首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Low-strength saline wastewater may be generated by tourist facilities, industries and communities located in coastal areas. Sea salts, mostly chlorides, when present in wastewaters at high concentrations, can cause inhibition on biological treatment processes. In this study, a laboratory down-flow anaerobic fixed bed reactor (DFAFBR) was used for treating saline wastewater. This wastewater was simulated by dilution of piggery manure in a synthetic saline water to obtain a final total COD concentration in the range of 1100-2900 mg/l and a salt concentration of 15 g/l. The DFAFBR was operated at hydraulic retention times (HRT) of 96, 48, 24 and 12 h. The results showed that at sea salts concentrations in the range from 5 to 15 g/l, total coliform concentration reduction efficiencies higher than 97% were achieved. A decrease in the total and faecal coliform concentration reduction efficiencies from 99.5% to 90.5% and 92.5%, respectively, was observed when the HRT decreased from 96 to 12 h. Enumeration of coliform bacteria isolated from the biofilm in different zones of the reactor showed that more than 94% of the total amount was removed in the upper zone. A HRT of 24 h was required to obtain total COD, organic-N, total-P and faecal coliform concentration reduction efficiencies higher than 72%, 51%, 39% and 98%, respectively. A concentration of 8.4 g/l for chlorides, 1.25 g/l for sulphates and 4.6 g/l for sodium did not affect the process performance.  相似文献   

2.
Experimental studies were done in a laboratory scale Anaerobic Rotating Biological Contactor (RBC), for treatment of Synthetic sago wastewater. This paper describes the development and laboratory testing of an Anaerobic RBC process that couples the advantages of the fixed film horizontal flow RBC process with the high strength, starch degradation capabilities of anaerobic systems. The reactor was operated at ambient temperature and was subjected to organic and hydraulic loading rates. The reactor performance with respect to Chemical Oxygen Demand (COD) removal, alkalinity, volatile acids at each stage and biogas production were evaluated. The Anaerobic RBC reactor liquid volume is 70 litres and total disc surface area is 4.45 m2. The reactor was operated with about 100% of the disc area submerged and with a rotational speed held constant at 9?rev/min. The synthetic sago wastewater was started with a COD value of 1087?mg/l at a hydraulic retention time(HRT) of 42?h and it was varied till maximum COD of 9522?mg/l. From the present study, the optimum COD load was found to be 6860?mg/l with a COD removal efficiency of 97.2%.With this optimum COD load, hydraulic loading rate(HLR) study was done at 24?h to 48?h HRT. COD removal efficiencies at hydraulic loading rates were compared with the work of Subrahmanyam &; Sastry (1988). From the present study, the proportionality coefficient was found to be 1.18 with process efficiencies at different hydraulic loading rates.  相似文献   

3.
A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.  相似文献   

4.
Investigations were carried out by using rigid polyurethane foam as a packing material in the anaerobic contact filter (series) to treat distillery spentwash. The effect of hydraulic retention time (HRT) in treatment efficiency of reactor (I) and (II) was evaluated at different initial substrate concentrations ranging from 1500 mg/l to 19,000 mg/l. The effect of toxic parameters such as sulphate present in the distillery spentwash and the corresponding parameters such as total sulphide and un-ionized hydrogen sulphide generated during digestion of wastewater were evaluated to assess the reactor performance. The results showed that at 4 d HRT the overall COD removal percent ranged from 98% to 73% for an influent COD of 1500 mg/l to 19,000 mg/l. The overall performance of COD removal percent in reactor (I) and (II) at 2, 3 and 4 d HRT's were investigated. At 3 d HRT the reactor (II) showed a higher COD removal percent when compared to reactor (I), which clearly shows the role of hydraulic retention time in degradation of the organic matter present in the wastewater above an influent COD concentration of 5000 mg/l.  相似文献   

5.
Fu Z  Zhang Y  Wang X 《Bioresource technology》2011,102(4):3748-3753
In this study, the performance of the anoxic filter bed and biological wriggle bed-ozone biological aerated filter (AFB-BWB-O3-BAF) process treating real textile dyeing wastewater was investigated. After more than 2 month process operation, the average effluent COD concentration of the AFB, BWB, O3-BAF were 704.8 mg/L, 294.6 mg/L and 128.8 mg/L, with HRT being 8.1-7.7 h, 9.2 h and 5.45 h, respectively. Results showed that the effluent COD concentration of the AFB decreased with new carriers added and the average removal COD efficiency was 20.2%. During operation conditions, HRT of the BWB and O3-BAF was increased, resulting in a decrease in the effluent COD concentration. However, on increasing the HRT, the COD reduction capability expressed by the unit carrier COD removal loading of the BWB reactor increased, while that of the O3-BAF reactor decreased. This study is a beneficial attempt to utilize the AFB-BWB-O3-BAF combine process for textile wastewater treatment.  相似文献   

6.
The discharge of textile wastewater containing dye in the environment is varying for both toxicology and esthetical reasons as dyes impede light penetration, damage the quality of the receiving streams. Upflow anaerobic sludge blanket reactor with anaerobic digester sludge treating starch wastewater has been used to investigate the removal efficiency of chemical oxygen demand (COD) and colour of textile dye wastewater. In this study, the starch and textile dye wastewater was mixed at 70 and 30%, respectively, and the experiments were carried out with recycle of treated wastewater at different percentage as 10, 20, 30 and 40. Maximum removal of COD and colour was 96% and 93.3%, respectively, at 30% recycle. At various OLR and HRT, the maximum removal of COD, colour was 95.9%, 93% at 6.81 kg COD/m3d and 96%, 93% with 24 h of HRT. The maximum production of biogas at 24 h of HRT with 30% recycle was about 355 l/d. The Volatile fatty acid/Alkalinity ratio of methanogenic reactor was found to be 0.049–0.053. The result provided evidence, the starch and dye wastewater have wide variation in their characteristics was treated on combination, this new technology supports the effective utilization of starch waste in destruction of dye.  相似文献   

7.
Performances of single-stage and two-stage sequencing batch reactor (SBR) systems were investigated for treating dairy wastewater. A single-stage SBR system was tested with 10,000 mg/l chemical oxygen demand (COD) influent at three hydraulic retention times (HRTs) of 1, 2, and 3 days and 20,000 mg/l COD influent at four HRTs of 1, 2, 3, and 4 days. A 1-day HRT was found sufficient for treating 10,000-mg/l COD wastewater, with the removal efficiency of 80.2% COD, 63.4% total solids, 66.2% volatile solids, 75% total Kjeldahl nitrogen, and 38.3% total nitrogen from the liquid effluent. Two-day HRT was believed sufficient for treating 20,000-mg/l COD dairy wastewater if complete ammonia oxidation is not desired. However, 4-day HRT needs to be used for achieving complete ammonia oxidation. A two-stage system consisting of an SBR and a complete-mix biofilm reactor was capable of achieving complete ammonia oxidation and comparable carbon, solids, and nitrogen removal while using at least 1/3 less HRT as compared to the single SBR system.  相似文献   

8.
A lab-scale investigation was conducted to examine the effectiveness of a multi-fed upflow anaerobic filter process for the methane production from a rice winery effluent at ambient temperatures. The experiment was carried in two identical 3.0-l upflow filters, a single-fed reactor and a multi-fed reactor. The results showed that the multi-fed reactor, operated at the ambient temperatures of 19–27 °C and influent chemical oxygen demand (COD) of 8.34–25.76 g/l, could remove over 82% of COD even at an organic loading rate (OLR) of 37.68 g-COD/l d and a short hydraulic retention time (HRT) of 8 h. This reactor produced biogas with a methane yield of 0.30–0.35 l-CH4/g-CODremoved. The multi-fed upflow anaerobic filter was proved to be more efficient than the single-fed reactor in terms of COD removal efficiency and stability against hydraulic loading shocks. A linear-regression model with influent COD concentration and HRT terms adequately described the multi-fed upflow anaerobic filter system for the treatment of rice winery wastewater at ambient temperatures.  相似文献   

9.
Wang W  Ma W  Han H  Li H  Yuan M 《Bioresource technology》2011,102(3):2441-2447
Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 ± 2 °C) reactor as a control, thermophilic anaerobic digestion (55 ± 2 °C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m3 d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.  相似文献   

10.
In order to assess the feasibility of enhanced biological phosphorus removal (EBPR) for dairy processing wastewater, which in New Zealand have rbCOD:P ratios that can be as low as 13:1, a sequencing batch reactor treating a synthetic wastewater with a COD(VFA) of 800 mg/l (representing a dissolved air flotation (DAF) treated, pre-fermented dairy wastewater with a raw COD of 3000 mg/l) was operated at COD:P ratios of 25:1, 15:1 and 10:1. Full (>99%) phosphate removal was achieved for COD:P loadings of 25:1 and 15:1. The trial using 10:1 COD:P loading showed less consistency but still achieved 82% phosphate removal. Based on further analysis of the final trial this study proposes that the minimum COD:P loading for complete phosphate removal is 13:1 indicating that EBPR could indeed be feasible for effective treatment of dairy processing wastewaters. With regard to the type of COD consumed, propionate was found to be favoured over acetate as a substrate. Further research into increasing the propionate content of pre-fermented dairy wastewaters is suggested.  相似文献   

11.
The suitability of two stage biomethanation process using upflow anaerobic sludge blanket (UASB) bioreactors was studied for the treatment of low strength industrial effluents like rice mill wastewater. Maximum VFA yield was 0.75 mg (as acetic acid) per mg of COD consumed at a flow rate of 25 ml/min. Hydraulic retention time (HRT) of 1 hr was found suitable for acidification process. In the methanogenic reactor, the overall BOD and COD reductions were 89% and 78% respectively at loading rate of 3 kg COD mх dу, and HRT of 30 hrs. Gas yield in methanogenic reactor was 0.56 lits. per kg COD consumed which contains 62% v/v methane.  相似文献   

12.
Coke wastewater is a highly toxic industrial effluent which is usually treated by a combination of physico-chemical and biological treatments. With the aim of completing prior studies carried out in CSTR, in this work we studied the treatment of coke wastewater in a pilot plant equipped with a 400 L stripping tank, a 350 L neutralization/homogenization tank and a 6 m high 1500 L sequential batch reactor (SBR), controlled by a PLC. Ammonia stripping efficiencies of 96% were obtained for HRT of 66 h. The biological treatment in the SBR led to removal efficiencies of 85% COD, 98% thiocyanate and 99% phenols for HRT of 115 h. Final concentrations in the effluent of 1.8 mg phenols/L, 5.4 mg SCN/L, 206 mg COD/L and 78 mg N-NH(4)(+)/L were obtained.  相似文献   

13.
A study of the anaerobic digestion of wastewater derived from the production of protein isolates from chickpea flour was carried out in a laboratory-scale, mesophilic (35 °C) fluidised-bed reactor with saponite as bacterial support. Soluble chemical oxygen demand (SCOD) removal efficiencies in the range of 96.8–85.2% were achieved in the reactor at organic loading rates (OLR) of between 0.58 and 2.10 g chemical oxygen demand (COD)/l per day, hydraulic retention times (HRT) of between 14.9 and 4.5 days and average feed COD concentration of 9.1 g/l. Eighty-five percent of feed COD could be removed up to OLR of 2.1 g COD/l per day. The yield coefficient of methane production was 0.34 l of methane (at STP) per gram COD removed and was virtually independent of the OLR applied. Because the buffering capacity of the experimental system was maintained at favourable levels with excess total alkalinity present at all loadings, the rate of methanogenesis was not affected by loading. Experimental data indicated that a total alkalinity in the range of 1090–2130 mg/l as CaCO3 was sufficient to prevent the pH from decreasing to below 7.2 for OLR of up to 2.7 g COD/l per day. The volatile fatty acid (VFA) levels and the VFA/alkalinity ratio were lower than the suggested limits for digester failure (0.3–0.4) for OLR and HRT up to 2.7 g COD/l per day and 3.5 days, respectively. For a HRT of 2.8 days (OLR of 3.00 g COD/l per day) the start of acidification was observed in the reactor.  相似文献   

14.
A study of the anaerobic digestion of wastewater derived from the production of protein isolates from extracted sunflower flour was carried out in a laboratory-scale, mesophilic (35 degrees C) fluidized-bed reactor with saponite as bacterial support. Chemical oxygen demand (COD) removal efficiencies in the range of 98.3-80.0% were achieved in the reactor at organic loading rates (OLR) of between 0.6 and 9.3 g COD/I d, hydraulic retention times (HRT) of between 20.0 and 1.1 d and average feed COD concentration of 10.6 g/l. Eighty percent of feed COD could be removed up to OLR of 9.3 g COD/l d. The yield coefficient of methane production was 0.33 l of methane (at STP) per gram of COD removed and was virtually independent of the OLR applied. Because the buffering capacity of the experimental system was maintained at favorable levels with excess total alkalinity present at all loadings, the rate of methanogenesis was not affected by loading. The experimental data indicated that a total alkalinity in the range of 2,000-2,460 mg/l as CaCO3 was sufficient to prevent the pH from dropping to below 7.0 for OLR of up to 9.3 g COD/l d. The volatile fatty acid (VFA) levels and the VFA/alkalinity ratio were lower than the suggested limits for digester failure (0.3-0.4) for OLR and HRT up to 9.3 g COD/l d and 1.1 d, respectively. For a HRT of 0.87 d (OLR of 12.1 g COD/l d) the start of acidification was observed in the reactor.  相似文献   

15.
A pilot-scale experiment of a down-flow hanging sponge (DHS) reactor for treatment of low-strength municipal wastewater was conducted over 1 year in Bangkok, Thailand, to establish an appropriate method for treatment under tropical climate conditions. Municipal wastewater with an average BOD of 19 mg/L was fed directly into the DHS reactor. Superior effluent quality (5.1 ± 3.4 mg/L TSS, 21.1 ± 9.0 mg/L COD, 2.8 ± 1.4 mg/L BOD, and 4.1 ± 1.0 mg/L TN) was achieved at a hydraulic retention time (HRT) of 1 h under an average temperature of 30 °C. The DHS reactor reached an actual HRT of 19.0 min, indicating good contact efficiency between wastewater and retained sludge. The DHS reactor retained dense sludge at 15.3–26.4 g VSS/L based on the sponge media volume. The sludge activity in terms of specific oxygen uptake rate was good. Excess sludge was produced as 0.051 g TSS/g COD removed (0.11 g TSS/g BOD removed), and a good SVI of 28 mL/g was observed. The sufficient performance was attributed to dense sludge with high activity, regardless of the low-strength wastewater. Overall, the DHS was advantageous owing to its simple operation, lack of operational problems, and low power consumption.  相似文献   

16.
A pilot-scale hybrid hydrolysis acidification reactor (HHAR) with periodic water allocation mode operation followed by sequencing batch reactor (SBR) in anoxic and aerobic metabolic function was evaluated for the treatment of low-biodegradable combined industrial and domestic wastewater. The HHAR combines the advantages of both the UASB reactor and AF, omitting the three-phase separator. Furthermore, it has lower average up-flow velocity (0.38–0.92 m/h) and higher periodic up-flow velocity (6 m/h), which made the reactor keep higher MLSS concentration (more than 10,000 mg/L) and sludge-bed is in periodic “expansion-sedimentation-expansion” state. When HRT less than 10 h, the B/C variation was positive and reached the maximum value of 0.07 at 8 h. SBR with a total cycle period of 4.5 h was applied as the post-treatment process to remove residual COD, NH3-N and TN. At steady stage, the pilot-scale SBR effluent COD, NH3-N and TN concentration was 65, 0.75 and 17.71 mg/L, corresponding in this case to full-scale SBR plant effluent was 93, 16.4 and 34 mg/L. Comparison results indicated that the application of HHAR–SBR system to treat combined industrial and domestic wastewater can improve effluent quality significantly.  相似文献   

17.
实验室模拟高负荷SPAC厌氧反应器运行   总被引:6,自引:1,他引:5  
采用模拟废水, 对新型高负荷螺旋式自循环(Spiral automatic circulation, SPAC)厌氧反应器的运行性能进行了实验室模拟研究。结果表明: 在30oC, 水力停留时间(HRT)为12 h, 进水COD浓度从8000 mg/L升至20 000 mg/L的条件下, 反应器的COD去除率为91.1%~95.7%, 平均去除率为93.6%。在进水浓度为20 000 mg/L, HRT由5.95 h缩短至1.57 h的工况下, COD去除率从96.0%降低至78.7%, 反应器达到最高容积负荷率306 g COD/(L·d), 最大容积COD去除率240 g/(L·d), 最高容积产气率131 L/(L·d)。该反应器对基质浓度的连续提升具有良好的适应能力。进水COD浓度由8000 mg/L提升至20 000 mg/L时, 出水COD浓度一直处在较低水平(平均为852?mg/L), 容积COD去除率和容积产气率分别提高162%和119%。该反应器对HRT的连续缩短也有良好的适应能力。HRT由5.95 h缩短至1.57 h时,反应器容积COD去除率和容积产气率分别升高191%和195%。  相似文献   

18.
Li J  Luan Z  Yu L  Ji Z 《Bioresource technology》2011,102(22):10319-10326
A combined Fenton-UASB (2 phase)-SBR system was employed to treat acrylic fiber manufacturing wastewater. The Chemical Oxygen Demand (COD) removal and effluent Biochemical Oxygen Demand (BOD) to COD were 65.5% and 0.529%, respectively, with the optimal Fenton conditions: ferrous was 300 mg/L; hydrogen peroxide was 500 mg/L; pH was 3.0; reaction time was 2.0 h. In two-phase UASB reactor, mesophilic operation (35±0.5 °C) was performed with hydraulic retention time (HRT) varied between 28 and 40 h. The results showed that with the HRT not less than 38 h, COD and sulfate removal were 65% and 75%, respectively. The greatest sizes of granule formed in the sulfate-reducing and methane-producing phases were 5 and 2 mm, respectively. Sulfate-reducing bacteria (SRB) accounted for 35% in the sulfate-reducing phase while methane-producing archaea (MPA) accounted for 72% in the methane-producing phase. During the SBR process, shortcut nitrification was achieved by temperature control of 30 °C.  相似文献   

19.
A laboratory-scale multistage anaerobic biofilm reactor of three compartments with a working volume of 54-L was used for treating a synthetic medium-strength wastewater containing molasses as a carbon source at different influent conditions. The start-up period, stability and performance of this reactor were assessed at mesophilic temperature (35 °C). During the start-up period, pH fluctuations were observed because there was no microbial selection or zoning, but as the experiment progressed, results showed that phase separation had occurred inside the reactor. COD removal percentages of 91.6, 91.6, 90.0 and 88.3 were achieved at organic loading rates of 3.0, 4.5, 6.75 and 9.0 kg COD/m3 day, respectively. A decrease in HRT from 24 to 16 h had no effect on COD removal efficiency. When HRT decreased to 8 h, COD removal efficiency was still 84.9%. Recirculation ratios of 0.5 and 1.0 had no effect on COD removal but other factors such as the volatile fatty acid (VFA) content were affected. The effect of toxic shock was also investigated and results showed that the main advantage of using this bioreactor lies in its compartmentalized structure.  相似文献   

20.
The scope of this study is to evaluate the performance of internal loop airlift bioreactor (ILALR) in treating synthetic wastewater containing phenol and m-cresol, in single and multi component systems. The microbe utilized in the process was an indigenous mixed strain of Pseudomonas sp. isolated from a wastewater treatment plant. The reactor was operated at both lower and higher hydraulic retention times (HRTs) i.e., 4.1 and 8.3 h, respectively, by providing an inlet feed flow rate of 5 and 10 mL/min. Shock loading experiments were also performed up to a maximum concentration of 800 mg/L for phenol at 8.3 h HRT and 500 mg/L for m-cresol at 4.1 h HRT. The study showed complete degradation of both phenol and m-cresol, when they were degraded individually at a HRT of 8.3 h. Experiments with both phenol and m-cresol present as mixtures were performed based on the 22 full factorial design of experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号