首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The fatty acid synthase (FAS) from Brevibacterium ammoniagenes is a homohexameric multienzyme complex that catalyzes the synthesis of both saturated and unsaturated fatty acids. By immunological screening of a B. ammoniagenes expression library, an fas DNA fragment was isolated and subsequently used to clone the entire gene together with its flanking sequences. Within 10,525 bp of sequenced DNA, the 9,189-bp FAS coding region was identified, corresponding to a protein of 3,063 amino acids with a molecular mass of 324,910 Da. This gene (fasA) encodes, at its 5' end, the same amino acid sequence as is observed with purified B. ammoniagenes FAS. A second reading frame encoding another B. ammoniagenes FAS variant (FasB) had been identified previously. Both sequences are colinear and exhibit 61 and 47% identity at the DNA and protein levels, respectively. By using specific antibodies raised against a unique peptide sequence of FasB, this enzyme was shown to represent only 5 to 10% of the cellular FAS protein. Insertional inactivation of the FasB coding sequence causes no defective phenotype, while fasA disruptants require oleic acid for growth. Correspondingly, oleate-dependent B. ammoniagenes cells obtained by ethyl methanesulfonate mutagenesis were complemented by transformation with fasA DNA but not with fasB DNA. The data indicate that B. ammoniagenes contains two related though differently expressed type I FASs. FasA represents the bulk of cellular FAS protein and catalyzes the synthesis of both saturated and unsaturated fatty acids, while the minor variant, FasB, cannot catalyze the synthesis of oleic acid.  相似文献   

2.
Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.  相似文献   

3.
脂肪酸合酶(Fatty acid synthase,FAS)催化乙酰辅酶A和丙二酸单酰辅酶A反应生成脂肪酸,是油脂合成代谢途径中最重要的酶之一。在高产油脂的圆红冬孢酵母Rhodosporidium toruloides中发现了一种新颖的FAS,它含两个亚基,与其他物种的FAS相比,具有独特的结构域组成,尤其是含两个酰基载体蛋白(ACP)结构域。由于ACP在脂肪酸合成反应中起辅因子作用,推测多个ACP有利于提高FAS的催化活性,为研究该FAS的生物化学和结构特征,构建了表达FAS两个亚基的载体,并转化大肠杆菌Escherichia coli BL21(DE3),含pET22b-FAS1和pET24-FAS2质粒的重组菌株ZWE06可同时高表达两个亚基,经硫酸铵沉淀、蔗糖密度梯度离心和阴离子交换层析纯化,得到的重组FAS比活力达到548 mU/mg。纯化的FAS复合物可用于后续酶动力学和蛋白结构研究,且表达与纯化方法的建立对研究其他ACP的功能具有参考价值。  相似文献   

4.
5.
Translation and characterization of the fatty acid synthetase messenger RNA   总被引:1,自引:0,他引:1  
Fatty acid synthetase messenger RNA was obtained from rat liver polysomal RNA and then injected into Xenopus laevis oocytes. The radioactive fatty acid synthetase protein synthesized in the oocytes was identified by immunoprecipitation with anti-fatty acid synthetase antibody and the immunoprecipitate was then characterized by electrophoresis on sodium dodecyl sulfate-polyacrylamide gel. Co-migration of authentic fatty acid synthetase and the labeled product synthesized in oocytes was observed. Based on sucrose density gradient analysis, the rat liver fatty acid synthetase mRNA has a sedimentation coefficient of approximately 33 S, which agrees with the predicted minimum size necessary to code for the fatty acid synthetase protein. In addition, this mRNA was partially purified with oligo(dT)-cellulose, which indicates that it has a polyadenylate region. The relative in vivo rate of synthesis of fatty acid synthetase and the level of fatty acid synthetase mRNA in liver were also determined during the course of dietary induction of this enzyme. The results indicate that the dietary-induced increase in the level of fatty acid synthetase is probably due to an increased level of the fatty acid synthetase mRNA.  相似文献   

6.
When individual enzyme activities of the fatty acid synthetase (FAS) system were assayed in extracts from five different plant tissues, acetyl-CoA:acyl carrier protein (ACP) transacylase and beta-ketoacyl-ACP synthetases I and II had consistently low specific activities in comparison with the other enzymes of the system. However, two of these extracts synthesized significant levels of medium chain fatty acids (rather than C16 and C18 acid) from [14C]malonyl-CoA; these extracts had elevated levels of acetyl-CoA:ACP transacylase. To explore the role of the acetyl transacylase more carefully, this enzyme was purified some 180-fold from spinach leaf extracts. Varying concentrations of the transacylase were then added either to spinach leaf extracts or to a completely reconstituted FAS system consisting of highly purified enzymes. The results suggested that: (a) acetyl-CoA:ACP transacylase was the enzyme catalyzing the rate-limiting step in the plant FAS system; (b) increasing concentration of this enzyme markedly increased the levels of the medium chain fatty acids, whereas increase of the other enzymes of the FAS system led to increased levels of stearic acid synthesis; and (c) beta-ketoacyl-ACP synthetase I was not involved in the rate-limiting step. It is suggested that modulation of the activity of acetyl-CoA:ACP transacylase may have important implications in the type of fatty acid synthesized, as well as the amount of fatty acids formed.  相似文献   

7.
Tartrate-resistant acid phosphatase active on nucleoside di- and triphosphate substrates was isolated from developing rat bone and purified 2500-fold. The enzyme concentration had a purple coloration and activity that was sensitive to reducing agents. Mild reducing agents such as ferrous ion and ascorbic acid caused loss of purple color and increased activity toward substrates severalfold; however, a strong reductant such as dithionite caused loss of both color and activity which were partially restored by addition of ferrous ion and ascorbic acid. Enzyme activity was homogeneous with protein during the final gel permeation steps of chromatography and gave an apparent molecular size of about 40,000 Da. Determination of iron in the most pure preparation revealed the presence of 1.3 atoms of iron per molecule of the tartrate-resistant enzyme E2. Other properties of the purified enzyme include a pI of approximately 9.5 and sensitivity to inhibition by ions of copper, zinc, fluoride, and molybdate. Antibody prepared to the pre-concanavalin A (Con A)-Sepharose purified enzyme reacted with all protein from the Con A step, but it did not react with tartrate-sensitive acid phosphatase from rat bone or with potato acid phosphatase. Purple acid phosphatase from rat bone has many properties that parallel the iron-containing purple acid phosphatases from rat spleen, bovine spleen, and pig uterine secretions.  相似文献   

8.
A novel, high-molecular-mass fatty-acid synthetase (FAS) complex has been isolated from streptomycin-bleached Euglena gracilis cells. The enzyme was purified 250-fold from the crude cell homogenate and subsequently migrated upon SDS/PAGE as a single band of molecular mass 270 kDa. This apparent subunit size of the purified protein contrasted with a smaller size of only 200 kDa which was exhibited by the same protein upon immunoblotting of the crude cell extract. The purified Euglena FAS complex cosediments in a sucrose density gradient with yeast FAS and, from this, both enzymes were concluded to have the same overall molecular mass of 2.3 MDa. The enzyme described in this paper appears to be a typical type-I FAS multienzyme which clearly differs from the E. gracilis FAS so far described. Instead, it appears to be organized structurally similar to the type-I FAS multienzymes of lower fungi. In vitro, the purified Euglena FAS complex synthesizes mainly palmitic acid, or its CoA ester, from acetyl CoA and malonyl CoA as substrates. The Km values for acetyl CoA and malonyl CoA are 20 microM and 31 microM, respectively. Similar to the FAS enzymes of other lower eucaryotes, the Euglena type-I FAS is a flavoprotein. In contrast to yeast FAS, however, the flavin cofactor appears to be covalently attached to the enzyme protein. By immunological techniques, the enzyme was shown to be absent in green as well as in etiolated E. gracilis cells, while being rapidly induced upon streptomycin bleaching of heterotrophically growing green cells. The data suggest an inverse correlation between organellar development and derepression of this FAS complex.  相似文献   

9.
The activity of fatty acid synthetase (FAS) from Vibrio sp. strain ABE-1 required the presence of acyl carrier protein and was completely inhibited by thiolactomycin, an inhibitor specific for a type II FAS. These observations indicate that this enzyme is a type II FAS. Analysis by gas-liquid chromotography of the reaction products synthesized in vitro from [2-14C]malonyl-CoA by the partially purified FAS revealed, in addition to 16-and 18-carbon fatty acids which are normal constituents of this bacterium, the presence of fatty acids with very long chains. These fatty acids were identified as saturated and mono-unsaturated fatty acids with 20 up to as many as 30 carbon atoms. The longest fatty acids normally found in this bacterium contain 18-carbon atoms. These results suggest that the FAS from Vibrio sp. strain ABE-1 has potentially the ability to synthesize fatty acids with very long chains.Abbreviations ACP acyl carrier protein - FAME fatty acid methyl ester - FAS fatty acid synthetase - FID flame ionization detection - GLC gas-liquid chromatography - TLC thin-layer chromatography - In designations of fatty acids, such as 16:0, 16:1, etc the colon separates the number that denotes the number of carbon atoms and the number that denotes the number of double bonds, respectively, in the molecule - 16:0-CoA CoA ester of 16:0  相似文献   

10.
It was found that the partially purified beta-ketoacyl-ACP synthase of Bacillus insolitus did not require the addition of FabD (malonyl-CoA:ACP transacylase, MAT) for the activity assay. This study therefore examined the necessity of FabD protein for in vitro branched-chain fatty acid (BCFA) biosynthesis by crude fatty acid synthetases (FAS) of Bacilli. To discover the involvement of FabD in the BCFA biosynthesis, the protein was removed from the crude FAS by immunoprecipitation. The His-tag fusion protein FabD of Bacillus subtilis was expressed in Escherichia coli and used for the preparation of antibody. The rabbit antibody raised against the expressed fusion protein specifically recognized the FabD in the crude FAS of B. subtilis. Evaluation of the efficacy of the immunoprecipitation showed that a trace of FabD protein was present in the antibody-treated crude FAS. However, this complete removal of FabD from the crude FAS did not abolish its BCFA biosynthesis, but only reduced the level to 50-60% of the control level for acyl-CoA primer and to 80% for alpha-keto-beta-methylvalerate primer. Furthermore, the FabD concentration did not necessarily correlate with the MAT specific activity in the enzyme fractions, suggesting the presence of another enzyme source of MAT activity. This study, therefore, suggests that FabD is not the sole enzyme source of MAT for in vitro BCFA biosynthesis, and implies the existence of a functional connection between fatty acid biosynthesis and another metabolic pathway.  相似文献   

11.
The pseudopterosins are diterpene glycosides isolated from the marine gorgonian, Pseudopterogorgia elisabethae, which exhibit anti-inflammatory and analgesic activity greater than the industry standard, indomethacin. Previously, we isolated the pseudopterosin diterpene cyclase product, elisabethatriene, using a radioactivity-guided isolation. Identification of this metabolite, and the conversion of labeled geranylgeranyl diphosphate to elisabethatriene, provided us with an assay to guide the isolation of the enzyme responsible for this cyclization. The soluble protein preparation from P. elisabethae has been partially purified (approximately 15,000-fold) using a combination of low-resolution anion-exchange, low-resolution hydrophobic interaction, high-resolution hydroxyapatite, and high-resolution anion-exchange chromatography. The diterpene cyclase was identified by comparing the molecular weight from gel permeation chromatography (approximately 47,000Da) with those of protein bands from purified fractions using SDS-PAGE gel electrophoresis. Kinetic analysis and evaluation of amino acid inhibition studies indicated that the enzyme displays similar characteristics to other terpenoid cyclases isolated from terrestrial sources. This report represents the first purification and characterization of a terpene biosynthetic enzyme from a marine invertebrate.  相似文献   

12.
An antibody to a highly pure enzyme preparation was developed to facilitate detailed studies of rat adipose tissue lipoprotein lipase regulation. Lipoprotein lipase was purified by heparin-Sepharose affinity chromatography followed by preparative isoelectric focusing. The enzyme migrated as a single broad band on SDS disc gel and two-dimensional gel electrophoresis with an apparent molecular mass of 67 000 and 62 000 Da, respectively. The amino acid composition of the purified rat enzyme was virtually identical to that of bovine milk. A major protein component with no lipase activity co-eluted with the enzyme from the affinity column, but was separated by the isoelectric focusing step. The molecular mass was slightly lower (58 000 Da) but the amino acid composition of this protein was similar to that of the enzyme. An antibody raised against the purified rat enzyme was highly potent and was effective in inhibiting rat heart lipoprotein lipase, but not the salt-resistant hepatic lipase. Analysis of crude acetone-ether adipose tissue preparation on SDS slab polyacrylamide gel coupled to Western blotting revealed five protein bands = (62 000, 56 000, 41 700, 22 500, 20 000 Da). Similarly, following affinity purification by immunoadsorption, the purified antibody reacted with five equivalent protein bands. Fluorescent concanavalin A binding data indicated that the 56 kDa band is a glycosylated form of lipoprotein lipase. Pretreatment of adipose tissue with proteinase inhibitors revealed that the lower molecular mass proteins (41 700 and 20 000 Da) were degradation products of lipoprotein lipase, and the 22 500 Da band could be accounted for by non-specific binding.  相似文献   

13.
A procedure is described for the purification of the fatty acid synthetase complex (FAS) from Neurospora crassa. The enzyme complex has a molecular weight of 2.3 times 10(6), contains 6 mol of 4'-phosphopantetheine per mol, and on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gives a single band, or a closely spaced doublet, which comigrates with standard myosin (molecular weight, 2 times 10(5)). Since the slightly retarded component in the doublet accounts for all protein-bound 4'-phosphopantetheine, the complex appears to be made up of 11 to 12 equally sized subunits, 6 of which carry the acyl carrier protein function. In this unusual arrangement, notably the lack of the low-molecular-weight acyl carrier protein component seen in other FAS systems, as well as in its enzymatic properties, the Neurospora FAS complex is quite similar to the yeast enzyme. The FAS complex of a saturated fatty acid-requiring mutant, previously disignated cel-, contains less than 2% of the 4'-phosphopantetheine prosthetic groups found in the wild-type complex. The leaky phenotype of this mutant, here designated fas-, is accounted for by a residual fatty acid synthesizing activity in its FAS complex, which is several-fold higher than expected from its residual content of 4'-phosphopanthetheine.  相似文献   

14.
A new aspartic proteinase was isolated from porcine intestine mucosa by affinity chromatography on pepstatin-Sepharose 4B and gel filtration on Sephadex G-100. The enzyme was purified 1600-fold and appeared homogeneous upon polyacrylamide gel electrophoresis. The proteinase has a Mr 60 000 +/- 4000 Da. During sodium dodecyl sulfate polyacrylamide gel electrophoresis the enzyme produced a single protein band (Mr 30 000 +/- 3000 Da). Isoelectric focusing revealed that the enzyme has several multiple forms (pI 6.9, 7.5, 8,0). The enzyme is a glycoprotein containing 5.9% of carbohydrates; the mannose to galactose ratio is 1:3. The amino acid composition of the enzyme was studied. The proteinase splits an oxidized insulin B-chain and synthetic substrates. The pH optimum is 3.2. The enzyme is immunologically identical to porcine spleen cathepsin D.  相似文献   

15.
Substrate specificity of condensing enzymes is a predominant factor determining the nature of fatty acyl chains synthesized by type II fatty acid synthase (FAS) enzyme complexes composed of discrete enzymes. The gene (mtKAS) encoding the condensing enzyme, beta-ketoacyl-[acyl carrier protein] (ACP) synthase (KAS), constituent of the mitochondrial FAS was cloned from Arabidopsis thaliana, and its product was purified and characterized. The mtKAS cDNA complemented the KAS II defect in the E. coli CY244 strain mutated in both fabB and fabF encoding KAS I and KAS II, respectively, demonstrating its ability to catalyze the condensation reaction in fatty acid synthesis. In vitro assays using extracts of CY244 containing all E. coli FAS components, except that KAS I and II were replaced by mtKAS, gave C(4)-C(18) fatty acids exhibiting a bimodal distribution with peaks at C(8) and C(14)-C(16). Previously observed bimodal distributions obtained using mitochondrial extracts appear attributable to the mtKAS enzyme in the extracts. Although the mtKAS sequence is most similar to that of bacterial KAS IIs, sensitivity of mtKAS to the antibiotic cerulenin resembles that of E. coli KAS I. In the first or priming condensation reaction of de novo fatty acid synthesis, purified His-tagged mtKAS efficiently utilized malonyl-ACP, but not acetyl-CoA as primer substrate. Intracellular targeting using green fluorescent protein, Western blot, and deletion analyses identified an N-terminal signal conveying mtKAS into mitochondria. Thus, mtKAS with its broad chain length specificity accomplishes all condensation steps in mitochondrial fatty acid synthesis, whereas in plastids three KAS enzymes are required.  相似文献   

16.
Bile acid CoA ligase (BAL) is responsible for catalyzing the first step in the conjugation of bile acids with amino acids. Sequencing of putative rat liver BAL cDNAs identified a cDNA (rBAL-1) possessing a 51 nucleotide 5'-untranslated region, an open reading frame of 2,070 bases encoding a 690 aa protein with a molecular mass of 75,960 Da, and a 138 nucleotide 3'-nontranslated region followed by a poly(A) tail. Identity of the cDNA was established by: 1) the rBAL-1 open reading frame encoded peptides obtained by chemical sequencing of the purified rBAL protein; 2) expressed rBAL-1 protein comigrated with purified rBAL during SDS-polyacrylamide gel electrophoresis; and 3) rBAL-1 expressed in insect Sf9 cells had enzymatic properties that were comparable to the enzyme isolated from rat liver. Evidence for a relationship between fatty acid and bile acid metabolism is suggested by specific inhibition of rBAL-1 by cis-unsaturated fatty acids and its high homology to a human very long chain fatty acid CoA ligase. In summary, these results indicate that the cDNA for rat liver BAL has been isolated and expression of the rBAL cDNA in insect Sf9 cells results in a catalytically active enzyme capable of utilizing several different bile acids as substrates.  相似文献   

17.
Acetylcholinesterase was purified from the soluble supernatant of monkey (Macaca radiata) brain basal ganglia by a three-step affinity purification procedure. The purified enzyme showed two major protein bands corresponding to molecular weights of approximately 65 kDa and approximately 58 kDa which could be labelled by [3H]diisopropylfluorophosphate. When the purified enzyme was subjected to limited trypsin digestion followed by gel filtration on Sephadex G-75 or Sephadex G-25 column, a peptide fragment of molecular weight approximately 300 Da having a weak acetylthiocholine hydrolysing activity was isolated. The amino acid sequence analysis of this peptide showed a sequence of Gly-Pro-Ser. When the [3H]DFP labelled enzyme was subjected to limited trypsin digestion and Sephadex G-75 column chromatography, a labelled peptide corresponding to approximately 430 Da was isolated. The kinetics, inhibition characteristics and binding characteristics to lectins of this peptide were compared with the parent enzyme. A synthetic peptide of sequence Gly-Pro-Ser was also found to exhibit acetylthiocholine hydrolysing activity. The kinetics and inhibition characteristics of the synthetic peptide were similar to those of the peptide derived from the purified acetylcholinesterase, except that the synthetic peptide was more specific towards acetylthiocholine than butyrylthiocholine. The specific activity (units/mg) of the synthetic peptide was about 123700 times less than that of the purified AChE.  相似文献   

18.
Adult Drosophila melanogaster synthesizes dodecanoic and tetradecanoic acids in vivo, along with the more common 16- and 18-carbon fatty acids. The radiolabeled C12 and C14 fatty acids synthesized from sodium [1-14C]acetate are found primarily in the diacylglycerol and triacylglycerol fractions. Partially purified fatty acid synthetase (FAS) synthesizes C14, C16, and C18 fatty acids (as the free acids) at 0.2 M ionic strength. Increasing the ionic strength to 2.0 M causes partially purified FAS to synthesize primarily C12 and C14 fatty acids. Addition of aliquots of the microsomal pellet and other soluble protein fractions does not alter the pattern of fatty acids synthesized by FAS. The percentage of C12 and C14 fatty acids synthesized at high ionic strength by individual fractions from the FAS peak (Sepharose 6B column) is constant across the peak. None of the soluble protein fractions is able to relieve the inhibition of FAS by phenylmethylsulfonyl fluoride. These results indicate that the FAS of D. melanogaster has the inherent capability to form C12 and C14 fatty acids and that no other soluble protein appears to be involved in their synthesis.  相似文献   

19.
20.
Summary The fatty acid synthetase (FAS) gene FAS1 of the alkane-utilizing yeast Yarrowia lipolytica was cloned and sequenced. The gene is represented by an intron-free reading frame of 6228 by encoding a protein of 2076 amino acids and 229980 Da molecular weight. This protein exhibits a 58% sequence similarity to the corresponding Saccharomyces cerevisiae FAS -subunit. The sequential order of the five FAS1-encoded enzyme domains, acetyl transferase, enoyl reductase, dehydratase and malonyl/palmityl-transferase, is co-linear in both organisms. This finding agrees with available evidence that the functional organization of FAS genes is similar in related organisms but differs considerably between unrelated species. In addition, previously reported conflicting data concerning the 3 end of S. cerevisiae FAS1 were re-examined by genomic and cDNA sequencing of the relevant portion of the gene. Thereby, the translational stop codon was shown to lie considerably downstream of both published termination sites. The S. cerevisiae FAS1 gene thus has a corrected length of 6153 by and encodes a protein of 2051 amino acids and 228667 Da molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号