displays a unique configuration differentiating Homo sapiens neanderthalensis, Homo erectus pekinensis, Australopithecus africanus and Australopithecus robustus both from one another and from extant types. The differences are such that the fossil species lie uniquely and not intermediate between extant groups.
Definable age changes in this multivariate compound occur in both Man and apes but neither these, nor overall differences between adults, appear to be associated with marked contrasts in the pattern of jaw movement. It would thus seem improbable that inferences can be made from these features about the type of jaw movement that characterized the several fossil groups.  相似文献   

16.
Many behavioral and ecological factors influence the degree of expression of canine dimorphism for different reasons. Regardless of its socioecological importance, we know virtually nothing about the processes responsible for the development of canine dimorphism. Our aim here is to describe the developmental process(es) regulating canine dimorphism in extant hominoids, using histological markers of tooth growth. Teeth preserve a permanent record of their ontogeny in the form of short- and long-period incremental markings in both enamel and dentine. We selected 52 histological sections of sexed hominoid canine teeth from a total sample of 115, from which we calculated the time and rate of cuspal enamel formation and the rate at which ameloblasts differentiate along the future enamel-dentine junction (EDJ) to the end of crown formation. Thus, we were able to reconstruct longitudinal growth curves for height attainment in male and female hominoid canines. Male hominoids consistently take longer to form canine crowns than do females (although not significantly so for our sample of Homo). Male orangutans and gorillas occasionally take up to twice as long as females to complete enamel formation. The mean ranges of female canine crown formation times are similar in Pan, Gorilla, and Pongo. Interspecific differences between female Pan canine crown heights and those of Gorilla and Pongo, which are taller, result from differences in rates of growth. Differences in canine crown heights between male Pan and the taller, more dimorphic male Gorilla and Pongo canines result both from differences in total time taken to form enamel and from faster rates of growth in Gorilla and Pongo. Although modern human canines do not emerge as significantly dimorphic in this study, it is well-known that sexual dimorphism in canine crown height exists. Larger samples of sexed modern human canines are therefore needed to identify clearly what underlies this.  相似文献   

17.
It has been suggested that patterns of craniodental variation in living hominids (Gorilla, Homo, Pan, and Pongo) may be useful for evaluating variation in fossil hominid assemblages. Using this approach, a fossil sample exhibiting a pattern of variation that deviates from one shared among living taxa would be regarded as taxonomically heterogeneous. Here we examine patterns of tooth crown size and shape variation in great apes and humans to determine 1) if these taxa share a pattern of dental variation, and 2) if such a pattern can reliably discriminate between samples that contain single species and those that contain multiple species. We use parametric and nonparametric correlation methods to establish the degree of pattern similarity among taxa, and randomization tests to assess their statistical significance. The results of this study show that extant hominids do not share a pattern of dental size variation, and thus these taxa cannot be used to generate expectations for patterns of size variation in fossil hominid species. The hominines (Gorilla, Homo, and Pan) do share a pattern of shape variation in the mandibular dentition; however, Pongo is distinct, and thus it is unclear which, if either, pattern should be expected in fossil hominids. Moreover, in this case, most combined-species samples exhibit patterns of shape variation that are similar to those for single hominine species samples. Thus, although a common pattern of shape variation is present in the mandibular dentition, it is not useful for recognizing taxonomically mixed paleontological samples.  相似文献   

18.
19.
釉面横纹的数目可用于推断个体牙齿的牙冠形成时间,在生长发育研究中具有重要的意义。本研究运用数码体视显微镜和扫描电镜观察了云南石灰坝禄丰禄丰古猿(简称禄丰古猿)30枚齿冠完整的前部牙齿,包括上下颌中门齿6枚、侧门齿10枚和犬齿14枚。根据唇侧面釉面横纹计数的观察结果,分别以7天和9天芮氏线生长周期,估算各齿型的牙冠形成时间,结果显示:以生长周期7天计算,中门齿牙冠形成时间约为3.6-4.1年,侧门齿牙冠形成时间约为2.7-3.7年,犬齿牙冠形成时间约为4.2-7.0;以生长周期9天计算,中门齿牙冠形成时间约为4.4-5.2年,侧门齿牙冠形成时间约为3.4-4.7年,犬齿牙冠形成时间约为5.2-8.8年。为更深入地了解禄丰古猿牙冠形成时间在不同齿型及性别间足否存在明显差异,本文用SPSS软件对其进行显著性差异检验。采用小样本平均值的t值假设检验(置信区间为95%),结果如下:禄丰古猿前部牙齿的牙冠形成时间在各类牙齿的上下颌中不存在显著性差异;犬齿牙冠形成时间存在非常显著的性别差异,雄性牙冠形成时间明显长于雌性,侧门齿也存在显著的性别差异,而中门齿性别间则无显著性差异。此外对禄丰古猿中门齿,侧门齿和犬齿的牙冠形成时间进行单因素方差分析并两两对比,结果显示中门齿与侧门齿的牙冠形成时间不存在显著性差异,而犬齿与中门齿和侧门齿均存在显著性差异,犬齿牙冠形成时间明显长于门齿。同时也对禄丰古猿前部牙齿的牙冠形成时间与齿冠高进行相关性分析,其结果表明两者有显著的正相关性。将禄丰古猿与其他古猿和现生大猿、南方古猿以及人属成员进行对比,结果显示其前部牙齿牙冠形成时间长于原修康尔猿、南方古猿、傍人、人属成员,接近于蝴蝶禄丰古猿和大猩猩,而明显小于黑猩猩、华南化石猩猩及现生猩猩。  相似文献   

20.
Molecular data suggest that humans are more closely related to chimpanzees than either is to the gorillas, yet one finds the closest similarity in craniofacial morphology to be among the great apes to the exclusion of humans. To clarify how and when these differences arise in ontogeny, we studied ontogenetic trajectories for Homo sapiens, Pan paniscus, Pan troglodytes, Gorilla gorilla and Pongo pygmaeus. A total of 96 traditional three-dimensional landmarks and semilandmarks on the face and cranial base were collected on 268 adult and sub-adult crania for a geometric morphometric analysis. The ontogenetic trajectories are compared by various techniques, including a new method, relative warps in size-shape space. We find that adult Homo sapiens specimens are clearly separated from the great apes in shape space and size-shape space. Around birth, Homo sapiens infants are already markedly different from the great apes, which overlap at this age but diverge among themselves postnatally. The results suggest that the small genetic differences between Homo and Pan affect early human ontogeny to induce the distinct adult human craniofacial morphology. Pure heterochrony does not sufficiently explain the human craniofacial morphology nor the differences among the African apes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号