首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
紧密连接(tight junction,TJ)广泛存在于所有上皮或内皮细胞间连接的最顶端,是物质经旁细胞途径转运的结构和功能基础。TJ是由跨膜蛋白和胞浆蛋白两大类构成的大分子复合物,主要行使"屏障"和"栅栏"功能,前者可对物质的大小和电荷进行选择,进而调控旁细胞途径的物质转运;后者则通过调控顶膜和基底侧膜两个功能区之间的脂质和蛋白等物质的自由弥散形成高度极性化的细胞。近年来,关于TJ在各种上皮细胞中的作用及调控机制的研究日益增多。本文重点综述了上皮细胞间TJ研究的最新进展,包括TJ的构成、结构和功能检测以及调控机制,并以几类研究比较集中的上皮类型为例介绍TJ研究的现状,这将为防治与TJ改变相关的上皮屏障功能障碍性疾病提供新的思路。  相似文献   

2.
紧密连接(TJ)是存在于所有上皮或内皮细胞连接最顶端的大分子复合物,主要由胞浆蛋白和跨膜蛋白构成,是物质旁细胞转运途径和细胞极性维持的结构和功能基础.此外,TJ双向参与细胞信号的调控,不仅接收来自细胞内部的信号,调控TJ蛋白的装配和成熟;还可传递外来信号到细胞内部调控细胞的增殖、迁移、存活和分化.本文重点介绍了细胞TJ的分子构成、装配和功能调控方面的最新进展,并综述了TJ在肿瘤发生和发展、丙肝病毒感染和遗传性耳聋中的功能,以期为防治与TJ改变相关的上皮疾病提供理论指导.  相似文献   

3.
紧密连接(tightjunctions,TJs)对于维持上皮细胞或内皮细胞的正常结构和发挥生理功能起着重要作用。Claudins(CLDNs)蛋白是构成细胞膜紧密连接的主要成分之一,其异常表达导致上皮细胞或内皮细胞结构破坏、功能受损,与多种疾病的发生、发展关系密切。近年来,越来越多的文献报道了claudins蛋白在胃癌组织中的异常表达。不同claudin蛋白亚型在胃癌组织中的表达降低或增高所起作用亦不相同。Claudins蛋白与肿瘤形成、癌细胞的增殖、转移、以及预后关系密切。因此,深入研究claudins蛋白与胃癌发生、发展的关系具有重要意义。  相似文献   

4.
紧密连接(tight junction,TJ)是构成机体上皮和内皮屏障的重要结构,在维持细胞极性,调控物质扩散,防止毒素、过敏原以及病原体入侵中发挥重要作用。微小RNA(microRNA,miRNA)长度约19~25个核苷酸,是能在转录后水平调控基因表达的内源性非编码RNA。研究表明,miRNA可以调节编码TJ蛋白基因的稳定性和翻译过程,调控TJ功能,影响肠道、呼吸道、脑和视网膜等众多组织器官的屏障功能,从而参与全身多种疾病的发生发展过程。本文就miRNA对TJ的调节作用以及与相关疾病发生发展的关系进行综述,为防治与TJ改变相关的疾病提供新的思路。  相似文献   

5.
唐静  朱晓玲  张磊 《生物磁学》2013,(3):578-581
凝溶胶蛋白(gelsolin,GSN)是一种在机体内普遍存在的,对细胞结构和代谢功能具有多种调节作用的蛋白。GSN作为凝溶胶蛋白超家族的成员之一,是一种重要的肌动蛋白(actin)结合蛋白,可通过切断、封闭肌动蛋白丝,或使actin聚集成核等方式来调控actin的结构与代谢功能.GSN不仅能在重组的肌动蛋白细丝(F-actin)中发挥作用,而且在细胞运动、细胞凋亡等细胞活动中也发挥着重要的作用。GSN有血浆型(plasma gelsolin,pGSN)和细胞质型(cytoplasmic gelsolin,cGSN)两种亚型,它们在淀粉样变性、炎症、癌症、心血管疾病、阿茨海默病(AD)及肾脏疾病中都起着重要的作用,GSN可能成为多种疾病的一个新的生物标记物或者治疗靶点。本文将就GSN与相关疾病的关系的研究进展做一综述。  相似文献   

6.
细胞间紧密连接(tight junctions)广泛存在于上皮细胞及内皮细胞之间,其作用是保持细胞间结构的完整性,确保其功能的正常发挥,紧密连接上有很多种蛋白,occludin蛋白是其中主要蛋白之一,occludin蛋白的结构发生变化会导致紧密连接结构及功能的改变,而紧密连接结构与功能的紊乱是很多临床疾病共同的病理生理学特点,如肿瘤、中风及炎症性肺疾病。Occludin蛋白的结构及功能的改变受很多机制的调控,本文主要对occludin蛋白的结构、功能、调控机制及其与紧密连接之间的关系进行叙述。  相似文献   

7.
B细胞CLL/淋巴瘤2关联凋亡基因1(B-cell CLL/lymphoma 2-associated athanogene-1,BAG-1)编码的蛋白是一种多功能结合蛋白,包含不同功能的结构域,可与抗凋亡蛋白(Bcl-2)、热激蛋白70(heat shock protein 70,Hsp70/Hsc70)、细胞转化分裂介质(Raf-1)、类固醇激素受体和DNA等结合,对于调节细胞凋亡、信号传导、基因转录、细胞增殖与分化等具有重要作用。BAG-1参与多种神经系统疾病(如阿尔茨海默病、帕金森氏病、亨廷顿舞蹈病、脑中风、脊髓损伤以及神经精神障碍疾病)的发生发展过程。主要就BAG-1的结构、功能及其对神经系统疾病影响的研究进展进行了综述,以期为神经系统疾病的研究和治疗提供参考。  相似文献   

8.
肺表面活性蛋白C(surfactant protein C,SP-C)基因是目前被发现的唯一仅在肺泡Ⅱ型上皮细胞中表达的肺表面活性蛋白基因,其蛋白表达产物SP-C是构成肺表面活性物质的小分子疏水性蛋白之一,具有调节肺泡液.气界表面张力、维持肺表面活性膜的稳定及参与肺器官局部防御体系等重要的生理功能.SP-C基因异常可造成SP-C结构变化和功能丧失,从而导致各种婴幼儿肺疾病,其中,肺间质性疾病(interstitial lung disease,ILD)的发病与SP-C基因突变的关系尤为密切.  相似文献   

9.
血脑屏障与脑血管疾病的相关研究   总被引:1,自引:0,他引:1  
血脑屏障(blood brain barrier,BBB)的主要结构包括:脑毛细血管内皮细胞及其间的紧密连接(tight junction,TJ)、基底膜、基 底膜下星型胶质细胞终足。血脑屏障是存在于血液和脑组织之间的一层屏障系统,在许多大脑疾患的病理过程中,BBB 的破坏导 致通透性增高都是不可避免的一个环节。BBB是保证中枢神经系统的正常生理功能的重要屏障系统。目前已有大量关于血脑屏 障通透性在脑血管疾病中的变化研究。本文分别从血脑屏障的结构和功能,药物通过血脑屏障的方法和功能,脑缺血损伤、阿尔 茨海默病、帕金森病和多发性硬化症等不同的脑病变与血脑屏障通透性的变化及中医药应用等方面做一综述。有针对性地对 BBB和大脑疾病进行进一步的研究与探索,将会为临床治疗相关疾病带来新的视角与机遇。  相似文献   

10.
Ⅱ型肺上支细胞合成和分泌肺表面活性物质(PS),与肺损伤后的修复有关,很多肺相关疾病的发生伴随有Ⅱ型肺上皮细胞功能不全及PS系统缺陷。Ⅱ型肺上皮细胞在肺的发育、机体免疫及疾病的发生发展过程中的具体功能尚不明确.对调控Ⅱ型肺上皮细胞功能的遗传机制也知之甚少。为了利用Cre-loxP系统研究调节Ⅱ型肺上皮细胞功能的遗传机制,研制了表面活性蛋白A(SP—A)启动子指导Cre重组酶基因在转基因小鼠Ⅱ型肺上皮细胞中表达的转基因小鼠。将整合有Cre重组酶基因的首建者小鼠与Smad4条件基因打靶小鼠及ROSA26报告小鼠交配,利用基因组PCR和LacZ染色检测Cre重组酶表达的组织分布及其钵内介导loxP位点间重组的活性。多组织基因组PCR显示Cre重组酶在转基因小鼠肺、脑和消化道组织中表达。LacZ染色显示仅在Ⅱ型肺上皮细胞中检测到Cre重组酶的活性。以上结果表明本研究研制的pSP—A—Cre转基因小鼠可用于在Ⅱ型肺上皮细胞中进行条件基因打靶和细胞谱系分析。  相似文献   

11.
12.
Tight junctions and the modulation of barrier function in disease   总被引:10,自引:1,他引:9  
Tight junctions create a paracellular barrier in epithelial and endothelial cells protecting them from the external environment. Two different classes of integral membrane proteins constitute the tight junction strands in epithelial cells and endothelial cells, occludin and members of the claudin protein family. In addition, cytoplasmic scaffolding molecules associated with these junctions regulate diverse physiological processes like proliferation, cell polarity and regulated diffusion. In many diseases, disruption of this regulated barrier occurs. This review will briefly describe the molecular composition of the tight junctions and then present evidence of the link between tight junction dysfunction and disease.  相似文献   

13.
Occludin is the only known integral membrane protein localizing at tight junctions (TJ), but recent targeted disruption analysis of the occludin gene indicated the existence of as yet unidentified integral membrane proteins in TJ. We therefore re-examined the isolated junction fraction from chicken liver, from which occludin was first identified. Among numerous components of this fraction, only a broad silver-stained band ~22 kD was detected with the occludin band through 4 M guanidine-HCl extraction as well as sonication followed by stepwise sucrose density gradient centrifugation. Two distinct peptide sequences were obtained from the lower and upper halves of the broad band, and similarity searches of databases allowed us to isolate two full-length cDNAs encoding related mouse 22-kD proteins consisting of 211 and 230 amino acids, respectively. Hydrophilicity analysis suggested that both bore four transmembrane domains, although they did not show any sequence similarity to occludin. Immunofluorescence and immunoelectron microscopy revealed that both proteins tagged with FLAG or GFP were targeted to and incorporated into the TJ strand itself. We designated them as “claudin-1” and “claudin-2”, respectively. Although the precise structure/function relationship of the claudins to TJ still remains elusive, these findings indicated that multiple integral membrane proteins with four putative transmembrane domains, occludin and claudins, constitute TJ strands.  相似文献   

14.
Occludin is the only known integral membrane protein localized at the points of membrane– membrane interaction of the tight junction. We have used the Xenopus embryo as an assay system to examine: (a) whether the expression of mutant occludin in embryos will disrupt the barrier function of tight junctions, and (b) whether there are signals within the occludin structure that are required for targeting to the sites of junctional interaction. mRNAs transcribed from a series of COOH-terminally truncated occludin mutants were microinjected into the antero–dorsal blastomere of eight-cell embryos. 8 h after injection, the full-length and the five COOH-terminally truncated proteins were all detected at tight junctions as defined by colocalization with both endogenous occludin and zonula occludens-1 demonstrating that exogenous occludin correctly targeted to the tight junction. Importantly, our data show that tight junctions containing four of the COOH-terminally truncated occludin proteins were leaky; the intercellular spaces between the apical cells were penetrated by sulfosuccinimidyl-6-(biotinamido) Hexanoate (NHS-LC-biotin). In contrast, embryos injected with mRNAs coding for the full-length, the least truncated, or the soluble COOH terminus remained impermeable to the NHS-LC-biotin tracer. The leakage induced by the mutant occludins could be rescued by coinjection with full-length occludin mRNA. Immunoprecipitation analysis of detergent-solubilized embryo membranes revealed that the exogenous occludin was bound to endogenous Xenopus occludin in vivo, indicating that occludin oligomerized during tight junction assembly. Our data demonstrate that the COOH terminus of occludin is required for the correct assembly of tight junction barrier function. We also provide evidence for the first time that occludin forms oligomers during the normal process of tight junction assembly. Our data suggest that mutant occludins target to the tight junction by virtue of their ability to oligomerize with full-length endogenous molecules.  相似文献   

15.
That changes in membrane lipid composition alter the barrier function of tight junctions illustrates the importance of the interactions between tetraspan integral tight junction proteins and lipids of the plasma membrane. Application of methyl-β-cyclodextrin to both apical and basolateral surfaces of MDCK cell monolayers for 2 h, results in an ∼80% decrease in cell cholesterol, a fall in transepithelial electrical resistance, and a 30% reduction in cell content of occludin, with a smaller reduction in levels of claudins-2, -3, and -7. There were negligible changes in levels of actin and the two non-tight junction membrane proteins GP-135 and caveolin-1. While in untreated control cells breakdown of occludin, and probably other tight junction proteins, is mediated by intracellular proteolysis, our current data suggest an alternative pathway whereby in a cholesterol-depleted membrane, levels of tight junction proteins are decreased via direct release into the intercellular space as components of membrane-bound particles. Occludin, along with two of its degradation products and several claudins, increases in the basolateral medium after incubation with methyl-β-cyclodextrin for 30 min. In contrast caveolin-1 is detected only in the apical medium after adding methyl-β-cyclodextrin. Release of occludin and its proteolytic fragments continues even after removal of methyl-β-cyclodextrin. Sedimentation and ultrastructural studies indicate that the extracellular tight junction proteins are associated with the membrane-bound particles that accumulate between adjacent cells. Disruption of the actin filament network by cytochalasin D did not diminish methyl-β-cyclodextrin-induced release of tight junction proteins into the medium, suggesting that the mechanism underlying their formation is not actin-dependent. The 41- and  48-kDa C-terminal occludin fragments formed during cholesterol depletion result from the action of a GM6001-sensitive metalloproteinase(s) at some point in the path leading to release of the membrane particles.  相似文献   

16.
The distributions of occludin and claudin-1, two tight junction–associated integral membrane proteins were investigated by immunohistochemical analysis of whole-mount preparations of the blood vessels in the myelinated streak of the rabbit retina. Light microscopy revealed that occludin and claudin-1 immunoreactivities were abundant along the interface of adjacent endothelial cells of all blood vessels. Electron microscopy revealed that both proteins were distributed in a regular pattern (at regular intervals of approximately 80 nm) along the length of tight junctions, probably in the regions of tight junction strands. No other structures or cell types expressed either of these two proteins in the myelinated streak. Whereas occludin immunoreactivity was concentrated only at the tight junction interface, claudin-1 immunoreactivity also extended into the cytoplasm of the endothelial cells, suggesting a different structural role for claudin-1 than for occludin at tight junctions. Retinal pigment epithelial cells expressed occludin around their entire circumference, consistent with the function of these cells as a barrier separating the retina from the leaky vessels of the choroid. Also consistent with the association of occludin expression with vessels that exhibit functional tight junctions, this protein was expressed at only a low level in, and showed an irregular distribution along, the vessels of the choroid, a vascular bed that lacks blood-barrier properties. Further, the distribution of occludin was examined during formation and remodelling of the rat retinal vasculature. Occludin expression was evident at the leading edge of vessel formation and was found on all vessels in both the inner and outer vascular plexus. Numerous vascular segments at the early stage of vascular formation and regression lost occludin expression. The biological significance of this transient loss of occludin expression in terms of barrier function remains to be elucidated.  相似文献   

17.
It has been believed that epithelial cells maintain tight junctions at all times, including during cell division, to provide a continuous epithelial seal. However, changes in localization of integral tight junction proteins during cell division have not been examined. In this study, using SV40-immortalized mouse hepatocytes transfected with human Cx32 cDNA, in which tight junction strands and the endogenous tight junction proteins occludin, claudin-1, ZO-1, and ZO-2 were induced, we examined changes in localization of the tight junction proteins at all stages of cell division. All tight junction proteins were present between mitotic cells and neighboring cells throughout cell division. In late telophase, the integral tight junction proteins occludin and claudin-1, but not the cytoplasmic proteins ZO-1 and ZO-2, were concentrated in the midbody between the daughter cells and were observed at cell borders between the daugher and neighboring cells. These results indicate that the integral tight junction proteins are regulated in a different manner from the cytoplasmic proteins ZO-1 and ZO-2 during cytokinesis.  相似文献   

18.
SGLT1, an isoform of Na+-dependent glucose transporters, is localized at the apical plasma membrane in the epithelial cells of the small intestine and the kidney. In the present study we examined its location in SGLT1 cDNA-transfected MDCK cells, which form an epithelial sheet connected by tight junctions in culture. Formation of tight junctions was monitored by staining for occludin, an integral tight junction protein. In the cells demarcated by an uninterrupted occludin meshwork, SGLT1 was specifically localized at the apical plasma membrane, showing that SGLT1 has a signal to accomplish this restricted localization. In the cells with little or no occludin accumulation in the tight junction, however, SGLT1 was present along the entire aspect of the plasma membrane. Similar distribution of SGLT1 was observed in the cells as long as the occludin meshwork remained incomplete. These observations sugget that apical localization of SGLT1 occurs upon the completion of the uninterrupted meshwork of tight junctions.  相似文献   

19.
MARVEL: a conserved domain involved in membrane apposition events   总被引:3,自引:0,他引:3  
MARVEL is a novel domain with a four transmembrane-helix architecture that has been identified in proteins of the myelin and lymphocyte (MAL), physins, gyrins and occludin families. Association with specialized membrane microdomains has been reported for some of these MARVEL domain-containing proteins. Their function could be related to cholesterol-rich membrane apposition events in a variety of cellular processes, such as biogenesis of vesicular transport carriers or tight junction regulation. The MARVEL domain appears to be related to complex human diseases, such as schizophrenia and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号